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Abstract: Relation classification is an important fundamental task in information extraction, and
convolutional neural networks have been commonly applied to relation classification with good
results. In recent years, due to the proposed pre-training model BERT, the use of which as a feature
extraction architecture has become more and more popular, convolutional neural networks have
gradually withdrawn from the stage of NLP, and the relation classification/extraction model based
on pre-training BERT has achieved state-of-the-art results. However, none of these methods consider
how to accurately capture the semantic features of the relationships between entities to reduce the
number of noisy words in a sentence that are not helpful for relation classification. Moreover, these
methods do not have a systematic prediction structure to fully utilize the extracted features for the
relational classification task. To address these problems, a SpanBert-based relation classification
model is proposed in this paper. Compared with existing Bert-based architectures, the model is able
to understand the semantic information of the relationships between entities more accurately, and it
can fully utilize the extracted features to represent the degree of dependency of a pair of entities with
each type of relationship. In this paper, we design a feature fusion method called “SRS” (Strengthen
Relational Semantics) and an attention-based prediction structure. Compared with existing methods,
the feature fusion method proposed in this paper can reduce the noise interference of irrelevant
words when extracting relational semantics, and the prediction structure proposed in this paper can
make full use of semantic features for relational classification. We achieved advanced results on the
SemEval-2010 Task 8 and the KBP37 relational dataset.

Keywords: relation classification; pre-training model; attention; feature fusion

1. Introduction

Relation classification is an important part of information extraction and is a super-
vised relation extraction [1]. Its target task is to predict the relation between two entities
from the text with well-labeled entities. Relation classification is an important step in
constructing structured data. It is also an important basis for many tasks, such as text
classification [2], sentiment analysis [3], question answering, etc.

Deep-neural-network-based methods have been widely used in relation classifica-
tion. However, existing deep learning methods usually use the feature vector of whole
sentences as semantic information for relation classification. This usually contains a lot
of information that is not useful for relation classification, resulting in a model that does
not accurately focus on the semantics of the relationships between entities. In addition,
relation classification models usually use the Linear() function to map the final relational
category probability distribution, and when a vector with a large dimension is mapped to a
vector with only a dozen category dimensions, the semantic information that is helpful for
relation classification is likely to be lost.

In the early days, methods such as word2vec [4], GloVe [5], and ELMo [6] were used
to generate word vectors, which were then used to extract deep semantics through neural
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networks. Ref. [7] used convolutional neural networks to extract lexical-level features and
sentence-level features and map them into high-level features for relation classification.
Ref. [8] applied recurrent neural networks to relation classification. Recurrent neural
networks accumulate the semantics of sentences word by word, whereas convolutional
neural networks must learn two local patterns and merge them. Obviously, the recurrent
neural network model is more reasonable. Further, the semantic distribution formed
by recurrent neural networks is smoother than that of convolutional neural networks.
Although recurrent neural networks have excellent performance in extracting local features,
they are somewhat weak in processing sequential data. Ref. [9] used a Bidirectional Long
Short-Term Memory network, which aims to address the fact that Bidirectional Recurrent
Neural networks do not extract information with long-term dependencies well. Recently,
pre-trained language models have had a significant impact in the field of natural language
processing. Ref. [10] used a pre-trained Bert model as a feature extractor and obtained quite
good results by stitching the extracted features together and feeding them into the classifier.
Ref. [11] outlined an innovative approach to perform textual information extraction by
using domain ontologies and language rules, which is experimentally proven to be a
feasible approach.

Most of the above methods connect lexical-level features and sentence-level features
to form the final feature vector for classification. However, sentence-level features cannot
accurately represent the relation between two entities, and inevitably carry interference
information. This will affect the final relation classification results. Moreover, existing
methods put entity features and sentence features through simple splicing and then feed
the features into Linear() function to obtain prediction results. Such a straightforward
approach not only fails to make full use of feature information but also loses some semantic
information.

In order to solve the above problems, we start from the perspective of “How can
we accurately focus on the connection between two entities?”. We started to think and
study deeply from this perspective. The existing approach is to remove the meaningless
edge information and keep the meaningful core information by sentence compression.
However, this will increase the computation and make the model become complicated [12].
We find that the description of entity relations in a sentence exists between two entities
in most cases. The words outside of this are meaningless information for the relation
classification. Therefore, we truncate the sentence span between the two entities and
merge the semantics of this span with the semantics of the whole sentence. The feature
vector of “Strengthen Relational Semantics” is obtained. Using this feature vector, it is
possible to greatly improve the model’s understanding of what kind of relationship should
exist between a pair of entities, thus enabling the model to focus on the semantics of the
relationship between entities. To be able to make full use of the semantic features extracted
by the model, a completely new prediction structure was designed for relation classification.
The various feature vectors extracted by the model are fed into this structure, and the final
prediction results are obtained after Multi-Class Attention. In this way, we are able to
capture not only the overall semantic information of the whole sentence but also focus on
the relational information between entities. Various semantic features are fully utilized to
enable the model to better handle the relational classification task. Therefore, to address
the problems in existing methods, we propose a method called capturing relational span
and using attention for relation classification.

The innovations in this paper are as follows:
1. A feature fusion method called “SRS (Strengthen Relation Semantics)” is proposed.

We fuse the global information of the whole sentence and the relational information between
entities to form the vector sr f eature for strengthening relational semantics, which is used to
solve the problem that existing methods cannot effectively focus on the relational semantics
between entities.

2. A new attention-based prediction structure is designed. In our known work, we
are the first to use full attention instead of fully connected layers to predict the probability
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distribution of each category for multiple classifications. With this prediction structure,
we can make full use of various feature information and reduce the loss of semantic
information.

2. Related Work

Traditionally, the two main approaches to relation extraction are supervised and
semi-supervised. Supervised relation extraction, also known as relation classification,
is the most effective and well-researched method that uses fully labeled manual data
for training. The supervised relation extraction task does not have a subtask of entity
recognition; so, the main structure of the model is a feature extractor + relational classifier.
Remote supervision is a form of semi-supervision and is currently a solution to the lack
of supervision data. However, there are several problems with remotely supervised data:
Firstly, remote supervision of labeled data has a large number of errors. Secondly, it cannot
solve the situation where a pair of entities contains multiple relations. Thirdly, the False-
negative problem, where instances labeled as negative samples actually have relations,
but such knowledge does not exist in the knowledge graph, leading to labeling errors. Most
of the current research on remote supervision focuses on the first problem. The research
in this paper focuses on supervised relation classification, and the main feature extraction
networks for relation classification are the convolutional neural network, recurrent neural
network, and attention-based mechanism of transformer [13,14], and Bert et al. [15].

Convolutional neural networks: Ref. [16] applied convolutional neural networks to
achieve relation classification and proposed a convolutional DNN algorithm for extracting
lexical-level features and sentence-level features. Positional features are also proposed to
encode the relative distance between the current word and the target word pair. The model
architecture proposed by [17] is basically the same as the previous work; the biggest change
is the replacement of the loss function. The innovation lies in the Ranking loss, which
enables the model to consider not only the positive category score as high as possible
but also the category score that is prone to misclassification as low as possible compared
with the Softmax function. The disadvantage is still the defect of the model structure.
Ref. [18] proposed a new structure, the Augmented Dependency Path, which combines
the shortest dependency path between two entities and a subtree connected to the shortest
dependency path. By modeling the subtree using a recurrent neural network, a repre-
sentation of the generated dependency subtree is appended to the words on the shortest
dependency path so that the words on the shortest dependency path receive new word
embeddings, and then a convolutional neural network is used to capture the key features
on the shortest dependency path. The above methods all use convolutional neural networks
as feature extraction frameworks, and all use the Linear() function to map the probability
distribution of relational categories. Although convolutional neural networks are widely
used in computer vision because of their excellent local information extraction ability,
global-dependent information is very important in the field of NLP, especially in the field
of relation classification. Convolutional neural networks have been phased out because
of their shortcomings in extracting global information. Table 1 shows a summary of our
model and the convolutional-neural-network-based models.

Table 1. Summary of our model and the convolutional-neural-network-based models.

Model Feature Extraction
Framework Classification Method Year

DNN [16] CNN Linear + SoftMax 2014
CR-CNN [17] CNN Linear + SoftMax 2015
DepNN [18] CNN + RNN Linear + SoftMax 2015

CRSAtt(Our) SpanBert Multi-Class Attention +
SoftMax -
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Recurrent neural networks: Ref. [19] proposed an RNN-based framework to model
long-range relational patterns, and experiments demonstrated the capability of the RNN-
based approach in remote pattern modeling. Ref. [20] proposed a deep-learning relation
classification model based on the shortest dependency path. They not only used a Bidi-
rectional RCNN but also considered the problem of the directionality of relationships
between entities. Ref. [9] proposed the use of a Bidirectional Long Short-Term Memory
network (BLSTM) to model sentences containing complete, sequential information about
all words, achieving state-of-the-art performance at the time. Ref. [21] added the attention
mechanism to Bi-LSTM and proposed the AttBLSTM model to capture the most important
semantic information in sentences. Ref. [22] designed an attention-based BLSTM layer for
converting semantic information into high-level features, and also proposed a new filtering
mechanism to reduce noise. All of the above methods use recurrent neural networks or
their variants of long and short-term memory networks as feature extraction frameworks,
and all use the Linear() function to map the probability distribution of relational categories.
Although recurrent neural networks are better able to process sequential data and extract
global information compared with convolutional neural networks, they still have the dis-
advantages of being unsuitable for long sequences and prone to the problem of gradient
disappearance. Table 2 shows a summary of our model and the recurrent-neural-network-
based models.

Table 2. Summary of our model and the recurrent-neural-network-based models.

Model Feature Extraction
Framework Classification Method Year

RNN+PI [19] RNN Linear + SoftMax 2015

BRCNN [20] LSTM + Convolution layers Linear + coarse-grained
SoftMax 2016

BLSTM [9] BLSTM Linear + SoftMax 2015
Att-BLSTM [21] BLSTM + Attention Layer Linear + SoftMax 2016

MALNet [22] BLSTM + Attention Filter
Layer Linear +SoftMax 2020

CRSAtt(Our) SpanBert Multi-Class Attention+
SoftMax -

Attention mechanism: Ref. [23] added the attention mechanism to CNNs. Two levels
of attention mechanism are employed; the first one is applied to attention between indi-
vidual word pairs in the input sequence, and the second one is applied to attention on the
blending layer for the target category. Ref. [24] proposed a Bert-based model to perform
relation extraction without combining lexical and syntactic features, achieving SOTA per-
formance and providing a baseline for follow-up. Ref. [25] proposed a transformer-based
relation extraction method TRE, which replaces the explicit linguistic features required by
previous methods with implicit features captured in a pre-trained linguistic representation.
Ref. [26] added an additional MTB (Matching The Blanks) task to the pre-training process
of BERT to improve the performance of relation extraction during the pre-training phase.
Ref. [27] introduced a dependency-based attention mechanism in the BERT architecture
to learn high-level syntactic features. The dependency relation between each word and
the target entity is considered, while different levels of semantic information are obtained
by using the BERT middle layer to fuse multi-grain features for the final relation classi-
fication. Ref. [28] used a fine-tuned BERT model to extract the semantic representation
of sequences and then used segmental convolution to obtain the semantic information
affecting the relation classification. The closest to our work is RBERT [10], which also
uses the pre-trained model BERT as a feature extractor to extract high-quality semantic
features, and adds special symbols $ and # in data pre-processing as a way to highlight
entity vectors and facilitate the classification of entity relations. The above methods all use
Transformer or BERT based on attention mechanism as the feature extraction framework,
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and all use Linear() function to map the probability distribution of relational categories.
These methods were able to extract semantic-rich feature vectors using pre-trained models
and are still improving the performance of relation classification models. However, these
models do not have a systematic prediction structure and simply use the Linear() function
to obtain the probabilities of each category in a brute-force manner, which results in the loss
of feature vector semantics. Table 3 shows a summary of our model and the attention-based
mechanism models.

Table 3. Summary of our model and the attention-based mechanism models.

Model Feature Extraction
Framework Classification Method Year

Att-Pooling-CNN [23] Attention + CNN Linear + SoftMax 2016
BERT-LSTM [24] BERT + LSTM Linear + SoftMax 2019

TRE [25] Transformer Linear + SoftMax 2019
BERTEM +MTB [26] BERT Linear + SoftMax 2019

D-BERT [27] BERT Linear + SoftMax 2021
BERT with Entity, convolution

and max-pooling [28] BERT Linear + SoftMax 2021

R-BERT [10] BERT Linear + SoftMax 2019

CRSAtt(Our) SpanBert Multi-Class Attention +
SoftMax -

Based on the problems in the above methods, the model proposed in this paper uses
SpanBert as a feature extraction framework to solve the problems of convolutional neural
networks and recurrent neural networks in extracting features from sequence data. We use
the “SRS” proposed in this paper to capture the relationship information between entities
and reduce the interference of other irrelevant words. In this paper, a prediction structure
is also designed for the model to make full use of various feature information and reduce
the semantic loss of feature vectors. This is for works using remotely supervised methods
to achieve relation classification, e.g., Ref. [29], which used a contrast learning approach to
aggregate features and reduce noise in the data. However, this paper mainly focuses on
supervised relational classification tasks; so, remote supervision will not be described in
detail. We aim to cover relation classification with remote supervision in future work.

3. Methodology
3.1. Overview

The model architecture of this paper is shown in Figure 1, which is divided into two
main parts: feature extraction (see Section 3.2 for details) and prediction structure (see
Section 3.4 for details), where the prediction structure contains “SRS” feature fusion (see
Section 3.3 for details). Due to the data imbalance problem in the relation classification
datasets, we use the Focal loss function (see Section 3.5 for details) instead of the traditional
Cross-Entropy loss function. For a given sequence data, the identifiers <e1>, </e1> and
<e2>, and </e2> from the original data are used to mark the position information of the
entity. Based on the position information of the entities, the relationship span between the
entities can be truncated, and we use the relationship span and the complete sentences as
the input to the model.
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Figure 1. This is an overview of our model. When a sentence is an input, we extract the span of the
relationship between entities by pre-processing and then send the span to BERT to extract features
along with the sentence piece by piece. The features extracted from the sentence are passed through
a mask extractor to extract the entity vector; eventually, w, e1, e2, and s are fed together into the
prediction structure for predictive classification.

In the feature extraction part, we use the pre-trained SpanBert [30] as the feature
extraction framework. We extract whole_feature, which represents the semantics of the
whole sentence, and span_feature, which represents the semantics of the relational span,
by using the feature extraction architecture. whole_feature goes through a mask extractor
to obtain the feature vectors e1 and e2 of entity1 and entity2, and a fully connected layer
to refine the vector w representing the semantics of the whole sentence. span_feature
goes through a fully connected layer to refine a vector s representing the semantics of the
relational span. After extracting the feature vectors w, s, e1, and e2, we input these vectors
to the attention-based prediction structure to calculate the probability distribution of each
relation R. Finally, we feed them to the softmax classifier to obtain the prediction results.

3.2. Feature Extraction

We use the pre-trained SpanBert as our feature extractor. SpanBert is built based on
the encoder of transformers with powerful linguistic representation and feature extraction
capabilities, and it uses Span mask to pre-train bidirectional transformers to generate deep
bidirectional linguistic representations. We first send the whole sentence and the relation
span of the sentence to SpanBert, obtain the corresponding two feature vectors, use the
“[cls]” token in the vector as the global semantics of the whole vector, and then extract the
entity vector by the mask extractor. Suppose a sentence has the following form:

S =
(
· · · , xi, · · · , xj, · · ·

)
(1)

The feature extraction process can be summarized as the following equation:

span =
(
[cls], xi, · · · , xj

)
(2)

s = W1[GELU(B( span ))] + b1 (3)
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w = W2[GELU(B(S))] + b2 (4)

entity feature = Mask
(
B(S), entity mask

)
(5)

where S represents a sentence, span represents a relational span, B represents the SpanBert
model, w represents the feature vector of the whole sentence, s represents the feature
vector of the relation span, entity f eature represents the feature vector of the entity, entitymask
represents the entity’s mask vector, and Mask represents the mask extractor. w1, w2 are the
weight matrices and b1, b2 are the biases.

Mask Extractor

The masking mechanism is a frequently used method in deep learning. The use of
masking can be seen as covering a film on top of the original tensor, and this film can mask
the elements we do not want to see, so as to achieve the purpose of masking or selecting
some specific elements. The purpose of our mask extractor is to extract the entity vector
we need from the feature vector of the whole sentence. This is achieved by performing a
matrix multiplication operation with the designed mask vector and the feature vector of
the whole sentence to finally obtain the entity vector we need. The mask extractor is shown
in Figure 2.

Mask(x, y) =
Matmul(x, y)

length
, x = [x1, x2, · · · , xn], y = [y1, y2, · · · , yn] (6)

length =
n

∑
i=0

yi(yi = 0‖yi = 1) (7)

where x and y are vectors, and length represents the number of tokens that constitute
the entity.

Figure 2. This is how the mask extractor works. The black and white vectors on the left side of the
figure represent the entity mask, which is used to mask words outside the entity, where the white
squares represent unmasked and the black squares represent masked. The entitymask and whole f eature
perform a matrix multiplication operation to extract the features of the entity vector.

3.3. SRS Feature Fusion

We always want different feature vectors to contain different semantic information so
that each feature vector can distinctly express a particular semantic meaning. Therefore,
we want to construct a feature vector that can express the relation between entities. In the
above process, we have extracted the vector w that can express the semantics of the
whole sentence; however, it does not express the relation between two entities accurately
and distinctly. Through our investigation and research, we found that the description
of the relation between two entities in a sentence appears between two entities with a
high probability. Therefore, we intercept the “span” between two entities and use it as a
representation to strengthen the relation between the entities. We extract the features of
this span and fuse it with the w vector to obtain the fusion vector sr f eature, a process we call
SRS. See Figure 3 for details.

srfeature =
(w+s)

2
(8)
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We use the average pool approach to fuse the semantic features of s and w. The specific
calculation is performed by adding s and w, then dividing by 2 to obtain their average value.
This can average the contribution of global information and local relation information,
and significantly reduce the noisy information.

Figure 3. This is the internal detail diagram of the prediction structure. When the entity f eature, w,
and s are fed into the prediction structure, they will be divided into two ways, one way to construct
the keys needed for Multi-Class Attention and one way to construct the queries needed for Multi-
Class Attention. SRS is the process of averaging the w representing the global semantics and the s
representing the local semantics, and then feeding them into the fully connected layer.

3.4. Attention-Based Prediction Structure

We designed an attention-based prediction structure for fusing global and local se-
mantic features. The previous prediction layer simply passes the feature vector through
a fully connected layer, maps the probability distribution of each category in the multi-
classification by a linear function, and then uses a softmax classifier for classification. Such
a direct reduction of the vector dimension using the linear function not only reduces the
ability of the model to capture features but also loses some semantic information in the
feature dimension transformation. To solve this problem, we propose to use attention
instead of a fully connected layer. We use our own design of Multi-Class Attention (see
Figure 4 for details) to map each relation vector space, and finally, calculate the probability
distribution of each relation. The prediction structure is shown in Figure 3. When the
extracted feature vectors w, s, e1, and e2 are input to the prediction structure, we let these
features construct the q and k needed for attention, respectively. We fuse the w and s using
“SRS” to obtain the reinforcement vector sr and then stitch sr and e1 together to form q; k
is composed of e2. The reason we use this design is to form a paradigm that allows an
entity and a relation to query and verify another appropriate entity. We believe that such
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a paradigm is also consistent with our human intuition (e.g., given an entity “Hamlet”
and a relation “author,” our intuition is that the other entity must be a person’s name).
Therefore, this paradigm can help the model to perform the relation classification task
better. After feeding q and k into Multi-Class Attention, we obtain a vector of probability
distributions for each relation, which is finally fed into a softmax classifier for classification.

q = concat(W3[GELU(e1)] + b3, srfeature ) (9)

k = W4[GELU(e2)] + b4 (10)

p = Multi-Class Attention (q, k) (11)

e1, e2 ∈ entity feature (12)

where q represents the queries of the attention mechanism; k represents the keys of the
attention mechanism; e1, e2 represent the entity vectors; sr f eature represents the SRS fusion
feature; and p represents the probability distribution of the relation.

Figure 4. The internal details of Multi-Class Attention are shown. q and k are first calculated with
the corresponding parameter matrices; then, they are divided into different qi and ki by the split
layer; finally, the probability distribution of each relation class is calculated by MatMul.

Multi-Class Attention

We design Multi-Class Attention to predict the probability distribution of each re-
lation instead of the fully connected layer. Multi-Class Attention is shown in Figure 4.
The processing flow is to multiply the q and k constructed in the above process by the
corresponding parameter matrices Wq and Wk, respectively. Then, q and k are fed to the
split layer, which is divided into class-numbers of different qi and ki, where the split layer
is implemented by the permute() function and class-numbers are the number of relational



Appl. Sci. 2022, 12, 11068 10 of 16

categories in the dataset. Then, the different qi and ki are matrixed separately to calculate
the attention score of each category, which is finally used as the probability distribution of
each relation. Finally, the obtained probability distribution vector is fed into the softmax
classifier to obtain the final prediction results.

Our Attention is similar to the Multi-Head Attention mechanism in the transformer
but with the following differences. First, although our Multi-Class is similar to Multi-
Head, each class matrix represents each relation category, and the number of Multi-Class
is determined by the relation category of the dataset. Second, our attention mechanism
removes values and uses only queries and keys. The reason for this is that we only need
to calculate the attention score of each relation for relation classification and do not need
values to integrate the global information. So, we do not need to compute with values
anymore. The process can be described as the following equation:

Multi-Class Attention (q, k) = softmax
((

qiWqi
)
· (kiWki)

T
)

(13)

where qi, ki are the q and k of each class after the split layer, and Wqi and Wki are the
parameter matrices corresponding to q and k of each class.

3.5. Focal Loss Function

In traditional multi-classification problems, the most commonly used loss function is
the cross-entropy loss function. Its binary classification formulation form is as follows:

Lce = −y log ŷ− (1− y) log(1− ŷ) =
{
− log(ŷ), y = 1
− log(1− ŷ), y = 0

(14)

where y ε{0, 1} is the true label and ŷ is the predicted value.
Although the cross-entropy loss function has the advantages of fast convergence

and good results in applications, it does not cope with the problem of imbalance be-
tween hard and easy samples. Meanwhile, for the classification of hard and easy samples,
the cross-entropy loss function is treated consistently; so, when the loss of a large number
of easy samples is accumulated, the loss contribution of hard samples is almost completely
swamped, which makes it difficult for the network model to learn the classification of hard
samples. To cope with the problem of imbalance between difficult and easy samples in rela-
tion classification data, we adopt focal loss [31–33] instead of the traditional cross-entropy
loss function. Focal loss, as its name suggests, can focus on the problem of classification of
difficult samples and the problem of imbalance between samples of different categories. Its
binary classification formula has the following form:

L f l =

{
−(1− ŷ)γ log ŷ, y = 1
−ŷγ log(1− ŷ), y = 0

(15)

The focal loss balances the imbalance of samples by the parameter γ. For example,
if the negative samples are much more than the positive samples, the model will definitely
favor the negative class with a larger number; then, the ŷγ of the negative class will be very
small, while the (1− ŷγ) of the positive class will be very large, and the model will then
start to focus on the positive samples. After (1− ŷγ) and ŷγ are adjusted, the status of the
positive and negative samples may be reversed. Therefore, it is necessary to downscale the
positive samples by adding an α parameter to Equation (15), which is used to balance the
weights of the whole formula. The final focal loss function formula is shown below:

L f l =

{
−α(1− ŷ)γ log ŷ, y = 1
−(1− α)ŷγ log(1− ŷ), y = 0

(16)
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where α ε [0, 1] is the weighting factor; γ is the focusing parameter, where y ε{0, 1} is
the real label; and ŷ is the predicted value. The final focal loss function is extended to
multi-classification by the following equation:

L f l = −αt(1− ŷt)
γ log ŷt (17)

where αt is the weighting factor for each category and ŷt is the predicted value of the target.

4. Experiment

In this section, we verify that our proposed method can effectively capture relational
information as well as fully exploit various semantic features. We conducted experiments
on two publicly available datasets, and the specific experimental results and analysis are
shown in Section 4.2. The specific settings in the experiment are described in Section 4.1.
To better represent the specific role of the components in our approach, we performed
ablation experiments on the SemEval-2010 Task 8 dataset (see Section 4.3 for details).

4.1. Setup

Datasets: We used two publicly available datasets to validate the effectiveness of
our method: The SemEval-2010 Task 8 dataset and the KBP37 dataset. Table 4 shows the
statistics of each dataset. The SemEval-2010 Task 8 dataset was provided by Hendrickx et al.
as a free dataset, containing 10,717 samples total, 8000 samples for training, and 2717 sam-
ples for testing. The dataset contains nine relation types where the relations are ordered.
The directionality of the relations effectively doubles the number of relations, since entity
pairs are considered to be correctly labeled if the order is also correct. So, finally, there
are 19 relations (2 × 9 + 1 other class). The KBP37 dataset includes 18 semantic relations
and “no relation” classes. Similar to SemEval-2010 Task 8, the relations are directional;
so, the actual number of relation types is 37. It contains 15,917 training instances and
3405 test instances.

Table 4. Statistics of Semeval-2010 Task 8 and KBP37 datasets.

Dataset Relation Train Test

Semeval-2010 Task 8 19 8000 2717
KBP37 37 15,917 3405

Evaluation: We adopt the evaluation scheme of the relation classification criteria:
precision, recall, and micro F1 are used as evaluation parameters. For the SemEval-2010
Task 8 dataset and the KBP37 dataset, only the prediction of the subject–object order
between entities in the predicted relation is considered a positive sample. Otherwise, it
is a negative sample (e.g., a sentence with a relation label Message–Topic (e1,e2), if the
prediction is Message–Topic (e2,e1), would represent an incorrect prediction).

Platform Setup: The IDE used for the experiments in this paper is Pycharm2021
Professional Edition, PyTorch version 1.9.1, CUDA version 11.6, and CUDNN version 10.2.
The model training and inference are performed on an NVIDIA A100-SMX with 40 GB
GPU memory, and CPU memory of 16 GB.

Implementation details: For a fair comparison with previous work, we used the
SpanBert-base uncased as our base encoder for extracting features from the corpus in the
dataset. In addition to using SpanBert-base uncased as an encoder, we also designed a
model based on SpanBert-large uncased as an encoder. We set the learning rate to 2× 10−5,
the training bitch size to 32, the test bitch size to 16, the number of epochs to 50, and the
dropout to 0.1. The detailed settings of the hyperparameters are shown in Tables 5 and 6.
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Table 5. Hyperparameter settings for our model on the SemEval-2010 Task 8 dataset.

Hyper-Parameters Description Value

dw Size of BERT Output Vector 786
lm Max Sequence Length after Tokenization 128
e Epochs 50
lr Learning Rate 2× 10−5

dr Dropout Ratio 0.1
tnbs Train batchsize 32
ttbs Test batchsize 16

alpha Focal loss α
[1,0.4,0.6,0.2,0.4,0.4,0.4,0.4,

0.3,0.6,0.3,0.8,0.1,0.5,0.5,0.2,0.6,0.5,0.3]
gamma Focal loss γ 2

Table 6. Hyperparameter settings for our model on the KBP37 dataset.

Hyper-Parameters Description Value

dw Size of BERT Output Vector 786
lm Max Sequence Length after Tokenization 384
e Epochs 50
lr Learning Rate 2× 10−5

dr Dropout Ratio 0.2
tnbs Train batchsize 32
ttbs Test batchsize 16

alpha Focal loss α [1,1,1,1,· · · ,1,1,1,1,1]
gamma Focal loss γ 2

4.2. Experimental Results

This section will show the experimental results of our method on two publicly available
datasets. On the SemEval-2010 Task 8 dataset, we used precision, recall, and micro f1 as our
parameter metrics, and performed a full comparison experiment with previous methods.
Additionally, to demonstrate the specific performance of our method on each relation class,
we compared it in more detail with two, more powerful, current state-of-the-art models.
To verify that our model has good generalizability, we conducted a comparison test on the
KBP37 dataset using micro f1 as a parameter indicator.

Table 7 shows the experimental results of our model with previous models on the
SemEval-2010 Task 8 dataset. Our models are divided into two types, and one is the base
model with SpanBert as the feature extraction architecture. The other is the advanced
model with spanbert_large as the feature extraction architecture. Previous models include
GLFN; TRE; BERTEM+MTB; R-BERT; Att-RCNN; LGCNN; Bi-SDP-Att; MALNet; BERT
with Entity, convolution, and max-pooling; and D-BERT. The experimental results prove
that our method outperforms all other methods, where the values in bold represent the
most advanced results in this metric. It can be observed that our base model achieves state-
of-the-art results in both recall and f1 metrics. The advanced model with spanbert_large as
the feature extraction framework substantially outperforms the existing models in all three
metrics. Take the BERT with Entity, convolution, and max-pooling model as an example,
where precision improves by 0.63 percentage points, recall improves by 0.44 percentage
points, and f1 improves by 0.6 percentage points.

Table 7. Comparison of our model with existing methods on the SemEval-2010 Task 8 dataset.

Method Precision Recall f1

GLFN [34] - - 86.2
TRE [25] 88.0 86.2 87.1

BERTEM + MTB [26] - - 89.5
R-BERT [10] 87.03 90.10 88.54

Att-RCNN [35] - - 86.6
LGCNN [36] - - 85.5

Bi-SDP-Att [37] - - 85.1
MALNet [22] - - 86.3

BERT with entity, convolution,
and max-pooling [28] 89.44 90.59 89.95

D-BERT [27] - - 90.1
CRSAtt (spanbert) 88.78 91.60 90.17

CRSAtt (spanbert_large) 90.07 91.03 90.55
The value in bold denotes the highest value of this evaluation metric.
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Table 8 specifically shows the score comparison of our base model with R-BERT and
BERT-ECM (BERT with entity, convolution, and max-pooling) on the SemEval-2010 Task
8 dataset for precision, recall, and f1. We find that R-BERT only performs better in the
Message–Topic relation, and in comparison with BERT-ECM, we find that BERT-ECM is
slightly better than our model in precision; however, in recall and f1, our model outperforms
BERT-ECM, especially in the recall metric. We attribute this to our proposed attention-based
prediction structure. We set the paradigm of q and k to make full use of various features,
which, in turn, facilitates the model to better identify the correct class of relationships. We
also find that the score of f1 exceeds 90% for five relations, namely, Cause–Effect, Content–
Container, Entity–Destination, Member–Collection, and Message–Topic. Our guess is that
these five relations may be more in line with our SRS feature vector extraction paradigm,
where the relationship between entities is hidden between two entities.

Table 8. Comparison of precision, recall, and f1 score of our model with RBERT model and BERT-ECM
on the SemEval-2010 Task 8 dataset.

Relation
Precision Recall f1

RBERT BERT-ECM Our RBERT BERT-ECM Our RBERT BERT-ECM Our

Cause-Effect 91.72 93.33 94.51 94.51 93.91 94.51 93.09 93.62 94.51

Component-Whole 85.29 87.23 87.11 83.65 89.74 85.78 84.47 88.47 87.94

Content-Container 85.10 88.24 89.16 92.19 93.75 94.27 88.50 90.19 91.65

Entity-Destination 91.61 93.86 92.33 93.49 94.18 94.86 92.54 94.02 93.58

Entity-Origin 86.97 92.43 86.30 87.98 89.92 90.31 87.48 91.16 88.26

Instrument-Agency 80.12 86.43 85.71 82.69 77.56 80.77 81.39 81.76 83.17

Member-Collection 85.43 88.33 88.75 90.56 90.99 91.42 87.92 89.64 90.06

Message-Topic 87.11 87.46 86.67 95.79 93.49 94.64 91.24 90.37 90.48

Product-Producer 84.81 87.61 85.66 87.01 91.77 90.48 85.90 89.64 88.00

Average 87.03 89.44 88.78 90.10 90.59 91.60 88.54 89.95 90.17
The value in bold denotes the highest value of this evaluation metric.

In the above experiments, it has been demonstrated that our model has a good ability
to capture the semantics of relationships between entities and to make full use of various
features. To further validate the generalizability of our model, we conducted experiments
on the KBP37 dataset. The experimental results are shown in Table 9. We selected some
of the models from the above experiments for comparison. These include GLFN, R-BERT,
Att-RCNN, LGCNN, MALNET, Bi-SDP-Att, and D-BERT models. The experimental results
show that our model has good generalization. Both the basic and advanced models
outperform existing methods. The base model with SpanBert as the feature extraction
architecture achieves an f1 value of 69.33% on the KBP37 dataset, and the advanced model
with spanbert_large as the feature extraction architecture achieves an f1 value of 69.55% on
the KBP37 dataset.

Table 9. Comparison of our model with existing methods on the KBP37 dataset.

Method f1

GLFN [34] 65.2
R-BERT [10] 68.65

Att-RCNN [35] 61.83
LGCNN [36] 63.2
MALNet [22] 61.4

Bi-SDP-Att [37] 64.39
D-BERT [27] 69.2

CRSAtt (spanbert) 69.33
CRSAtt (spanbert_large) 69.55

The value in bold denotes the highest value of this evaluation metric.
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4.3. Ablation Studies

We have demonstrated the effectiveness of our proposed approach. We would like to
further understand the specific contribution of the proposed components. For this purpose,
we designed ablation experiments. We designed experimental protocols without SRS and
without predicted structures, respectively.

4.3.1. Role of SRS

In this section, we perform a specific analysis and experiment on the role of SRS,
where we discard the span of the relation between entities and let the model no longer
focus on the relation between entities. Thus, in Figure 1, there is no more output of the
green vector s and the prediction structure does not receive the input of s. We call this
model CRSAtt_NO_SRS. We conducted corresponding experiments on the SemEval-2010
Task 8 dataset for CRSAtt_NO_SRS and the original model; the experimental results are
shown in Table 10. In the model with only the prediction structure and no SRS, the f1 of
CRSAtt_NO_SRS decreases by 1.05. The experiments demonstrate that our proposed SRS
feature fusion can effectively capture the relation features between entities.

Table 10. Comparison of the model without SRS feature fusion and the full model on the SemEval-
2010 Task 8 dataset.

Method Precision Recall f1

CRSAtt_NO_SRS 88.46 89.79 89.12
CRSAtt 88.78 91.60 90.17

The value in bold denotes the highest value of this evaluation metric.

4.3.2. Role of Prediction Structure

In this section, we perform specific analyses and experiments on the role of the
prediction structure. We remove the prediction structure designed by ourselves and use
the same method as RBERT to predict the classification by feeding it into the softmax
classifier with only one fully-connected layer. Therefore, we directly stitch together the
four vectors in Figure 1 and feed them into the softmax classifier to predict the results after
a fully connected layer. We call this model CRSAtt_NO_PR. We perform corresponding
experiments on the SemEval-2010 Task 8 dataset for CRSAtt_NO_PR and the original
model, and the experimental results are shown in Table 11. The f1 of CRSAtt_NO_PR
decreases by 0.9 compared with the full model. The experiments demonstrate that our
proposed prediction structure can effectively fuse global semantic information and local
relational information.

Table 11. Comparison of the model without prediction structure and the full model on the SemEval-
2010 Task 8 dataset.

Method Precision Recall f1

CRSAtt_NO_PR 87.62 90.99 89.27
CRSAtt 88.78 91.60 90.17

The value in bold denotes the highest value of this evaluation metric.

5. Conclusions

In recent years, Bert-based relation classification models have become increasingly
popular with the rise of pre-trained models. However, these models cannot focus well on
the semantics of the relationships between entities and rely only on the powerful feature
extraction ability of the Bert model for relation classification. Therefore, in order to enable
the model to focus on the semantics of relationships between entities, as well as to make full
use of various feature information that facilitates relation classification. We propose a new
relation classification model, CRSAtt, for solving the problem whereby existing models
cannot accurately extract the semantics of relationships between entities by sentence-level
features alone. We intercept the span between entities in a sentence during data pre-
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processing and use it as the semantics of the relationship between entities. The sentence
and span are fed into the feature extraction architecture to extract various features that
are fed into the attention-based prediction structure for relation classification. In order to
have a better grasp of the semantic information of the relationships between entities, we
propose a feature fusion method called SRS (Strengthen Relational Semantics), which aims
to integrate global information and local relational information. In the prediction structure,
we make our model perform particularly well on the recall metric by cleverly designing the
way q and k are constructed. Experiments on the SemEval-2010 Task 8 dataset showed that
the CRSAtt model improved performance over existing methods with an f1 score of 90.55%.
In addition, the results of the ablation study on the SemEval-2010 Task 8 dataset show that
our proposed SRS and attention-based prediction structures have a positive impact on the
classification performance of the model.

In future work, the relation classification model needs to further improve its general-
izability; so, we will train the model using a remotely supervised approach based on the
research in this paper, focusing on introducing external knowledge with an aim to improve
the generalizability and classification performance of the model using a large amount of
data that do not require manual annotation.
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