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Featured Application: Breeding and processing of Golden Tartary buckwheat.

Abstract: To meet the demand of the breeding and processing industry of Golden Tartary buckwheat,
quantitative identification models were established to test the content of leucine (Leu) and tyrosine
(Tyr) in Golden Tartary buckwheat leaves by near-infrared reflectance spectroscopy (NIRS) with
quantitative partial least squares (PLS). Leu’s modeling results were as follows: first derivative (11)
pretreatment, the wavenumber range of 4000–9000 cm−1 was appropriate for modeling (calibration
sets: validation set = 6:1), the mean coefficient of determination (R2), standard error of calibration
(SEC), and relative standard deviation (RSD) for the calibration set were 0.9229, 0.45, and 3.45%,
respectively; for the validation set, the mean R2, SEC, and RSD were 0.9502, 0.47, and 3.65%, respec-
tively. Tyr modeling results were as follows: first derivative (11) pretreatment, the wavenumber
range of 4000–10,000 cm−1 was suitable for modeling (calibration sets: validation set = 4:1), the R2,
SEC, and RSD for the calibration set was 0.9016, 0.15, and 5.72%, respectively; for the validation set,
the mean R2, SEC, and RSD were 0.9012, 0.15, and 5.53%, respectively. It was proved that the Leu and
Tyr content of Golden Tartary buckwheat could be quantified using the model structured by near
infrared spectroscopy combined with the partial least squares method.

Keywords: near infrared spectroscopy; buckwheat; quantitative partial least squares; leucine; tyrosine

1. Introduction

Fagopyrum Miller is a dicotyledonous plant of the Polygonaceae family and F. cymosum
complex is a common name for the perennial wild large-grained buckwheat of the genus
Buckwheat. It is so named because of the extensive underground stem that turns golden
yellow each growing season. It contains a variety of nutritional and health components
and has high medicinal value [1–3]. Golden Tartary buckwheat (F. tatari-cymosum Chen)
is a new buckwheat cultivar derived from crossing Fagopyrum dibotrys and Tartary
buckwheat. Compared to cultivated Tartary buckwheat, its plants have resilient vegetation
and regenerate rapidly. In spring, the plant grows vegetatively and accumulates nutrients
in it large leaves [4]. These accumulated nutrients in the buckwheat can also be used for
developing drugs utilized by humans for health benefits [4–9]. The active human beneficial
components of buckwheat have been utilized in treating diseases such as human phlegm [5]
and acute lung injury [6], as well as being used as a feed additive to prevent infections [7].
Golden buckwheat tablets combined with sulfasalazine (SASP) in the treatment of ulcerative
colitis (UC) show significantly better results than SASP alone [8]. Our previous study also
found high protein and GABA (γ-aminobutyric acid) content in the leaves of Tartary
buckwheat [9]. Therefore, our research group aims at identifying the lines whose leaves
and grains can be harvested and utilized in the progeny of hybrid combinations, and the
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rapid determination of nutrients in the progeny material is an essential component of
this work.

Protein is the second most important nutrient after starch in many kinds of cereals.
The nutritional quality of cereals and the quality of food processing are mainly deter-
mined by the content of protein and amino acids, and the content of digestible protein
components and essential amino acids is particularly important for the nutritional im-
provement of crops [10–12]. Buckwheat seed proteins are relatively high quality where the
main component of amino acids of storage proteins are relatively balanced, consisting of
19 kinds, with eight kinds being part of the essential amino acids for humans. The ratio
is reasonable and basically reaches the standard value for dietary proteins recommended
by the Food and Agriculture Organization of the United Nations [13]. Both leucine and
tyrosine have unique nutritional value. Leucine, the only ketogenic amino acid among
branched-chain amino acids, is one of the essential amino acids for aquatic animals, playing
an important role in aquatic animal nutrition and physiology. Tyrosine is an aromatic amino
acid, which is produced by living organisms in addition to a variety of other metabolites,
many of which have significant physiological and pharmacological effects. Additionally,
the types and concentrations of tyrosine products in fermented foods play an important
role in the physiological effects and safety of foods. The determination of amino acids is
mainly carried out by GB/T8314-2002, high performance liquid chromatography, liquid
chromatography-mass spectrometry and amino acid analyzer. These methods have the
disadvantage of complicated pretreatment, and of being time-consuming and expensive,
and thus it is of great practical significance to explore a simple, rapid, and inexpensive
method for the determination of amino acids. As a kind of physical testing technology,
near infrared reflectance spectroscopy (NIR) has the advantages of simple pretreatment,
fast determination speed and simultaneous determination of multiple indicators. Previous
studies have shown that 20 amino acids have very pronounced NIR absorption in the range
of 1000–2502 nm with significant differences [13]. At present, there are research reports on
the determination of amino acid content of tea [14,15], medicinal material [16], rice [17,18],
peanuts [19], meat [20], and so on by near-infrared spectroscopy, and most of these have
obtained satisfactory results.

At present, the application of NIR technology in buckwheat breeding research is still
relatively elusive. Some scientists have used infrared technology to determine moisture,
ash, fat, amino acids, and other contents of buckwheat. The ash, protein, and starch
models obtained are satisfactory, but some models’ shortcomings include low identification
rates [21]. Our research group has used near-infrared technology in combination with an
artificial neural network to build predictive models for the determination of amino acids
in buckwheat. Most models have a discrimination rate of more than 90% for unknown
samples, but there are still some amino acid models that cannot be used because of too large
relative errors [22]. In this work, Fourier transform near-infrared reflectance spectroscopy
combined with partial least squares regression was used to analyze the spectral data to
build a more accurate analytical near-infrared model for leucine and tyrosine and provide
a reference for the rapid and inexpensive determination of leucine and tyrosine content in
Tartary buckwheat leaves.

2. Materials and Methods
2.1. Materials

The leaves of 230 Golden Tartary buckwheat cultivars harvested in spring 2020 were
used as experimental material. Sample collection and pretreatment were performed accord-
ing to the method described by Zhu et al. [22].

2.2. Test Method
2.2.1. Spectral Collection of Tartary Buckwheat Leaves

The MPA Fourier transform near-infrared spectrometer from the German company
Brucker Spectral Instrument (Brucker, Germany) was used to record the spectrum. The
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scan resolution was 4 cm−1, the scan range was 4000–12,000 cm−1, and the scan times
were 64. Scanning was undertaken with diffuse reflection, and the average spectrum was
taken as the final spectrum of the sample after two scans. After scanning the spectrum, the
samples were vacuum packed, and stored in the refrigerator at 4 ◦C for later determination
of leucine and tyrosine.

2.2.2. Determination of Leucine and Tyrosine in Tartary Buckwheat Leaves

The content of leucine and tyrosine was determined according to the method described
by Cheng et al. [23]. An amount of 0.1 g of leaf powder was weighed and placed in the
hydrolysis tube, and 15 mL of 6 mol/L hydrochloric acid was added. Oxygen was removed
from the tube by nitrogen bubbling three times after which the tube was sealed. The
hydrolysis tube was incubated for 24 h at 110 ◦C. After cooling, the hydrolysate was
carefully transferred to a 50 mL volumetric flask and mixed with deionized water at
a constant volume. Then 1ml of the filtrate was aspirated and slowly dried, and then
dissolved in 1 mL of pH = 2.2 sodium citrate buffer. The extracted samples were put into a
Hitachi L-8900 amino acid analyzer (Japan) for quantitative analysis.

2.3. Data Analysis and Processing

The quantitative model for leucine and tyrosine in Tartary buckwheat leaves was
constructed using the software CAUNIRS (China) (near-infrared spectroscopy) software
developed by China Agricultural University [24]. The number of principal components,
coefficient of determination (R2), corrected standard deviation (SEC) and mean relative
error (RSD) of the different models were compared by internal cross-validation to filter out
the best model.

3. Results
3.1. Leucine and Tyrosine Contents in Tartary Buckwheat Leaves

The average value of leucine in the samples measured by the chemical method was
14.185 mg/g, and the content ranged from 8.345 to 29.673 mg/g. The average value of
tyrosine was 3.829 mg/g, and the content ranged from 1.754 to 5.796 mg/g. The samples
essentially cover the range of variation of leucine and tyrosine, and the distribution within
the range is relatively uniform and representative. After removing abnormal samples,
226 samples were finally used for model construction (Table 1).

Table 1. Contents of Leu and Tyr in Golden Tartary buckwheat leaves.

Amino Acids Leu (mg/g) Tyr (mg/g)

Minimum 8.345 1.754
Maximum 29.673 5.796
Average 14.185 3.829

3.2. Near Infrared Spectrum of Tartary Buckwheat Leaves

The near-infrared absorption spectra of the two samples with significant differences in
leucine and tyrosine content are shown in Figure 1, which also illustrates the abundance
of absorption peaks in the Tartary buckwheat leaves’ near-infrared spectrum. Leucine
and tyrosine share hydrogen-containing groups such as C–H and N–H and exhibit high
near-infrared absorption peaks. While the spectral shapes of many samples are comparable,
the intensity of the absorption peaks varies.
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Figure 1. Golden Tartary buckwheat leaves’ original near-infrared spectrum. Sample 1 and sample 2
represents: two varieties of Golden Tartary buckwheat with different leucine and tyrosine contents
in leaves.

3.3. Establishment of the Model
3.3.1. Influence of Spectral Region on the Model

Following previous studies, eight spectral ranges such as 4000–5000 cm−1, 4000–6000 cm−1,
4000–7000 cm−1, 4000–8000 cm−1, 4000–9000 cm−1, 4000–10,000 cm−1, 5000–9000 cm−1 and
5000–8000 cm−1 were selected to construct the NIR determination model of leucine. The
total number of modeling samples was 226. In each modeling, 181 samples were randomly
selected as the calibration set and the other 45 samples were the validation set.

In the construction of the determination model for leucine, the modeling effect of all
spectral regions was good, and the determination coefficient between the calibration set and
the validation set was above 0.91. Among these, the best modeling effect was obtained when
the spectrum of 4000–9000 cm−1 was selected, and the coefficient of determination of both
the calibration set and the validation set was more than 0.93. The average coefficients of
determination of the calibration set and the validation set of the eight spectral regions were
0.9313 and 0.9225, respectively, indicating that the model was relatively stable (Table 2).

Table 2. Influence of spectral range on NIR prediction results (Leu).

Spectral
Regions/cm−1

Principal
Component

Calibration Set Validation Set

R2 SEC RSD/% R2 SEC RSD/%

4000–5000 12 0.9211 0.62 4.74 0.9130 0.44 3.41
4000–6000 13 0.9298 0.58 4.47 0.9129 0.44 3.42
4000–7000 15 0.9440 0.52 3.99 0.9190 0.42 3.29
4000–8000 16 0.9423 0.53 4.05 0.9282 0.40 3.10
4000–9000 13 0.9320 0.58 4.40 0.9370 0.37 2.91
4000–10,000 13 0.9318 0.58 4.41 0.9371 0.37 2.90
5000–9000 11 0.9210 0.62 4.74 0.9205 0.42 3.26
5000–8000 14 0.9285 0.59 4.51 0.9124 0.44 3.43
Average 13 0.9313 0.58 4.41 0.9225 0.41 3.22
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In building the tyrosine determination model, eight spectral regions were selected, as
shown in Table 3, covering the range 4000–10,000 cm−1. During modeling, it was found
that the model created when the spectrum of 4000–10,000 cm−1 was selected was better.
The coefficients of determination of the calibration set and the validation set were 0.9076
and 0.9042, respectively, and the mean relative error was less than 10%. The disadvantage
was that the number of principal components was high. The spectral range with a low
coefficient of determination was 4000–7000 cm−1, but the coefficient of determination here
was also above 0.85. The average coefficient of determination of the calibration set and
the validation set for the eight spectral ranges were 0.8874 and 0.8761, respectively, which
achieved the goal of fast detection (Table 3).

Table 3. Influence of spectral range on NIR prediction results (Tyr).

Spectral
Regions/cm−1

Principal
Component

Calibration Set Validation Set

R2 SEC RSD/% R2 SEC RSD/%

4000–5000 17 0.8730 0.18 6.32 0.8690 0.17 6.59
4000–6000 16 0.8730 0.17 6.49 0.8617 0.17 6.54
4000–7000 15 0.8589 0.18 6.82 0.8687 0.17 6.37
4000–8000 17 0.8749 0.17 6.45 0.8727 0.17 6.28
4000–9000 18 0.8936 0.16 5.95 0.8774 0.16 6.16
4000–10,000 18 0.9076 0.15 5.54 0.9042 0.15 5.44
5000–9000 16 0.8887 0.16 6.08 0.8623 0.17 6.53
5000–8000 19 0.9298 0.13 4.83 0.8929 0.15 5.75
Average 17 0.8874 0.16 6.06 0.8761 0.16 6.21

3.3.2. Influence of Modeling Samples on the Model

To further investigate the feasibility and stability of near-infrared spectroscopy com-
bined with the partial least squares method for detecting leucine and tyrosine content in
Tartary buckwheat leaves, the optimal spectral ranges of the two amino acids were selected
for modeling, and different proportions of calibration and validation test samples were
randomly selected for model construction and verification.

The results showed that the coefficient of determination of the model was above 0.92
for different samples. The average determination coefficient of leucine in the calibration
and validation set was 0.9510 and 0.9392, respectively, when different samples were used
for modeling. This shows that the model for determination of leucine content in Tartary
buckwheat leaves constructed using NIR spectral information in the spectral range of
4000–9000 cm−1 was stable and reliable (Table 4).

Table 4. NIR prediction results of the model for different samples (Leu).

Calibration Set:
Validation Set

Principal
Component

Calibration Set Validation Set

R2 SEC RSD/% R2 SEC RSD/%

1:1 16 0.9429 0.50 3.82 0.9239 0.57 4.41
2:1 20 0.9628 0.37 2.87 0.9655 0.43 3.32
3:1 18 0.9474 0.49 3.80 0.9435 0.44 3.37
4:1 16 0.9423 0.53 4.05 0.9282 0.40 3.10
5:1 20 0.9612 0.41 3.16 0.9284 0.55 4.22
6:1 21 0.9493 0.47 3.58 0.9456 0.49 3.81
Average 19 0.9510 0.46 3.55 0.9392 0.48 3.71

It was found that when modeling different samples, the average determination coef-
ficient of tyrosine calibration set was 0.8959, and that of validation set was 0.8781, which
indicated that the determination model of buckwheat leaf tyrosine content established
by using near infrared spectral information in the spectral range of 4000–10,000 cm−1
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was stable and reliable. When the ratio of calibration set to validation set was 4:1, the
constructed model has a better effect (Table 5).

Table 5. NIR prediction results of the model for different samples (Tyr).

Calibration Set:
Validation Set

Principal
Component

Calibration Set Validation Set

R2 SEC RSD% R2 SEC RSD%

1:1 15 0.8660 0.18 6.63 0.8496 0.19 7.03
2:1 20 0.9326 0.12 4.41 0.8867 0.18 6.79
3:1 19 0.9164 0.14 5.41 0.8879 0.15 5.44
4:1 18 0.9076 0.15 5.54 0.9042 0.15 5.44
5:1 17 0.8749 0.17 6.45 0.8727 0.17 6.28
6:1 16 0.8777 0.17 6.33 0.8672 0.17 6.58
Average 18 0.8959 0.16 5.80 0.8781 0.17 6.26

3.3.3. Optimization of the Model

To further optimize the model, different mathematical methods were used to pre-
process the spectrum in this experiment. The results show that after preprocessing the
spectrum, the average determination coefficient of leucine in the calibration set and vali-
dation set was 0.9574 and 0.9507, respectively. The results also proved that the model for
determining the leucine content of Tartary buckwheat leaves was stable and reliable based
on the spectral information in the near infrared in the spectral range of 4000–9000 cm−1.
The preprocessing of spectral modeling by centralization, range normalization, vector
correction, scattering correction, and first derivative can not only improve the coefficient
of determination of the model, but also significantly reduce the number of principal com-
ponents. For example, the number of principal components in the calibration set and
validation set decreased from 21 to 13 when the spectra were preprocessed with the first
derivative (11 smoothing points), and the coefficient of determination was also significantly
higher than the non-spectral treatment (Table 6).

Table 6. The influence of different pretreatment and smoothing methods on NIRS prediction results (Leu).

Preprocessing
Methods

Principal
Component

Calibration Set Validation Set

R2/% SEC RSD% R2/% SEC RSD%

No-preprocessing 21 0.9493 0.47 3.58 0.9456 0.49 3.81
Centralization 19 0.9587 0.42 3.23 0.9517 0.46 3.59
Range normalization 19 0.9560 0.44 3.34 0.9427 0.50 3.91
Vector correction 17 0.9523 0.45 3.47 0.9522 0.46 3.57
Scatter correction 19 0.9621 0.40 3.10 0.9567 0.43 3.40
First derivative (11) 13 0.9529 0.45 3.45 0.9502 0.47 3.65
First derivative (13) 13 0.9527 0.45 3.46 0.9245 0.57 4.49
First derivative (15) 14 0.9501 0.46 3.55 0.9475 0.48 3.74
First derivative (17) 15 0.9519 0.46 3.48 0.9472 0.48 3.76
Second derivative (11) 20 0.9672 0.38 2.88 0.9537 0.45 3.52
Second derivative (13) 20 0.9639 0.39 3.02 0.9631 0.40 3.14
Second derivative (15) 20 0.9618 0.41 3.11 0.9613 0.41 3.22
Second derivative (17) 21 0.9670 0.38 2.89 0.9631 0.40 3.14
Average 18 0.9574 0.43 3.27 0.9507 0.46 3.61

It was observed that the tyrosine model created by preprocessing spectra with various
methods did not have a significant change in the coefficient of determination between the
calibration set and the validation set, but after preprocessing spectra with the first derivative,
centralization, vector correction, and other methods, the principal component of the model
was significantly decreased. For example, after preprocessing the spectrum with the first
derivative (smoothing the number of points 11), the number of principal components of the
model decreased from 18 to 11, compared to the model without preprocessing the spectrum,
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and the coefficient of determination of the calibration set and the validation set did not
change significantly from the first. The average coefficient of determination of the tyrosine
calibration set and validation set obtained after spectrum preprocessing were 0.9090 and
0.8993, respectively, proving that the model for determination of tyrosine content of Tartary
buckwheat leaves established using the NIR spectral information in the spectral range of
4000–10,000 cm−1 was stable and reliable (Table 7).

Table 7. The influence of different pretreatment and smoothing methods on NIRS prediction results (Tyr).

Preprocessing
Methods

Principal
Component

Calibration Set Validation Set

R2 SEC RSD% R2 SEC RSD%

No-preprocessing 18 0.9076 0.15 5.54 0.9042 0.15 5.44
Centralization 17 0.9009 0.15 5.74 0.8861 0.16 5.94
Range normalization 19 0.9248 0.13 5.00 0.9060 0.14 5.39
Vector correction 17 0.9140 0.14 5.34 0.9059 0.14 5.40
Scatter correction 18 0.9157 0.14 5.29 0.8946 0.15 5.71
First derivative (11) 11 0.9016 0.15 5.72 0.9012 0.15 5.53
First derivative (13) 11 0.8991 0.15 5.79 0.8808 0.16 6.07
First derivative (15) 14 0.9199 0.14 5.16 0.9074 0.14 5.35
First derivative (17) 15 0.9182 0.14 5.21 0.9071 0.14 5.36
Second derivative (11) 16 0.8855 0.16 6.17 0.8806 0.16 6.08
Second derivative (13) 18 0.9135 0.14 5.36 0.9082 0.14 5.33
Second derivative (15) 17 0.8964 0.16 5.87 0.8955 0.15 5.69
Second derivative (17) 19 0.9204 0.14 5.14 0.9138 0.14 5.16
Average 16 0.9090 0.15 5.49 0.8993 0.15 5.57

4. Discussion

Sample size and representativeness have great influence on the model effect. The
NIR prediction model for sucrose content in peanut kernels built by Telly et al. [25], using
72 peanut resources with edible oil, showed that the coefficient of determination of the
optimal model was only 0.822, while Bian et al. [26] expanded the number of modeling
samples to 119 and the coefficient of determination of the optimal peanut sucrose prediction
model increased to 0.898. Wang et al. [27] used 40 samples to build the near-infrared model
for buckwheat grain protein and total flavonoids, but the prediction value of the built
model for protein and flavonoids was not ideal, which might be related to the small sample
size. Guo et al. [28] used 217 buckwheat samples to build a prediction model for grain
protein and found that the coefficient of determination of the prediction model was 0.9481
and the root mean square of the cross-validation was 0.68. A total of 230 samples were used
in this work, and the coefficient of determination of the established models was mostly
above 0.90. The next experiment is planned to expand the number of samples and try to
include representative samples to further improve the representativeness of the samples.

It was found that the multivariate calibration method has a great influence on the
modeling effect. Due to the different substances, the best multivariate calibration methods
are also different. Zou et al. [29] used the Mahalanobis distance discrimination method,
the C support vector machine, and the V support vector machine, to build models for
discriminating starch types, and it was found that the support vector machine classification
model was effective. Kovalenko et al. [30] used partial least squares (PLS), artificial neural
network (ANN), and support vector machine (SVM) to predict amino acids in soybean seeds
except for cystine and tryptophan. GUO et al. [31] developed the continuous projection
algorithm (SPA), genetic algorithm (GA) and simulated cooling algorithm (SA) using
near infrared spectroscopy combined with partial least square number with collaborative
interval to build the free amino acid model of matcha with excellent predictive power.
Platov et al. [32] used the method of UV-visible near-infrared spectroscopy in combination
with multivariate analysis to analyze the classification and identification of buckwheat and
oats, and also obtained good results. Ren et al. performed Savitzky–Golay filtering (SG)
and standard normal variable transformation (SNV) to preprocess the collected original
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spectrum, and then compared the multivariate selection algorithm (IgA-PSO) with the
univariate selection algorithm (IGA and PSO) to find the optimal feature wavelength.
Finally, in combination with the effective features of the above variable screening path, the
decision tree based on various kernel functions (DT), partial least squares discriminant
analysis (PLS-DA), and support vector machine (SVM) were used to build a black tea
quality discrimination model with excellent predictive power [33]. The experimental
results showed that the generalization ability and prediction accuracy of the improved
random forest algorithm was significantly better than those of the random forest and
Ada boost algorithms. The improved random forest model was constructed by using the
upward spectral information from a single maize embryo. The correlation coefficient R of
the training set was 0.969, the mean square error of the training set was 0.094%, the R of the
test set was 0.881, and the mean square error of the test set was 0.404% [34]. In this study,
the PLS method was used to build the model, and the coefficient of determination of the
model for leucine and tyrosine content met the requirements of the application. In a later
stage, other multivariate calibration methods can be tried to further improve the coefficient
of determination of the model and reduce the number of principal components of the
model. In addition, our research center has been engaged in breeding buckwheat with high
content protein and high flavonoid content. The development of rapid non-destructive
testing methods for the nutrient content of buckwheat grains can also greatly improve the
efficiency of breeding, which is also one of our future research directions.

5. Conclusions

In this study, the contents of leucine and tyrosine in ground Tartary buckwheat leaves
were determined by a chemical method, and the prediction model was constructed by near-
infrared spectroscopy combined with the quantitative least squares method. According
to the determination coefficients of the calibration set and the validation set, the leucine
and tyrosine contents in the leaves of Tartary buckwheat had a good modeling effect. The
optimal spectral range for the model to predict the leucine content was 4000–9000 cm−1,
the first derived (11) preprocessed spectrum, the ratio of the calibration set to validation
set was 6:1, and the coefficients of determination of calibration set and validation set
were 0.9529 and 0.9502, respectively. The spectral range of the best predictive model for
tyrosine content was 4000–10,000 cm−1, and the spectrum of the first derivative (11) was
preprocessed. When the ratio of calibration set to validation set was 4:1, the coefficients of
determination of calibration set and validation set were 0.9016 and 0.9012, respectively.

The prediction model constructed using near-infrared spectroscopy combined with the
least squares method can effectively predict the content of leucine and tyrosine in the leaves
of Tartary buckwheat, which is of certain practical value for breeding work. To further
optimize the prediction model to improve the scope of the model and the prediction effect,
this study will further increase the number of representative buckwheat samples. In the
next step, the experiment will also include different seasons, and different biomes, including
Fagopyrum dibotrys, Golden Tartary buckwheat, buckwheat and Tartary buckwheat leaf
samples, to further perfect the near-infrared prediction model.
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