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Abstract: Under the background of the intelligent construction of a coal mine, how to efficiently
extract effective information from the massive monitoring data of mine earthquakes, and improve
prediction accuracy, is a research hotspot in the field of coal mine safety production. In view of this
problem, more and more machine learning methods are being applied to the prediction on mine earth-
quakes. Considering that clustering analysis can enhance the correlation between microseism data,
we propose a method whose main idea is to cluster microseism data before establishing the prediction
model, and then train the model, so as to improve prediction accuracy. Specifically, microseism
events on a working face are divided into clusters in advance by the Spatial Temporal-DBSCAN(ST-
DBSCAN) algorithm, then a prediction model is established with Support Vector Regression (SVR) to
predict the occurrence location and daily frequency of high-energy mine earthquake events. A set
of engineering experiments were conducted in H Coal Mine, and the results show that the spatial-
temporal clustering analysis of microseism events can indeed improve the prediction accuracy of
machine learning methods on mine earthquakes.

Keywords: mine earthquake; machine learning; time sequence; prediction model

1. Introduction

A mining induced earthquake refers to the seismic activity caused by surface or
underground mining, which is referred to as a mine earthquake [1]. The mine earthquake
is an abnormal state of instability in the stress field of the surrounding rock in the mining
process. It is manifested as the vibration of coal and rock mass, caused by the sudden
release of local elastic energy, which can be caused by the destruction of local ore bodies,
such as spalling rib, rock burst, etc., or the sliding activity of faults. In recent years, with
the increase of mining depth and the mining intensity of coal resources in China, the
phenomenon of mine earthquake has begun to show up with unprecedented frequency,
intensity, and complexity. Strong mine earthquakes have occurred in many mining areas
across the country (the maximum magnitude is 3.1). In the Ordos mining area alone, in 2021
there were six 2.0 magnitude or above mine earthquakes [2], leading to mine earthquake
becoming a sensitive topic, and even causing social panic. Strong mine earthquake activities
are not only easy to cause dynamic disasters such as underground rock bursts [3], but
also cause consequences such as ground shaking, collapse, and building damage [4].
Therefore, it is necessary to carry out monitoring and early warning research on the mine
earthquake phenomena.

Since the 1990s, microseism monitoring technology has been widely used in the
monitoring and early warning of mine earthquakes by coal mining enterprises, due to
its advantages of high sensitivity and strong practicability [5]. In mining and production,
the dynamic and static loads cause the deformation and instability of the coal and rock
mass, or else the geological fault, fold, and other defective structures, are activated to
trigger geological activities, which will release vibration waves with different frequencies
and energy levels. The principle of the microseism monitoring system is to capture the
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relevant information of seismic waves, and determine the spatial-temporal location of
the source, the strength and frequency of microseism activities, and other high-energy
release activity information through calculation and inversion [6]. At present, microseism
monitoring technology has made great progress in station network optimization, seismic
wave pickup, inversion positioning, and waveform real-time monitoring, and has made
a series of important research achievements [7]. The microseism monitoring system can
identify the micro vibration wave and its dynamic change process in the whole coal mine,
obtain the specific information of the time, space, and intensity of the microseism event,
and directly reflect the real-time mechanical characteristics evolution of the coal mine.

With the increasingly mature and extensive application of microseism monitoring
technology, it has become an effective means for the early warning of coal mine disasters,
such as rock burst. It works by using a large amount of microseism monitoring data to
analyze the breaking and migration laws of coal seam mining surrounding rocks, and to
summarize the spatial scale, combined structure, the mechanical parameters of key stratum,
and the correlation between the breaking process and high-energy microseism events.
He et al. [8] used microseism monitoring technology to analyze the temporal and spatial
evolution law of microseism events before and after the breaking of key stratum, laying
a foundation for the prediction on rock burst using the combination of strata movement
theory and microseism monitoring technology. Yuan et al. [9] analyzed the time sequence
characteristics of microseism signals during the period of rock burst, and then obtained
the spectrum characteristics and distribution change laws of microseism signals. Wang
et al. [10] analyzed the waveform signals of microseism events and obtained the power
spectrum evolution characteristics before and after the occurrence of rock burst. Xiao
etal. [11] revised the maximum effective amplitude based on the attenuation characteristics
of microseism waves in deep buried tunnels, taking the relative effective amplitude and the
maximum effective frequency as spectrum analysis parameters. Wei et al. [12] analyzed the
time-domain waveform and frequency spectrum characteristics of microseism signals when
rock burst occurred in the coal mine by using the fast Fourier transform method. Peng [13]
classified the microseism signal categories of coal mine working faces and analyzed the
distribution law of microseism events in time and space. However, in the face of microseism
monitoring signals containing a large amount of information, it is difficult to manually
define and extract parameters to reflect all the features of microseism events, which makes
it easy to cause a large amount of effective information to be ignored. As a result, current
microseism monitoring can only monitor and reflect the microseism events that have
occurred, and are occurring, and it is difficult to accurately judge the potential microseism
events that may occur.

Traditionally, mine earthquake prediction usually uses geophysical methods to moni-
tor some precursory signals, and the synthetic index method with artificially defined and
extracted parameters is used to evaluate the possibility of the occurrence of high-energy
mine earthquakes. The determination of the index and corresponding weight involves
subjectivity and inconsistency. Machine learning can well overcome the problems caused
by the synthetic index method. Its modeling process does not involve too much subjec-
tive decision-making, and is a data-driven strategy. Using the machine learning model,
researchers do not need to pay attention to the weight of each index and the corresponding
classification standard, they just need to know the specific value of each index, which is ob-
jective and measurable. At the same time, the use of intelligent devices such as microseism
monitoring systems will generate massive real-time data carrying effective information.
Empirically driven and mechanistically driven mine earthquake prediction methods are not
enough to use these data, resulting in the loss of effective information. Using a data-driven
method to solve the problem of mine earthquake prediction will become a breakthrough
point for data-driven systems to enter the traditional engineering field, and is also a key
step for mining to enter the smart mine and data mine era.

After the great development of computer hardware and the upsurge of machine
learning, researchers continue to try to use data-driven methods, such as machine learning,
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to predict and warn of mine earthquake, achieved good results. Using the machine learning
method to analyze microseism monitoring signals can get the most effective information,
most of which cannot be obtained by an explicit algorithm. The machine learning method
also has unique advantages in establishing the relationship between monitoring parameters
and the time, location, and intensity of a mine earthquake. It can analyze the automatic
monitoring signal into a high-dimensional matrix, without the need to manually determine
the type of extraction parameters, and maximize the retention of signal features. Vallejos
and Dong [14,15] established a logistic regression model to identify microseism events
and mining blasting activities, respectively, with a higher accuracy than other analogy
models. Del [16] established two neural network models to identify microseism events,
one of which is used to extract signal features to construct training samples, and the other
is used for event classification. In addition, machine learning methods such as random
forest [17], Bayesian network [18], and support vector machine [19,20], are widely used for
monitoring microseism events. However, these studies do not consider the spatial-temporal
aggregation and activity correlation of microseism events, and the prediction accuracy
of mine earthquake is not high; there is a lot of room for improvement. Microseisms are
not isolated events. Mine earthquakes caused by a stress release usually have a similar
spatial location, short time interval, and have the law of time series. If we first cluster the
microseism data and then use the machine learning method to establish the prediction
model, we will get better results.

Therefore, we propose to combine clustering analysis and machine learning methods
to predict the high-energy mine earthquake in time sequence, including the occurrence
location prediction and energy frequency prediction. In the selection of clustering algorithm,
considering that microseism events include space and time information, the ST-DBSCAN
algorithm [21] is selected to cluster the microseism events occurring in the working face.
After clustering, there are no large number of microseism events in a single cluster, so
SVR [22], which is suitable for a small sample data set, is used to predict mine earthquakes in
sequence [23,24]. As a comparison experiment, the number of microseism events included
in the working face is large before clustering, so Long Short-Term Memory (LSTM) [25]
with a good prediction effect of time series on a large sample data set is selected to predict
mine earthquake [26].

The main contributions of this paper are summarized as follows.

(1) A time sequence prediction method for mine earthquake based on ST-DBSCAN
using SVR is proposed. Clustering analysis can source microseism clusters and enhance the
correlation of microseism data. This data preprocessing method can improve the accuracy
of subsequent machine learning prediction models.

(2) Contrast engineering experiments in the H Coal Mine are conducted to evaluate the
performance of the proposed method. The results show that, compared with the classical
time sequence prediction method (LSTM) on unclustered microseism data, the SVR model
has a better prediction effect of mine earthquake on clustered microseism data.

The remainder of this paper is organized as follows. The related machine learning
algorithms are introduced in Section 2. The proposed approach is described in Section 3. A
real case study is illustrated in Section 4. Conclusions and future work are summarized in
Section 5.

2. Methodology Background
2.1. Spatial Temporal-DBSCAN

The ST-DBSCAN algorithm adds time dimension on the basis of the DBSCAN algo-
rithm to form a spatial-temporal neighborhood with spatial distance as radius and time
interval as height, which is used for the clustering analysis of spatial-temporal data. As
shown in Figure 1, the algorithm identifies the density of samples through three parameters,
namely space radius Eps, time window AT and density threshold Minpts. Based on this,
the data meeting the conditions are divided to form the final cluster set.
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Figure 1. Schematic representation of the spatial-temporal neighborhood.

Where Eps is used to measure the distance between two spatial-temporal data in the
spatial dimension and AT is used to measure the distance in the time dimension. For
example, A(x1,y1,21,t1) and B(xy,y2, 22, t2) represent two spatial-temporal data, where
(x1,y1,21) and (x2,Y2,22) are spatial attributes and t; and t; are temporal attributes, then
the calculation formulas of Eps and AT are as follows:

Eps = \/(x1 — )+ (1 —y2)* + (21 — 2)° (1)
AT = |t; — by 2)

The ST-DBSCAN algorithm uses the threshold parameter Minpts to represent the
minimum number of sample points required for clustering in the spatial-temporal neigh-
borhood, which can be obtained from the total number N of microseism events. The
calculation formula is as follows:

Minpts = InN ©)

According to the relevant definitions of the ST-DBSCAN algorithm, the algorithm
starts loop judgment after inputting the sample data set. If the number of adjacent points
within the space radius Eps and time window AT of the core point is not less than Minpts,
a cluster will be formed. Otherwise, the next point will be judged until all points have
completed traversal and judgment. The specific construction steps are described as follows:

(1) Algorithm inputs: sample data set D, spatial radius parameter Eps, time window
parameter AT, density threshold Minpts.

(2) Establish a tag list L, which is used to mark whether the sample point has completed
the traversal state, and initially set the traversal state L = 0 of all points in D.

(38) Start traversal, randomly select point d in D, and set its traversal state to L = 1.

(4) Startloop 1, if the number of points in the Eps and AT spatial-temporal neighborhood
of d is not less than Minpts, create a new cluster C, add d to C, otherwise mark d as a
noise point.

(5) D* represents the set of all points in the Eps and AT spatial-temporal neighborhood
of d.

(6) Start loop 2, traversing each point d* in D*.

(7) If L =0 of d* select this point and set L = 1 of d*.

(8) If the number of points in the Eps and AT spatial-temporal neighborhood of d* is not
less than Minpts, add these points to the set D*.

(9) Ifd* does not belong to any cluster, add d* to cluster C.

(10) End loop 2, and the algorithm outputs the set of cluster C.
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(11) End loop 1, the termination condition of the algorithm is that the traversal states of
all data points are L = 1, that is, all data points have been processed, either classified
into a cluster or marked as noise points.

2.2. Support Vector Regression

In recent years, the support vector machine (SVM) has been a hot research topic in the
field of machine learning applications. It is a machine learning method based on statistical
learning theory and the structural risk minimization principle. Because of its good learning
ability, the SVM is widely used in many fields of life and production [27,28], mainly to solve
the problems of classification and regression analysis. The SVM has a solid mathematical
theoretical foundation and excellent performance, so can well solve many key problems of
modeling based on neural network, especially the problem of neural network training. The
SVM structure is shown in Figure 2:

K (x1,x)
1V1
azy, y
K (x3,%) sgn() ——»
anyn

Figure 2. Schematic diagram of SVM structure.

The traditional SVM is a generalized linear classifier, which is used to solve data
classification problem. However, the theory of the SVM can be adjusted so that it can also
be applied to regression analysis problem. This improved method is called Support Vector
Regression (SVR). It is flexibly applied to the modeling of nonlinear regression problem and
can show unique advantage when processing multidimensional or high-dimensional data,
because the nonlinear kernel function in the algorithm can map the sample data to a higher
dimensional feature space and can quickly find the linear regression function. The SVR
algorithm has many advantages, such as low generalization error rate, low computational
complexity, not falling into local optimization, and high accuracy in dealing with nonlinear
prediction and regression problem. As shown in Figure 3, the objective of the algorithm is
to find the function f(x), which wants to maximize the “soft edge ¢” to include as many
target values as possible while maintaining a certain flatness.

f(x)

wx+b=—¢ wx+b=0

Figure 3. Basic concept diagram of SVR.
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The regression prediction of data can be realized by finding the decision boundary
that maximizes the edge. The function can be expressed as follows:

fx)=wlx+b (4)

where w is the weighting coefficient, b is the threshold, also known as the bias term, flatness
means that we need to find a w as small as possible (in the sense of Euclidean norm, that is

[|w] |2). This problem can be transformed into a convex optimization problem:
1 2
minz | w | ®)

subject to {yi —wx—b<e (6)
wxi+b—y; <e

where ¢ is the allowable error value of the regression function, and the smaller ¢ is, the

smaller the error of the regression function will be, indicating that the sample points

are more concentrated. However, not every sample point in the training set can meet

the constraint conditions. Therefore, relaxation variables {fl.* and ¢; can be introduced

to alleviate the optimization constraint problem. The above formula can be rewritten

as follows:

) _ (1 w _
min L(w,éf,cji ) = mzn<2 | w|?+C Z(é;r +¢; )) 7)
i=1
yi—wxi—bgs—i-(;‘f
subject tog wx; +b—y; <e+¢; (8)
/6 =0

where C is the penalty factor, which is a positive value, indicating the penalty degree of
the samples exceeding the allowable error, and is used to adjust the trade-off between the
relaxation variable and the boundary. Lagrange multiplier method and duality theory are
applied to the above formula, and Lagrange multipliers ™ and a~ are introduced. The
objective function can be changed as:

1
_ _ 1 _ _
Max Z%[yi(af —o; ) —e(a +a;)] - > ”Z:l(a;r —0; )(oc].+ —a; )k(xi,xj) )
i= ij=
Lo
subject to }::1(“1’ —a;) =0 (10)
0<af,a <c

where k(x;, xj) is the kernel function, so the final fitting function can be expressed as:

fx) =Y (& — a7 )k(xi,x;) +b (11)

Common kernel functions include linear kernel, polynomial kernel, sigmoid kernel,
and Radial Basis Function (RBF) kernel function. Among them, RBF is the most commonly
used kernel function in the SVR algorithm, because it can map sample data to high-
dimensional space nonlinearly, and can handle the situation that there is a nonlinear
relationship between class labels and sample attributes.

2.3. Long Short-Term Memory

In the Recurrent Neural Network (RNN), information is allowed to be transmitted
in different time steps, which is conducive to learning order dependency in input data,
making it more suitable for long-time series. Gradient descent is often used in the training
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of neural networks. However, with the increase of time step, the RNN suffers more and
more from gradient disappearance and explosion, which aggravates the difficulty of model
training. In order to solve this problem, the LSTM is developed based on the RNN model.
The LSTM model structure is shown in Figure 4, including a core unit (memory part) and
three gating structures (forget, input and output gates), which guide the information flow
inside the LSTM unit.

c(t-1) (x) > c(b)

h(t-1)
t k//

forget gate 1nput gate output, S h(t)
gate

—>{Q

x(t)

Figure 4. Schematic diagram of LSTM structure.

)

@

®)

4)

The calculation steps of LSTM are as follows:

Determine the information to discard in the cell state. Input the output /;_; at the
last moment and the input x; at the current moment, through the forget gate, add the
Sigmoid function, and output a vector whose element values are between 0 and 1,
which represents the stored proportion of the cell state C;_; at the last moment. The
calculation formula is:

fr= U(Wf[ht_l,xt} + bf) (12)

Determine the new information stored in the cell state. There are two steps: the input
gate determines the updated value, and the candidate value vector i; is then added to
the cell state. The calculation formula of the input gate value and the new candidate
value vector @ are as follows:

iy = O'(Wi [ht,l,xt] + bi) (13)

ét = tanh(WC [htfl, Xt] + bc) (14)

Update the states of old cells. C;_; is updated to C; by discarding some of the
information and adding new candidate values. The calculation formula of cell state
value at the current moment is:

Ci=fioC1+it@C (15)

Determine the value of the output. It includes two steps: determine the value O; of
the output gate, and then determine the final output result value /; at the current
moment. The calculation formula is as follows:

Or = o(Wolhi_1, x(] + bp) (16)

hy = 0; ® tanh(Ct) (17)

where Wf, W;, We and W, are the weight terms to be learned, bf, b;, bc and b,
are the offset terms to be learned, ¢ is the Sigmoid activation function, ©® is the
Hadamard product, where the components of vectors are multiplied one by one.
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The key advantage of using the LSTM unit is that the cell state will be updated
dynamically with the passage of time, which increases the processable sequence
length of time-series neural network and has better effect on prediction tasks with
long-term regularity.

3. Model Design

With regard to the prediction and early warning of high-energy mine earthquake,
it is difficult for the traditional experience-driven and mechanism-driven strategies to
accurately answer the three key questions of when, where, and energy level [29]. This
gives machine learning a chance. In fact, the data-driven method has a better solution to
those questions. At present, most research follows a fixed model, that is, select a machine
learning model and find the best results through parameter optimization. However, if the
microseism data are directly input into the training model, the final prediction accuracy is
often not high, because the microseisms are not isolated events, but have obvious spatial-
temporal aggregation. Therefore, if the spatial-temporal clustering analysis of microseism
events is carried out first, the closely related microseism events will be divided into clusters,
so the correlation degree between microseism data will be improved. On this basis, the
machine learning method is used to fit this rule and establish a prediction model, which
can significantly improve the accuracy of mine earthquake prediction. Accordingly, we
propose a time sequence prediction method for mine earthquake combined with clustering
analysis. The specific process is shown in Figure 5, which mainly includes three parts.

| |
Input : Microseismic Data :
Data | (Time. Location, Energy) |
| |

! l
! I

- - |
Microseisms | U :
Clustering : :
! I
! I

| Time Series Features |

| |

| |

| |

| |

| |

\ ' '

| |

Model : U U :
:Bu' ding ! SVR LSTM |
|

l .

| |

| |

| |

| |

| |

U U

| Prediction Model | | Prediction Model |

|
|
|
|
: Model Assessment Indexs :
i |
Analysis | MSE | RZ :
|
|

Figure 5. The workflow of mine earthquake prediction in time sequence.

(1) The clustering of microseism events. Similar to earthquake, coal mine microseisms are
in essence a kind of dynamic phenomenon caused by stress release. Generally, they do
not appear as isolated events, but many microseism events with different energy levels
will occur successively in a certain region and time period, to form swarm sequences.
The microseism events included in a swarm sequence are caused by a stress release,
so the occurrence time, location, and energy levels of these microseism events have a
certain regularity. In the ST-DBSCAN algorithm, the density is obtained by calculating
the number of adjacent points in the designated spatial-temporal neighborhood
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around the sample point. The points whose density are higher than the designated
threshold will be constructed as clusters, which are very suitable for processing the
spatial-temporal data recorded in the microseism monitoring system. Clustering
analysis can identify the active areas of microseism events in the working face and
divide the microseism events into closely related clusters. The time, location, and
energy information of microseism events contained in each cluster can be regarded as
time series data [30] and have a certain regularity.

The establishment of a prediction model. After the completion of cluster analysis,
microseism events on the working face will be divided into clusters. Although the
correlation degree between microseism events in the cluster increases, the number
of microseism events in a cluster is not large. This is equivalent to dividing a large
sample data set containing microseism events of the whole working face into many
small sample data sets. Therefore, the SVR algorithm suitable for small samples
is selected to predict the time series of microseism events within the cluster. Mine
earthquake prediction includes two aspects: one is the location of high-energy events;
the second is the daily frequency of high-energy events with different energy levels,
that is, the information of microseism events that have occurred in a specific period of
time is used to predict the possible occurrence location (X, Y and Z coordinates) and
the daily frequency of subsequent high-energy events.

The comparative analysis of the model. In order to verify the effectiveness of the
proposed method which uses SVR to predict mine earthquake on the basis of clustering
analysis, the LSTM, a very classical method in time sequence prediction, is selected for
comparison experiment. Similarly, the occurrence location (X, Y and Z coordinates)
and the daily frequency of high-energy events are predicted. At the same time,
the effects of the two prediction models are compared and evaluated by using the
Mean Square Error (MSE) and R-square (R?). The data used by the LSTM here is
the microseism data of the whole working face, without clustering analysis. On
the one hand, it is to compare the effect of clustering analysis on improving the
accuracy of machine learning prediction model, and on the other hand, it also meets
the requirement of method for large sample size.

The proposed framework consists of the ST-DBSCAN and SVR algorithms, so its time

complexity depends on the time complexity of the two algorithms. When the ST-DBSCAN
runs, it needs to traverse all the points in the dataset and calculate the number of density-
reachable points of each point, so its time complexity is O(N?), where N is the number of
the training samples. Meanwhile, the time complexity of SVR is O(N?) [31]. Only the item
with the fastest growth rate is considered, so the time complexity of proposed framework
is O(N?®).

4. Engineering Experiments
4.1. Microseism Data Acquisition

The data in this paper comes from the real-time microseism data collected by the

SOS microseism monitoring system from Poland, specifically the microseism data of 103#
working face of the H Coal Mine, with a total of 8497 records. As shown in Table 1, each
record contains the time, location, and energy information of microseism.

Table 1. Records in microseism monitoring system.

Index Date Time X (m) Y (m) Z (m) Energy (J)
0 7 November 19:22:47 495,987 891,476 359 57,397
1 7 November 21:09:05 495,918 891,335 366 9585
2 7 November 21:45:21 496,058 891,415 366 10,067
3 7 November 22:00:10 495,912 891,456 354 57,543
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These microseism events are presented in the mining engineering plan, as shown in
Figure 6. It can be seen that microseism events cover the whole target working face.

Microseisms

=
i
]
||

Figure 6. Distribution of microseisms on working face.

The distribution of microseisms in three-dimensional space is shown in Figure 7.

T 340
T 320
" 300 4
T 280

I 260

- 892
892,600
,750 892,400

Figure 7. Distribution of microseisms in three-dimensional space.

4.2. Clustering of Microseism Events

The ST-DBSCAN algorithm is used to cluster microseism events in the target working
face. According to the empirical formula (3), Minpts = InN ~ 9 can be calculated. The
spatial radius Eps and time window AT of the cluster are obtained from the K-Dist
graph [32], where K takes the value of Minpts, which is 9 at this time. The specific steps
are to calculate the spatial distance and temporal distance between each sample point and
the ninth closest point, and draw the corresponding 9-Dist graph in descending order, the
distance value corresponding to the inflection point is the effective radius of dividing the
noise point and the non-noise point. The 9-Dist graph is shown in the following Figure 8.
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Figure 8. 9-Dist graph. (a) Spatial distance. (b) Temporal distance.

By observing Figure 8, the vertical axis coordinate values corresponding to the two
inflection points are 80 and 20, respectively. However, considering the influence of human
factors, there may be subjective errors in the vertical axis coordinate values. In order to find
the parameters with the best clustering results, different distance values corresponding
to inflection points were selected to carry out the parameter combination clustering tests.
Eps was taken as [70 80 90], and AT was taken as [15 20 25]. In Table 2, nine parameter
combinations can be obtained based on the different values of Eps and AT, numbered ID1
to ID9. respectively.

Table 2. Parameter combinations of Eps and AT.

AT (h)
Eps (m)
15 20 25
70 ID1 D4 D7
80 ID2 ID5 D8
90 ID3 D6 1D9

In order to measure the effect of clustering, the Silhouette Coefficient (SC) is selected
as the clustering effectiveness assessment index [33]. Generally speaking, the higher the
average SC of the samples in the clusters, the better the clustering quality. For any point i
in the cluster, the SC is calculated as follows:

N _ b)) —ali)
SC(i) = max{a(i),b(i)}

where a(i) is the degree of dissimilarity within the cluster, representing the average value
of the degree of dissimilarity from point i to other points in the same cluster, reflecting
the degree of cohesion; b(i) is the degree of dissimilarity between clusters, representing
the minimum value of the average degree of dissimilarity from point i to other clusters,
reflecting the degree of separation. It can be seen that the value of SC is between [—1, 1],
and the closer it is to 1, the better cohesion and separation degree are. The average of the
SC of all points is the comprehensive SC of the clustering result.

The clustering algorithm program is run on the nine parameter combinations in Table 2,
and the output results are the specific cluster sets and noise points that are not classified into
any clusters. Different parameter combinations of Eps and AT will get different clustering
results. Their SC are calculated respectively and the noise rate is counted. The results are
shown in Table 3 and Figure 9.

(18)
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Table 3. SC and noise rate of parameter combinations.

Combinations ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9

SC 0.284 0.212 0.271 0.296 0.32 0.229 0.274 0.213 0.246
Noise Rate 29.50% 23.10% 18.50% 24.20% 12.20% 14.70% 20.50% 15.50% 19.00%

0.35 - . - 35%
o SC O Noise Rate

030 41 — — - 30%

0.25 A | — - 25%
020 A B [ b o20%
O ] a7
[}
“2 015 A - 15% -g
Z

0.10 A - 10%

0.05 A - 5%

0.00 0%

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9

Figure 9. Histogram of SC and noise rate of clustering results of parameter combinations.

It can be easily seen from Figure 9 that the SC of ID5 is high and the noise rate is
low. Therefore, when Eps is set to 80 and AT is set to 20, the clustering result is the best.
Different colors are used to represent different clusters, and the clustering result of this
parameter combination is presented in three-dimensional space, as shown in Figure 10.

Figure 10. Three-dimensional scatter plot of clustering results.

At this time, the noise rate is 12.2%, and 47 microseism clusters are obtained, and the
largest cluster contains 1077 events. Due to space limitation, some statistical results are
shown in Table 4.
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Table 4. Clustering results.

Cluster Number Amount Cluster Number Amount
1 60 11 1077
2 527 12 95
3 128 13 71
4 749 14 948
5 149 15 151
6 807 16 914
7 74 17 193
8 135 18 286
9 98 19 59
10 104 20 52

Several clusters containing more microseism events are projected into the mining
engineering plan. The results are shown in Figure 11. Compared with Figure 6, it can be
seen that microseism events have obvious aggregation. Clustering analysis of microseism
events can be regarded as a preprocessing process for subsequent prediction data. The
purpose is to remove interference factors, enhance the correlation between sample data and
improve the accuracy of prediction models.

0 /S S S/ | S

i

= [
v —
s 8=

Figure 11. Distribution of microseism clusters on working face.

4.3. Prediction of Mine Earthquake

The microseism clusters can be regarded as mine earthquake sequences. The location
and frequency corresponding to different energy levels of events in the cluster have a
time-series law, that is, the location and frequency of subsequent microseism events are
related to historical microseism information. The largest microseism cluster containing
1077 events was selected, and the SVR was used to establish a model to conduct prediction
experiment in sequence for the microseism events in the cluster. The prediction includes
two aspects: occurrence location, and daily frequency of high-energy event. Generally,
when the energy released by mine earthquake reaches above 10* J, the rock burst may be
induced, causing serious injury to underground roadway and personnel [34]. Therefore,
the high-energy event refers to the mine earthquake event that releases energy greater than
10* J. In data preprocessing, considering the strong correlation of microseism events within
the cluster and the limited number of events, the sampling step of position prediction is
10 times, the sampling step of frequency prediction is 3 days, and the moving step is 1. In
order to evaluate the prediction effect of model, MSE and R? are selected as assessment
indexes [35], and their calculation formulas are as follows:
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n

1
MSE =~ (vi — )" (19)
i=1
R2 =1— Z?:l(yl' - ]21')2 (20)
(i —7)°

where 7 is the total number of samples, §; is the predicted value, y; is the true value of the
sample, i is the mean of the true value. The smaller the value of MSE is, the more accurate
the model prediction is. R? is between (—oo, 1], and the larger the value is, the better the
effect of model fitting ability is.

4.3.1. Prediction for Location of High-Energy Events

It is of great significance to predict the location of high-energy mine earthquake for
the prevention and control of underground dynamic disasters in coal mines. The specific
method is extracting the high-energy events with release energy greater than 10* J from
the cluster, using the related information of the previous 10 mine earthquakes to predict
the location of the next event. The precursory pattern sequence features of the model
include the X, Y, Z coordinate values and the distance between two events immediately
adjacent to each other of the previous 10 events. The corresponding label is the location
of the next event, that is, the X, Y, Z coordinate values. As shown in Figure 12 below,
P = (p1,pP2,P3,---,Pn) is the time series set of microseism location information, where p;
is the location information of one event. When the sampling step is 10 and the moving step
is 1, the precursory pattern sequence set S = (s1, 52,53, . ..,5,) can be obtained, where s; is
a precursory pattern sequence, which contains the location information of the previous ten
microseism events. The label set corresponding to Sis L = (I1,1p,13,. .., 1, ),where [; is the
label corresponding to s; and contains the location coordinates of the next microseism event.

Time Series Set of Microseismic Location

P |P1|DP2|P3|Ps|P5|Ps|P7|DPs|Po |Pio|P11|P12|---

E ﬂ Precursory Pattern Sequence Labels i
= 5. [l e [re ] [l ] b [py]
B B PP |
= S3 ‘Pa D4 | Ps |Pe | P7 | P8 | P9 | P10| P11 Pu‘ I3

Figure 12. The workflow of microseism location data processing.

The statistical result was n = 97. After P was processed as shown in the Figure 12,
u = 87 was obtained, that is, the prediction model would have 87 samples and correspond-
ing labels. The samples were divided into training set and test set according to the ratio
of 7:3. The training set was used for the simulation training of the model, and the test set
was used to test the effect of the training. Four kernel functions of SVR, Linear, Sigmoid,
Polynomial and RBF, were selected for the experiment, and the grid search method was
used to optimize the hyperparameters of model. Overfitting can be suppressed by two
parameters. One is the penalty factor C, the higher its value is, the more intolerant the
model is to errors and easy to overfit. The other is the parameter gamma in the kernel
function. With the increase of gamma, the prediction effect of the training set becomes
better, and the prediction effect of the test set becomes worse. At the same time, the com-
plexity of the model increases, and the generalization ability becomes worse, which leads
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to the overfitting. The overfitting issue is controlled by adjusting the above two parameters
combined with the final prediction effect of the model.

The predicted values outputted from model and the true values were compared
together to get Figure 13 below. In view of the equal position of X, Y and Z coordinates
in location prediction, this case only presents the prediction of X coordinates due to space
limitation. The MSE and R? of the four prediction models with different kernel functions in
the figure were calculated respectively, and the statistical results are shown in Table 5.
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Figure 13. Prediction of SVR with different kernel functions on X coordinate. (a) Linear kernel.
(b) Sigmoid kernel. (c) Polynomial kernel. (d) RBF kernel.

Table 5. Model performance with different kernel functions.

Kernel Functions

Assessment
Indexes Linear Sigmoid Polynomial RBF
MSE 0.0355 0.0403 0.0081 0.0076
R? 0.3642 0.2772 0.8517 0.8636

Combined with Figure 13 and Table 5, it can be seen that the SVR model with RBF ker-
nel function has the best effect on the location prediction of high-energy mine earthquakes.

4.3.2. Prediction for Frequency of High-Energy Events

For the microseism events in the cluster, the occurrence frequencies corresponding
to different energy levels are counted every day. The energy levels are divided according
to 1027,10%J, 10% J, 10° J... As with the location prediction, only high-energy events with
energy above 10* ] are selected as the prediction objects. The specific method is using
the related frequency information of the previous three days, to predict the occurrence
frequency of high-energy events in the next day. Therefore, the precursory pattern sequence
features of the model are the daily occurrence frequency of microseism events with different
energy levels in the previous three days, and the corresponding label is the occurrence
frequency of high-energy mine earthquakes with different energy level in the next day.
As shown in Figure 14, D = (dy,dy,d3, ..., dy) is the time series set of microseism energy
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information, where d; is the energy frequency data within a day. When the sampling step is
3 and the moving step is 1, the precursory pattern sequence set S = (sq, 52,53, ...,5y) can be
obtained, where s; is a precursory pattern sequence, which contains the energy frequency
information of the previous three days. The corresponding label setis L = (I3,1,13,...,1,),
where /; is the label corresponding to s; and contains the occurrence frequency of mine
earthquakes with energy level above 10%] in the following day.

Time Series Set of Microseismic Energy
! D|dy|dy|dz|dy|ds|dg|dy|dg|... i
i ﬂ Precursory Pattern Sequence Labels -
i = 5 |dy |dy | d3 ly | dy E
E = S dz d3 d4 lz d5 i
i\ = 53 |d3 |ds | ds I3 |de | |

Figure 14. The workflow of microseism energy data processing.

The statistical result was m = 31. After D was processed as shown in the Figure 14,
v =28 was obtained, that is, the prediction model would have 28 samples and corresponding
labels. The samples were divided into training set and test set according to the ratio of
7:3. The training set was used for the simulation training of the model, and the test set
was used to test the effect of the training. Four kernel functions of SVR, Linear, Sigmoid,
Polynomial and RBF, were selected for the experiment, and the grid search method was
used to optimize the hyperparameters of model. The predicted values outputted from
model and the true values were compared together to get Figure 15. In view of the equal
position of different energy levels in energy frequency prediction, this case only presents
the prediction of daily frequency of 10* ] level mine earthquake due to space limitation.
The MSE and R? of the four prediction models with different kernel functions in the figure
were calculated respectively, and the statistical results are shown in Table 6.

Table 6. Model performance with different kernel functions.

Kernel Functions

Assessment
Indexes Linear Sigmoid Polynomial RBF
MSE 1.8984 1.8063 0.6344 0.2251
R? —0.3962 —0.3301 0.5328 0.8342

Combined with Figure 15 and Table 6, it can be seen that the SVR model with RBF
kernel function has the best prediction effect on the daily frequency of high-energy mine
earthquakes with different energy levels.
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Figure 15. Prediction of SVR with different kernel functions on daily frequency of 104 ] level.
(a) Linear kernel. (b) Sigmoid kernel. (c) Polynomial kernel. (d) RBF kernel.

4.4. Comparison of Prediction Models

As a comparison experiment, the LSTM was used to build a prediction model, and
the model was trained on the microseism dataset (including 8497 event records) of 103#
working face without clustering process, and used to predict the location of high-energy
mine earthquakes and the daily occurrence frequency corresponding to different energy
levels. In the SVR model above, the microseism data used was distributed from April 23 to
May 23, so the event samples in the test set of the LSTM prediction model were also set
within this time period. The time series sets of microseism location information and energy
frequency information were also processed respectively as shown in Figures 12 and 14 to
obtain n = 1320, u = 1310, m = 562, v = 559. The Early Stopping method was used to
prevent the overfitting issue. The specific method is to calculate the accuracy of validation
data at the end of each epoch training. When the accuracy does not improve any more,
the model training will be stopped to avoid overfitting. Similarly, the grid search method
was used to optimize the hyperparameters of model, and the prediction of X coordinates
of high-energy mine earthquakes and daily occurrence frequency corresponding to 10* J
energy level events are shown in Figure 16:
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Figure 16. Prediction of LSTM model. (a) X coordinates of high-energy events. (b) Daily frequency
corresponding to 104] energy level events.
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In the SVR model, the RBF kernel function has the best prediction effect. Therefore, the
MSE and R? of the LSTM model in predicting the X coordinates of high-energy events and
the daily frequency corresponding to 10 J energy level events are calculated and compared
with the former. The results are shown in Table 7.

Table 7. Comparison of model performance.

Assessment X Coordinate Daily Frequency of 10* ] Level Events
Indexes LSTM SVR_RBF LSTM SVR_RBF
MSE 0.0314 0.0076 0.5387 0.2251
R? 0.4602 0.8636 0.8098 0.8342

Through comparative experiments, it can be concluded that the SVR model with RBF
kernel function on the basis of clustering analysis is better than the LSTM model without
clustering analysis, both for the prediction of the location of high-energy mine earthquakes
and the prediction of daily frequency of high-energy mine earthquakes with different
energy levels.

4.5. Out-of-Sample Prediction Experiment

Save the trained model and feed it the microseism data of a new cluster, which was not
involved in the previous model training process. The final performance is shown in Table 8.
It can be seen that the prediction effect of the trained SVR model with RBF kernel on the
new cluster is not as good as that of the LSTM model using global data. This indicates that
the time series laws of data in different clusters may not be the same, due to the influence
of the changing geological conditions and other factors, and the trained SVR model cannot
be simply and directly applied to the new cluster. Its parameters need to be adjusted to get
a good performance on different clusters.

Table 8. Model performance for out-of-sample prediction.

Assessment X Coordinate Daily Frequency of 10* J Level Events
Indexes LSTM SVR_RBF LSTM SVR_RBF
MSE 0.0298 0.0471 0.6127 1.2062
R? 0.4954 0.4383 0.7351 0.5281

5. Conclusions

It is easy for mine earthquake activity to cause coal mine dynamic disasters, resulting
in serious consequences. The microseism monitoring system can monitor the microseism
events in real-time and record the time, space, and intensity information when the mine
earthquake occurs. In this paper, the microseism data of 103# working face of the H Coal
Mine were selected. Firstly, the ST-DBSCAN algorithm was used to find out the microseism
clusters, and then SVR was used to predict the occurrence location and daily frequency
of high-energy events on this basis. MSE and R? were selected as the assessment indexes
of the model prediction effect. The results (Tables 5 and 6) showed that among the four
different kernel functions, the SVR prediction model with RBF kernel function has the best
performance. Finally, as a comparison experiment, the LSTM model was used to predict
high-energy mine earthquakes in the same period using the 103# working face microseism
data without clustering process. Through comparative analysis, its performance (Table 7)
was inferior to the SVR prediction model with RBF kernel function. This engineering
experiment showed that the spatial-temporal clustering analysis of microseism events in
advance can improve the prediction accuracy of the machine learning method on high-
energy mine earthquakes.

However, results of out-of-sample prediction experiment (Table 8) showed that the
trained SVR model does not perform well on the new cluster. The reason could be that the
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time series laws of data in different clusters are not exactly the same, due to the influence
of the changing geological conditions and other factors. In future work, we will conduct
research on the model’s generalization ability on different microseism events clusters
and mines.
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