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Abstract: It is necessary to upgrade and transform the sorting equipment in the industrial production
line. In order to improve production efficiency and reduce labor intensity, a high-speed lightweight
parallel mechanism control system for the high-speed sorting and packaging of light items was
studied. A fuzzy PID controller based on genetic algorithm (GA) optimization is proposed according
to the nonlinear and strong coupling characteristics of the parallel mechanism (PM) control system.
The inverse kinematic analysis was conducted to map the workspace trajectory tracking problem
to the joint space. It was transformed into the trajectory planning and solving problems in the joint
space. The motion trajectory was obtained utilizing quintic polynomial interpolation. Finally, the
servo control system model was established, and the PID control parameters were optimized and
self-tuned by the GA. They were applied to the fuzzy PID controller for simulation experiments.
The simulation results showed that the GA-optimized fuzzy PID control system compared with the
fuzzy PID control system had a 23.39% shorter rise time, 22.32% less regulation time, and 7.18% less
steady-state error. The control system had a good dynamic and steady-state performance.

Keywords: parallel mechanism; genetic algorithm; fuzzy PID controller; self-tuned

1. Introduction

In the packaging industry of industrial production, it is usually necessary to complete
the classification, inspection, packaging, and other operations of light and small objects at
a faster speed to improve work efficiency. It is difficult to complete the precise operation
with high strength and high speed for a long time using the traditional manual operation
method. Compared with the series mechanism [1,2], the parallel mechanism (PM) has high
stiffness, small dead weight load ratios, a strong bearing capacity, high precision, and a
compact structure. The PM is suitable for applications with a small working space and large
load strength, and it is widely used in machine tool processing, aircraft manufacturing,
and medical treatment. Artificial intelligence is used to store mathematical models and
operation experience in the computer with the development of computer technologies. The
established control system model aims to control the whole mechanical system easily.

Proportional-integral-derivative (PID) controllers are still widely used in the industrial
process control. Engineers can tune these three gains through experience or simple princi-
ples such as classical tuning rules proposed by Ziegler-Nichols [3]. There are many factors
in the control system of PMs, such as uncertainty, nonlinearity, and external disturbance.
The conventional PID controller has some problems, such as poor parameter settings and
poor adaptability to variable working conditions. The combination of fuzzy control and
PID control theory can solve these problems.

Li [4] proposed a novel fuzzy logic controller (FLC) for the gap between the time
response and the rule base. It performs well in both transient and steady states without
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using multiple decision tables. Carvajal [5] presented a new fuzzy PID control method for
nonlinear systems that are structurally difficult to model. Najafizadeh [6] used two kinds
of fuzzy inference engines to construct an adaptive fuzzy PID controller, which achieves a
fast convergence time and high performance. Zhou [7] proposed an orthogonal fuzzy PID
control method to control the manipulator, which improves system accuracy and reduces
the oscillation process near the steady state. Phu [8,9] studied some qualitative properties
of fuzzy PID control systems in fuzzy number space. HuKuhara differentiability and fuzzy
second-order differential equations are used to solve the multi-boundary problem, which
proves the existence and uniqueness of the solution of the differential equation. Liu [10]
proposed a cascading predictive fuzzy PID (FPID) controller with weight and used the
fastest descent method to calculate weight and improve the accuracy of trajectory tracking.

The quantization factor and scale factor affect the control effect of the fuzzy con-
troller. Traditional selection methods are mostly based on expert experience and industrial
knowledge, which will make the control effect unsatisfactory. Therefore, the optimization
algorithm is introduced to optimize PID control parameters quickly and accurately using its
global optimization ability. Tsai [11] proposed a novel adaptive PID control method—using
predictive control and outputting recursive fuzzy wavelet neural networks to process a set
of nonlinear digital delayed dynamic systems. Pelusi [12–14] previously studied the use of
the GA and neuro-fuzzy techniques to design optimal control systems. The results can be
used as benchmarks to compare with the proposed design. Purnama [15] compared various
controllers. The PID controller optimized by the GA has a shorter rise time, and smaller
steady-state error, but higher theoretical complexity. The proposed fuzzy PID controller was
applied to the servo control system [16], showing that the fuzzy PID controller optimized
by a GA has good speed control and anti-jamming ability. Chao [17,18] proposed that the
membership function should be adjusted by nonlinear factors, which greatly improves the
GA and verifies its feasibility. Moran [19,20] used the manual tuning PID and GA PID for
comparative control experiments on DC electric machines. The genetic Algorithm PID can
obtain more suitable PID parameters, but the system responds slowly.

Vijaya [21] used a fuzzy PID speed controller based on a GA to control a permanent
magnet synchronous motor. The multi-carrier PWM is used for analysis, which can achieve
the required speed faster than the conventional PID controller. Dogruer [22] optimized
the fuzzy PID controller by a GA to improve the robustness of the voltage regulator.
Alouache [23] found that the fuzzy PID controller optimized by a GA controls the mobile
robot for trajectory tracking in the case of interferences with good control effects.

Therefore, the optimization algorithm in the traditional fuzzy PID control was intro-
duced in the work. The global optimization ability and parallel ability of the GA were used
to optimize PID control parameters. Thus, the robustness of the control system and the
trajectory tracking accuracy of the PM were greatly improved.

2. Model of the Three-Translation PM
2.1. Introduction to PMs

The three-translation PM in the work was composed of a static platform, a moving
platform, three composite branch chains with the same structure, and a parallelogram
closed-loop subchain with variable rod lengths. Three composite branch chains were
evenly distributed on the static platform with an included angle of 120◦. Each composite
branch chain was composed of an active arm and a variable-length parallelogram closed-
loop subchain connected by a rotating pair. The variable-length parallelogram closed-loop
subchain was composed of connectors, and the sliding rod was formed by connecting the
moving pair. The active arm and the variable-length parallelogram closed-loop subchain
were always kept at 90◦, and the parallelogram closed-loop subchain was connected with
the moving platform by a spherical pair. Driving motors were fixed on the static platform,
which made the machine have good motion performance. Figure 1 shows the PM structure.
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Figure 1. PM structure.

2.2. Coordinate System Establishment

Each driven arm of the PM was a parallelogram, and the distance between the two
sliding rods was unchanged; therefore, the structure could be simplified (see Figure 2).
Three points, L1, L2, and L3, were the vertices of the equilateral triangle, and R was its
circumscribed circle radius. The angle between it and the X-axis was αi (i = 1, 2, 3) with the
circle center as the origin, the direction pointing to the circle center as the X-axis, and the
normal plane direction of the regular triangle as the Z-axis. Three points, N1, N2, and N3,
were the vertices of an equilateral triangle whose circumscribed circle radius was r.
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The circle center was taken as the origin, and the three coordinate axes at the initial
position were parallel to the basic coordinate system. Dynamic coordinate system O′-X’Y’Z’
was established. lb is the length of the active arm Li Mi, and lai is the length of the slave arm
Mi Ni. θi is the angle between the static platform and the active arm as well as the input
parameter, and i = 1, 2, and 3. The center coordinate of the moving platform is O′(x,y,z),
where x, y, and z are output parameters.
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2.3. Position Inverse Solution

According to the geometric relationship Li Mi⊥Mi Ni , the simplified mechanism from
the Pythagorean theorem is shown in Equation (1):

LN2
= LM2

+ MN2 (1)

where point coordinate Li:Li = R

cosαi
sinαi

0

; point coordinate Ni:Ni =

x + rcosαi
y + rsinαi

z

; point

coordinate Mi : Mi =

(lbcosθi + R)cosαi
(lbcosθi + R)sinαi

lbsinθi

; θi is the rotation angle of the active arm; and

i = 1, 2, and 3. The calculation results from known coordinates are shown in Equation (2):
LN2

= [(x + rcosαi)− Rcosαi]
2 + [(x + rsinαi)− Rsinαi]

2 + z2,
LM2

= l2
b ,

MN2
= [(x + rcosαi)− (lbcosθi + R)cosαi]

2 + [(x + rsinαi)− (lbcosθi + R)sinαi]
2

+(z− lbsinθi)
2

(2)

LN2, LM2, and MN2 are substituted into Equation (1) to obtain the inverse solution of
the mechanism. The inverse solution of the mechanism is shown in Equation (3):

θi = 2arctan(ti) (3)

3. Trajectory Planning

The trajectory planning of the PM involves the path and temporal relationship of
its motion. The time-varying position of the moving platform must be located within
the workspace defined by mechanical boundaries. Additionally, there are the maximum
velocity and acceleration in the physical limit range. The activated-joint angle calculated by
the inverse kinematics constitutes the motion trajectory from the starting position to the
target position.

3.1. Coordinate Space Trajectory Planning

According to the requirement of the actual task, the motion trajectory of the PM was
designed. A door-shaped trajectory was introduced to meet the needs of picking and
placing operations in the industry.

P0 is the picking point and P5 is the placing point (see Figure 3). The trajectory was
composed of three straight lines and two arcs. The transition arcs at both ends could avoid
sudden changes in speeds and acceleration.
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Assuming that the door trajectory is in the XOY plane, and P0(x0, 0, z0) is the initial
position, the straight line and circular arc in Figure 3 were interpolated, and the door-shaped
trajectory was obtained, as shown in Equation (4):

(x, y, z) = (x0, 0, z0 − s(ti)) t0 < ti ≤ t1

(x, y, z) =
(
x0 + rp − rpcosϕ1, 0, z0 − h− rpsinϕ1

)
t1 < ti ≤ t2

(x, y, z) =
(
x0 + rp + s(ti)− 0.5πrp − h, 0, z0 − h− rp

)
t2 < ti ≤ t3

(x, y, z) =
(
x0 + rp + l + rpsinϕ2, 0, z0 − h− rpcosϕ2

)
t3 < ti ≤ t4

(x, y, z) =
(

x0 + 2rp + l, 0, z0 − s f + s(ti)
)

t4 < ti ≤ t5

(4)

ϕ1 = (s(ti)− h)/r and ϕ2 =
(
s(ti)− h− (1/2)πrp − l

)
/rp,t1 . . .t5 correspond to the

arrival time at P1 . . . P5, respectively. ti is any time in the cycle.

3.2. Joint Space Trajectory Planning

The fifth-order polynomial for interpolation was used as shown in Equation (5) to
plan the PM trajectory, ensure the smooth movement of each joint, and prevent the sudden
change in acceleration.

s(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5

v(t) = a1 + 2a2t + 3a3t2 + 4a4t3 + 5a5t4

a(t) = 2a2 + 6a3t + 12a4t2 + 20a5t3
(5)

where s, v, and a represent the path length, velocity, and acceleration, respectively;
a0, a1, . . . , and a5 are the undetermined coefficients of the polynomial; t is the time.

The following boundary constraints are specified to ensure the smooth operation of
the PM. Equation (6) is the specified boundary constraint condition:

s(0) = 0, v(0) = 0, a(0) = 0
s
(

t f

)
= s f , v

(
t f

)
= 0, a

(
t f

)
= 0

(6)

where tf represents the terminal time of the trajectory and s f is the total length of the
trajectory planning path.

Undetermined coefficients can be solved by substituting the above boundary condi-
tions. The trajectory planning Equation (7) can be obtained as:

s(t) =
10s f

t3
f

t3 − 15s f

t4
f

t4 +
6s f

t5
f

t5

v(t) =
30s f

t3
f

t2 − 60s f

t4
f

t3 +
30s f

t5
f

t4

a(t) =
60s f

t3
f

t− 180s f

t4
f

t2 +
120s f

t5
f

t3

(7)

4. PM Control System

The servo control system of the PM is a complex, nonlinear, and strong coupling
system. Since the parameters in the system are time varying, only relevant approximate
models can be established, which hinders control. Therefore, the combination of a genetic
algorithm and fuzzy PID controller has the reliability of PID control, the robustness of
fuzzy control, rapid adjustments, and the global optimization of the GA.

4.1. Fuzzy PID Controller

The PID controller is a feedback element commonly used in industrial control [24].
The input value can be adjusted according to the feedback value and the difference value so
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that the system is more accurate and stable. PID algorithms can be divided into positional
PID and incremental PID.

u(k) = KPe(k) + KI ∑k
i=0 e(i) + KD[e(k)− e(k− 1)] (8)

∆u(k) = KP[e(k)− e(k− 1)] + KIe(k) + KD[e(k)− 2e(k− 1) + e(k− 2)] (9)

Equations (8) and (9) are place style and increment style, respectively. e(K) represents
the error. Fuzzy logic control (FLC) has the advantage of using human brains to solve
problems, with its core divided into the fuzzification interface, fuzzy rule base, fuzzy
decision, and defuzzification. Fuzzy inferences include membership function and rule
table, and the knowledge base is obtained from expert experience.

Fuzzy PID (FPID) combines Fuzzy control and PID control, with a simple structure
and strong self-adaptability [25]. The fuzzy controller takes error E as the input. The output
is the modified values of PID parameters ∆Kp, ∆Ki, and ∆Kd through quantization factors,
fuzzy control rules, and scale factors. Ke and Kec are quantization factors; Kup is the scale
factor for ∆Kp; Kui the scaling factor for ∆Ki; and Kud the scaling factor for ∆Kd. Figure 4
shows the block of the fuzzy PID structure. The expression of the fuzzy PID controller is
shown in Equation (10). 

Kp = Kp0 + ∆Kp
Ki = Ki0 + ∆Ki

Kd = Kd0 + ∆Kd

(10)

where Kp0, Ki0 , and Kd0 represent the proportional, integral, and differential initial
coefficients in the traditional PID controller, respectively. Based on the fuzzy rule table, the
fuzzy inference results show that ∆Kp, ∆Ki , and ∆Kd are the change values of proportion,
integral, and differential coefficients, respectively.
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The corresponding membership function is generated by the fuzzy toolbox of math-
ematical software. Correctly constructing the membership function is one of the keys to
using fuzzy control. Figure 5 shows the quantization domain and fuzzy subset. The fuzzy
subset with a sharp shape of the membership function has high resolutions and a high
control sensitivity. On the contrary, the shape of the membership function curve is relatively
flat, with good stability.
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The relationship between the three input parameters of the PID controller and the
general tuning principles summed up by expert experience are as follows:

(1) The absolute value of the input error is large. The Ki value is zero; the larger the Kp
value, the smaller the Kd value taken simultaneously.

(2) The absolute value of the input error is the median. Ki takes an appropriate value,
and Kp should take a small value. The Kd value significantly affects the system.
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(3) The absolute value of the input error is small. Ki and Kp values should be large, and
the Kd value depends on the absolute value of the change rate of the input error.
When the change rate is small, Kd takes an intermediate value; otherwise, Kd takes a
small value.

Tables 1–3 show fuzzy rules. The input fuzzy variable derivative of position errors has
seven linguistic variables, namely NB (negative big), NM (negative medium), NS (negative
small), ZO (zero), PS (positive small), PM (positive medium), and PB (positive big). Three
points, ∆Kp, ∆Ki, and ∆Kd, are defined as the fuzzy set in the defuzzification process.

Table 1. Fuzzy rule of ∆Kp.

E
EC

NB NM NS ZO PS PM PB

NB PB PB PM PM PS ZO ZO
NM PB PB PM PS PS ZO NS
NS PM PM PM PS ZO NS NS
ZO PM PM PS ZO NS NM NM
PS PS PS ZO NS NS NM NM
PM PS ZO NS NM NM NM NB
PB ZO ZO NM NM NM NB NB
NB PB PB PM PM PS ZO ZO

Table 2. Fuzzy rule of ∆Ki.

E
EC

NB NM NS ZO PS PM PB

NB NB NB NB NM NM NS ZO
NM NM NB NB NM NS NS ZO
NS NS NB NM NS NS ZO PS
ZO ZO NM NM NS ZO PS PM
PS PS NM NS ZO PS PS PM
PM PM ZO ZO PS PS PM PB
PB PB ZO ZO PS PM PM PB
NB NB NB NB NM NM NS ZO

Table 3. Fuzzy rule of ∆Kd.

E
EC

NB NM NS ZO PS PM PB

NB NB PS NS NB NB NB NM
NM NM PS NS NB NM NM NS
NS NS ZO NS NM NM NS NS
ZO ZO ZO NS NS NS NS NS
PS PS ZO ZO ZO ZO ZO ZO
PM PM PB NS PS PS PS PS
PB PB PB PM PM PM PS PS
NB NB PS NS NB NB NB NM

4.2. Optimization of Fuzzy PID Parameters by the GA

A GA is an optimization method for finding the optimal solution to a problem based on
Darwin’s theory of biological evolution [26–28]. Traditional fuzzy PID has great differences
in selecting rule tables and membership functions, and it is difficult to generalize according
to expert experience. The quantization factor and scale factor of the fuzzy PID controller
are optimized by the excellent global optimization ability of the GA. The structure diagram
of fuzzy PID optimized by genetic algorithm is shown in Figure 6, and the algorithm flow
chart is shown in Figure 7:
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Figure 7. Flow of the GA.{
e, ec, Kp, Ki, Kd

}
are the genes of individuals using the continuous GA to optimize

the fuzzy PID controller. Each gene is coded in decimal notation. Fitness function Equation
(11) is used to calculate the fitness values of each individual [29]. Equation (12) calculates
the probabilities of each individual to be selected [30]:

Fi =
1∫ ∞

0 |ei(t)|dt
(11)

Pi =
Fi

∑n
i=1 Fi

(12)

The genetic mode is set to the high probability of crossover and the low probability of
mutation and is iterated for 100 generations as the termination condition.

5. Model Building and Simulation Analysis

The Alternating Current (AC) servo motor system is a typical nonlinear controlled
object, and it is necessary to comprehensively consider the characteristics of the uncertain
system of the AC servo motor. It is assumed that the magnetic circuit is not saturated and
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the magnetic field is sinusoidal. The eddy current loss and hysteresis loss are ignored. Let
Ld = Lp = L, and the state Equations (13) and (14) in the d-q coordinates are as follows:

G(s) =
ωm(s)
Im(s)

= KpiK f Ku/JLFF(s) (13)

F(s) = S2 +
(

Rs + KpiKi
)
S/L + K f Ku/JL (14)

where K f , Rs, Ku, and Ki represent the torque coefficient, stator winding, potential coeffi-
cient, and current feedback coefficient, respectively.

Transfer function G(s) characterizes the dynamic characteristics of the complex system
under no moment of inertia and torque interferences. The transfer function is shown in
Equation (15):

G(s) =
47.5

s
− 48

s + 6
+

0.5
s + 534

(15)

According to the transfer function of the AC servo motor and parameters obtained by
the GA, the simulation model is established in mathematical simulation software. The fuzzy
PID control system is taken as an example. According to the influence of PID controller
parameters on the control effect, combined with fuzzy controller, a fuzzy PID controller is
designed (see Figure 8 for the fuzzy PID control model). The three terms used in the block
diagram (Kp, Ki, and Kd) are gains for the proportional controller, integral controller, and
derivative controller. The values of Kp, Ki , and Kd were 69.25, 0.993, and 10.5, respectively.
The values of Ke, Kec, and Ku were 3, 0. 1, and 0. 1, respectively. The controller dynamically
adjusts PID parameters through the GA during the system operation.
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6. Analysis of Simulation Results

According to the determined structure and control method of the servo control sys-
tem, a simulation experiment was carried out on the position control of the servo motor
combined with the engineering tuning method. The superiority of the control strategy
designed in the work was verified by comparing the control effect of the fuzzy PID (FPID)
control strategy and genetic algorithm optimized fuzzy PID (GAFPID) control strategy on
the position signal tracking of the servo control system.

6.1. Iterative Analysis of GAs

According to the parameters of the setting algorithm of the fuzzy PID control system
structure, the population size and the iteration number were set to 30 and 100, respectively.
The crossover probability and mutation probability were 0.9 and 0.1, respectively. Kp = 100,
Ki = 100, and Kd = 10 at the initial stage.

Figure 9 shows that it converged at the 52nd iteration, while traditional calculations
often require thousands of iterations. The traditional method of calculation mentioned
here is trial and error. Trial and error is a method of setting parameters empirically. In
the closed-loop control system, the adjustment was carried out in the order of Kp, Ki and
Kd. While adjusting the parameters, the process was observed until the requirements were
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met. The optimal objective function value and the optimal matching parameter value of
the fuzzy PID controller could be obtained at the end of the iteration. The parameter values
of the fuzzy PID controller obtained by the GA were substituted into the simulation model
of the servo control system. The experimental analysis of step characteristics, sinusoidal
characteristics, and joint trajectory tracking was carried out.
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6.2. Simulation Analysis of Step Characteristics

PID control, fuzzy PID control, and PID control optimized by the GA were applied to
the control system under the condition that the input was an 8◦ step signal simulating the
load. The sampling time was set to 0.01 s. The dynamic and static indices of the system
under different control strategies were analyzed (see Figure 10 for simulation results).
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Table 4 shows the simulation results of the step response. The rise time of the system
under the control of a fuzzy PID controller optimized by the GA was reduced by about
37.91% compared with the classical PID control under the loaded step response. It was
about 23.39% shorter than the fuzzy PID control. The adjustment time of the system
controlled by the fuzzy PID controller optimized by the GA was about 32.46% shorter
than that of the PID control and about 22.32% shorter than that of the fuzzy PID control.
The steady-state error of the system under genetic fuzzy PID control was 88.67% less than
that of the classical PID control, and 7.18% less than that of the fuzzy PID control in the
steady-state response.
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Table 4. Simulation results of the step response.

The Controller Type Setting Time/(s) Rise Time/(s) Steady-State Error/(◦)

PID 0.752 0.612 0.1713
FPID 0.654 0.496 0.0209

GAFPID 0.508 0.380 0.0194

6.3. Sinusoidal Characteristic Simulation Analysis

The input was a 12◦ sinusoidal signal at 2 Hz to simulate the on-load condition. Four
different control strategies were applied to the control system. The sampling time was
set to 0.01 s. The maximum amplitude error and the maximum phase error of the system
under different control strategies were compared. Figure 11 shows the simulation results.
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Table 5 shows the simulation data of frequency response under loading. The sinusoidal
signal at 2 Hz and 12◦ was input under loading. The system under the genetic fuzzy PID
control was 32.30% less than the fuzzy PID control system, 80.01% less than the pure
fuzzy control system, and 60.03% less than the classical PID control system in terms of the
maximum amplitude error. The system under the fuzzy PID control optimized by the GA
was 33.43% less than the fuzzy PID, 86.90% less than the pure fuzzy control system, and
67.29% less than the classical PID in terms of the maximum phase error.

Table 5. Simulation data of the frequency response under loading.

The Controller Type Maximum Phase Error/(◦) Maximum Magnitude
Error/(◦)

PID 0.573 0.2614
FUZZY 1.146 0.6527

FPID 0.344 0.1263
GAFPID 0.229 0.0855

6.4. Input-Joint-Trajectory Simulation Analysis

The controllers of the three joints were successively optimized, and the trajectory
planning was carried out in a Cartesian coordinate system. The end effector was moved
along the gate-shaped trajectory, and the inverse kinematics were used to map the operation
space to the joint space. The trajectories planned by interpolating quintic polynomials were
used as the input. The simulation time was set to 3 s. The traditional PID control, fuzzy
control, fuzzy PID control, and fuzzy PID control strategies optimized by GAs were used
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to control the PM. The trajectory tracking capabilities of the four control methods were
compared.

Figures 12–14 show the trajectory tracking of the three joints, respectively. The average
absolute error was about 0.0327 using the GAFPID control strategy for Q1 joint motion.
The enlarged partial image presents that the joint trajectory based on the GAFPID control
strategy was the closest to the ideal trajectory, with the optimal control effect.
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According to Tables 6 and 7, the minimum integral time absolute error (ITAE) value
of the joint trajectory is based on the GAFPID control strategy. The dynamic response
overshoot was small and the adjustment time was short. The integral absolute error (IAE)
index was the smallest, which means that small deviations in the control system can
be suppressed.
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Figure 12. Joint trajectory Q1: (a) tracking response; (b) local enlarged view. 

  

(a) (b) 

Figure 13. Joint trajectory Q2: (a) tracking response; (b) local enlarged view. 
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Figure 14. Joint trajectory Q3: (a) tracking response; (b) local enlarged view.

Table 6. ITAE values.

The Controller Type Joint Q1 Joint Q2 Joint Q3

PID 0.0655 0.057 0.057
FUZZY 0.1568 0.1667 0.1667

FPID 0.0388 0.0319 0.0319
GAFPID 0.0265 0.0197 0.0197

Table 7. IAE values.

The Controller Type Joint Q1 Joint Q2 Joint Q3

PID 0.0436 0.042 0.042
FUZZY 0.1094 0.1196 0.1196

FPID 0.0237 0.0235 0.0235
GAFPID 0.0147 0.0144 0.0144

7. Conclusions

(1) The PM is a highly nonlinear, strongly coupled, and time-varying control system.
It is difficult to obtain the ideal control effect with the traditional control method.
In the trajectory tracking control of 3-DOF PM, the PID control was combined to
improve the control accuracy. Without relying on the exact mathematical model of the
controlled object, the fuzzy control method was used to approximate the nonlinear
system. Through the combination of the fuzzy controller and PID controller, a fuzzy
PID controller was designed, which could self-tune PID parameters online in the
control process. In view of the problem that the design of the fuzzy control system
needs expert knowledge and experience to obtain the best control effect, the fuzzy
PID controller was optimized by a genetic algorithm.

(2) The traditional PID control, fuzzy control, fuzzy PID control, and fuzzy PID control
optimized by the GA were carried out to simulate signal-tracking and to verify the
effectiveness of the optimized controller. The simulation showed that the servo system
under the fuzzy PID control based on the GA had significantly improved dynamic
response characteristics and steady-state accuracy, with a better trajectory-tracking
effect. The ideal control performance of the PM in trajectory tracking control depended
on the design of the control system. Through the reasonable selection and design of
the control strategy, the control deviation of the joint angle and angular velocity of
the PM could be reduced. Thus, the response speed and stability of the system were
improved, which is of great significance to the application of PM.
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(3) The optimization of other intelligent algorithms and the combination of each other’s
advantages will be further considered in the future to greatly adapt to more complex
regulatory processes. The neural network fuzzy control was considered. Neural
networks can adequately approximate arbitrary complex nonlinear relationships. It
can learn and adapt to the dynamic characteristics of uncertain systems. The adaptive
fuzzy control system was introduced, which can identify system parameters and
adjust control parameters online. The expert intelligent self-tuning PID controller
was used to recognize the system error pattern when the closed-loop system was
disturbed. The key problems to be solved in the above control strategy were online
parameter identification, parameter adaptive adjustment, the establishment of an
expert system, and the combination of a neural network and fuzzy control. The above
needs to be studied in further research work.
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Abbreviation
Abbreviation Wording
PM Parallel mechanism
PID Proportional-integral-derivative
FLC Fuzzy logic controller
FPID Fuzzy PID controller
GA Genetic algorithm
DC Direct current
AC Alternating current
GAFPID The genetic algorithm optimized fuzzy PID
ITAE Integral time absolute error
IAE Integral absolute error

References
1. Kong, X.; Gosselin, C.M.; Richard, P.-L. Type synthesis of parallel mechanisms with multiple operation modes. In Proceedings

of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
Philadelphia, PA, USA, 10–13 September 2006; pp. 1037–1046. [CrossRef]

2. Huang, Y.; Lu, Q.; Wang, H.; Liu, J.; Li, Z.; Zou, X.; Zhan, X. Kinematics Analysis and Simulation of a Novel 3T Parallel Mechanism.
Math. Probl. Eng. 2022, 2022, 3424012. [CrossRef]

3. Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Trans. ASME 1942, 64, 759–768. [CrossRef]
4. Li, H.-X.; Gatland, H. A new methodology for designing a fuzzy logic controller. IEEE Trans. Syst. Man Cybern. 1995, 25, 505–512.

[CrossRef]
5. Carvajal, J.; Chen, G.; Ogmen, H. Fuzzy PID controller: Design, performance evaluation, and stability analysis. Inf. Sci. 2000, 123,

249–270. [CrossRef]
6. Najafizadeh Sari, N.; Jahanshahi, H.; Fakoor, M. Adaptive fuzzy PID control strategy for spacecraft attitude control. Int. J. Fuzzy

Syst. 2019, 21, 769–781. [CrossRef]

http://doi.org/10.1115/1.2717228
http://doi.org/10.1155/2022/3424012
http://doi.org/10.1115/1.2899060
http://doi.org/10.1109/21.364863
http://doi.org/10.1016/S0020-0255(99)00127-9
http://doi.org/10.1007/s40815-018-0576-2


Appl. Sci. 2022, 12, 11128 16 of 16

7. Zhou, H.; Chen, R.; Zhou, S.; Liu, Z. Design and analysis of a drive system for a series manipulator based on orthogonal-fuzzy
PID control. Electronics 2019, 8, 1051. [CrossRef]

8. Phu, N.D.; Hung, N.N.; Ahmadian, A.; Senu, N. A new fuzzy PID control system based on fuzzy PID controller and fuzzy control
process. Int. J. Fuzzy Syst. 2020, 22, 2163–2187. [CrossRef]

9. Phu, N.D.; Hung, N.N. Some solving methods for a fuzzy multi-point boundary value problem. Soft Comput. 2020, 24, 483–499.
[CrossRef]

10. Liu, Y.; Fan, K.; Ouyang, Q. Intelligent traction control method based on model predictive fuzzy PID control and online
optimization for permanent magnetic maglev trains. IEEE Access 2021, 9, 29032–29046. [CrossRef]

11. Tsai, C.-C.; Yu, C.-C.; Tsai, C.-T. Adaptive ORFWNN-based predictive PID control. Int. J. Fuzzy Syst. 2019, 21, 1544–1559.
[CrossRef]

12. Pelusi, D. Optimization of a fuzzy logic controller using genetic algorithms. In Proceedings of the 2011 Third International
Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2011; pp. 143–146.
[CrossRef]

13. Pelusi, D. Designing neural networks to improve timing performances of intelligent controllers. J. Discret. Math. Sci. Cryptogr.
2013, 16, 187–193. [CrossRef]

14. Pelusi, D.; Mascella, R. Optimal control Algorithms for second order Systems. J. Comput. Sci. 2013, 9, 183–197. [CrossRef]
15. Purnama, H.S.; Sutikno, T.; Alavandar, S.; Subrata, A.C. Intelligent control strategies for tuning PID of speed control of DC motor:

A review. In Proceedings of the 2019 IEEE Conference on Energy Conversion (CENCON), Yogyakarta, Indonesia, 16–17 October
2019; pp. 24–30. [CrossRef]

16. Singh, A.; Giri, V. Design and analysis of DC motor speed control by GA based tuning of fuzzy logic controller. Int. J. Eng. Res.
Technol. 2012, 1, 1–6.

17. Chao, C.-T.; Sutarna, N.; Chiou, J.-S.; Wang, C.-J. An optimal fuzzy PID controller design based on conventional PID control and
nonlinear factors. Appl. Sci. 2019, 9, 1224. [CrossRef]

18. Chao, C.-T.; Sutarna, N.; Chiou, J.-S.; Wang, C.-J. Equivalence between fuzzy PID controllers and conventional PID controllers.
Appl. Sci. 2017, 7, 513. [CrossRef]

19. Flores-Morán, E.; Yánez-Pazmiño, W.; Barzola-Monteses, J. Genetic algorithm and fuzzy self-tuning PID for DC motor position
controllers. In Proceedings of the 2018 19th International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary,
28–31 May 2018; pp. 162–168. [CrossRef]

20. Morán, M.E.F.; Viera, N.A.P. Comparative study for DC motor position controllers. In Proceedings of the 2017 IEEE Second
Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017; pp. 1–6. [CrossRef]

21. Vijaya, S.; Bharathiraja, P.; Nithyanandam, J. A Performance Comparison of Conventional and New Seven Level Inverter Topology
Fed PM Synchronous Motor Using GA Based Fuzzy PID Speed Controller. In Proceedings of the 2018 International Conference
on Computation of Power, Energy, Information and Communication (ICCPEIC), Chennai, India, 28–29 March 2018; pp. 275–279.
[CrossRef]

22. Dogruer, T.; Can, M.S. Design and robustness analysis of fuzzy PID controller for automatic voltage regulator system using
genetic algorithm. Trans. Inst. Meas. Control 2022, 44, 1862–1873. [CrossRef]

23. Alouache, A.; Wu, Q. Genetic algorithms for trajectory tracking of mobile robot based on PID controller. In Proceedings of the
2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania,
6–8 September 2018; pp. 237–241. [CrossRef]

24. Ang, K.H.; Chong, G.; Li, Y. PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 2005, 13,
559–576. [CrossRef]

25. Tang, K.-S.; Man, K.F.; Chen, G.; Kwong, S. An optimal fuzzy PID controller. IEEE Trans. Ind. Electron. 2001, 48, 757–765.
[CrossRef]

26. Forrest, S. Genetic algorithms. ACM Comput. Surv. 1996, 28, 77–80. [CrossRef]
27. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
28. Sivanandam, S.; Deepa, S. Genetic algorithms. In Introduction to Genetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2008;

pp. 15–37. [CrossRef]
29. Mahfud, S.; Derouich, A.; El Ouanjli, N.; Mossa, M.A.; Motahhir, S.; El Mahfoud, M.; Al-Sumaiti, A.S. Comparative Study between

Cost Functions of Genetic Algorithm Used in Direct Torque Control of a Doubly Fed Induction Motor. Appl. Sci. 2022, 12, 8717.
[CrossRef]

30. Lin, C.-L.; Jan, H.-Y.; Shieh, N.-C. GA-based multiobjective PID control for a linear brushless DC motor. IEEE/ASME Trans.
Mechatron. 2003, 8, 56–65. [CrossRef]

http://doi.org/10.3390/electronics8091051
http://doi.org/10.1007/s40815-020-00904-y
http://doi.org/10.1007/s00500-019-03926-3
http://doi.org/10.1109/ACCESS.2021.3059443
http://doi.org/10.1007/s40815-019-00650-w
http://doi.org/10.1109/IHMSC.2011.105
http://doi.org/10.1080/09720529.2013.821333
http://doi.org/10.3844/jcssp.2013.183.197
http://doi.org/10.1109/CENCON47160.2019.8974782
http://doi.org/10.3390/app9061224
http://doi.org/10.3390/app7060513
http://doi.org/10.1109/CarpathianCC.2018.8399621
http://doi.org/10.1109/ETCM.2017.8247475
http://doi.org/10.1109/ICCPEIC.2018.8525188
http://doi.org/10.1177/01423312211066758
http://doi.org/10.1109/ICCP.2018.8516587
http://doi.org/10.1109/TCST.2005.847331
http://doi.org/10.1109/41.937407
http://doi.org/10.1145/234313.234350
http://doi.org/10.1038/scientificamerican0792-66
http://doi.org/10.1007/978-3-540-73190-0_2
http://doi.org/10.3390/app12178717
http://doi.org/10.1109/TMECH.2003.809136

	Introduction 
	Model of the Three-Translation PM 
	Introduction to PMs 
	Coordinate System Establishment 
	Position Inverse Solution 

	Trajectory Planning 
	Coordinate Space Trajectory Planning 
	Joint Space Trajectory Planning 

	PM Control System 
	Fuzzy PID Controller 
	Optimization of Fuzzy PID Parameters by the GA 

	Model Building and Simulation Analysis 
	Analysis of Simulation Results 
	Iterative Analysis of GAs 
	Simulation Analysis of Step Characteristics 
	Sinusoidal Characteristic Simulation Analysis 
	Input-Joint-Trajectory Simulation Analysis 

	Conclusions 
	References

