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Abstract: A smart device carries a great amount of sensitive patient data as it offers innovative and
enhanced functionalities in the smart healthcare system. Moreover, the components of healthcare
systems are interconnected via the Internet, bringing significant changes to the delivery of healthcare
services to individuals. However, easy access to healthcare services and applications has given rise to
severe risks and vulnerabilities that hamper the performance of a smart healthcare system. Moreover,
a large number of heterogeneous devices accumulate data that vary in terms of size and formats,
making it challenging to manage the data in the healthcare repository and secure it from attackers
who seek to profit from the data. Thus, smart healthcare systems are susceptible to numerous security
threats and risks, such as hardware and software-based attacks, system-level attacks, and network
attacks that have the potential to place patients’ lives at risk. An analysis of the literature revealed a
research gap in that most security surveys on the healthcare ecosystem examined only the security
challenges and did not explore the possibility of integrating modern technologies to alleviate security
issues in the smart healthcare system. Therefore, in this article, we conduct a comprehensive review
of the various most recent security challenges and their countermeasures in the smart healthcare
environment. In addition, an artificial intelligence (AI) and blockchain-based secure architecture is
proposed as a case study to analyse malware and network attacks on wearable devices. The proposed
architecture is evaluated using various performance metrics such as blockchain scalability, accuracy,
and dynamic malware analysis. Lastly, we highlight different open issues and research challenges
facing smart healthcare systems.

Keywords: smart healthcare systems; security; data privacy; Internet of things; blockchain; wearable
devices; medical devices

1. Introduction

The healthcare sector has seen a tremendous transformation by embracing key-enabler
technologies, such as the Internet of Things (IoT), artificial intelligence (AI), blockchain,
and next-generation wireless network (5G/6G). The adoption of these technologies in the
healthcare industry has improved healthcare services and the quality of life of individuals.
The integration of IoT technology in the healthcare sector strengthens the relationship
between patients and healthcare providers. It enables lightweight devices (sensor node) to
collect biometric data (e.g., temperature, blood pressure, oxygen rate, etc.) from the patient
body and quickly transmit it to the other sensor nodes or directly relay it to healthcare
providers, such as health professionals, pharmacies, and laboratories. The sensors comprise
attribute and data profiles, processor, and memory. The attribute profile specifies the
sensor’s manufacturer, type, measurement range, date of manufacture, and location. The
data profile handles the data format that the sensors are generating.

Sensors use various interfaces to transmit data, such as ZigBee, IEEE 802.11, general
radio packet radio service (GPRS), Bluetooth, and cellular networks. Moreover, they trans-
form the conventional healthcare system into a smart one for optimizing operational costs,
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remotely monitoring patients, smart applications for patients and caregivers, employee
management, and the care of critical patients. However, smart healthcare systems are
hindered by the security challenges that threaten the regular operations of a medical infras-
tructure. An adversary can discover security vulnerabilities in the hospital infrastructure
(e.g., defibrillator, patient monitor, central server, etc.) that can be exploited using a ma-
licious payload (e.g., ransomware, trojans, etc.) to put the patient’s life at risk. A recent
report by Fortified Health Security stated that, at the beginning of 2022, the healthcare
sector reported 337 data breaches [1]. Figure 1 shows the financial loss due to cyberattacks
on the healthcare industry from 2006–2026. The data were acquired from [2,3], and shows
the average financial loss to the US organizations due to the data breaches. The report
shown in [3] explains that the healthcare industry is the most affected sector according
to the number of breaches that occurred in 2022. In Figure 1, the data from 2006–2022
are real-time data acquired from the [3]; further, the data are forecasted from 2022–2026
using an exponential smoothing algorithm (ESA) that takes time series or year data to
predict the forecasted value. The forecasted value is our prediction value based on the
previous year’s value (it is acquired by the ESA algorithm ). From Figure 1 it is clear that
the healthcare sector is strongly affected by the lucrative business of the attacker that cost
8.7 million in the current year. This financial loss is detrimental to the nation’s economy.
The attackers leverage the security vulnerabilities either from the communication protocol
or from hardware/software services, and exploit the vulnerability using nefarious attacks
(e.g., Denial-of-Service (DoS), Man-in-the-Middle (MiTM), software-based attacks, data
integrity attacks, and hardware-based attacks) and attempt to gain access to the legitimate
healthcare resources. Therefore, it has become imperative to amalgamate different tech-
nologies and integrate them into the first line of defence (e.g., firewalls, access controls) in
order to detect and mitigate or prevent security threats efficiently before they jeopardize
the smart healthcare system.
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Figure 1. Total financial loss due to cyberattacks on the healthcare industry (2006–2026) [3].

The application of AI technology in smart healthcare systems is an effective means of
addressing the increasing number of cyber-attacks proliferating in the healthcare ecosys-
tem [4]. The AI plays a prominent role in analysing the attacker’s malicious behavior,
providing an endogenous security solution. Several researchers have proposed robust
and concrete security solutions using AI in the smart healthcare system. For instance, the
authors of [5] explored the security solutions of [6] on mutual authentication and patient
anonymity for telecare medical information systems. They improved the results of [6] by
examining the session keys between the communication entities of the healthcare system.
Their proposed framework effectively addresses the forgery and spoofing attacks. Further,
Wazid et al. in [7] proposed an AI-based lightweight and secure communication scheme to
tackle protocol-based security threats. First, the patient’s sensor collects data and forwards
it to the personal server attached to the access points. At the receiving side, the healthcare
providers (intended recipients of the data) are associated with the trusted authority for
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registration and authentication purposes. Then, the data are processed (i.e., prediction and
classification using AI algorithms),and this step is overseen by the trusted authority. Their
proposed scheme outperforms others in terms of delay, throughput, computation time, and
accuracy with other baseline works.

However, AI algorithms cannot deal with data integrity attacks, where an attacker
intercepts the communication in order to fetch and inject the malicious code into the
legitimate data. In addition, the attacker passively (covertly) listens to the network commu-
nication to find sensitive information about the healthcare resources, which includes the
number of patients are in critical conditions, what the thresholds of implant devices are,
and login credentials of patient information systems [8]. This information is crucial from the
security perspective because if the information gets into the wrong hands, severe privacy-
related issues can threaten the smart healthcare system. Hence, the researcher has adopted
blockchain technology characterised by decentralization, immutability, transparency, and
security [9,10]. Pinto et al. in [11] explored the benefits of blockchain technology in the
smart healthcare system, as it resolves the issue of data integrity, transparency, and security.
They proposed a traceable system for electronic health records, whereby a patient and user
can securely exchange their data. They used a private blockchain by implementing it in the
HyperLedger Fabric, where two separate databases are maintained for data traceability.
Further, the authors in [12] studied the heterogeneity problem of the smart healthcare sys-
tem resulting from the variety of devices and data formats, which makes data management
difficult. To address this issue, the authors presented a blockchain and cloud-based secure
and efficient framework for better interoperability in smart healthcare systems. The inte-
gration of blockchain with cloud computing reduces the computational cost and increases
the security and privacy of the smart healthcare system. Gohar et al. in [12] discusses the
benefits of amalgamating blockchain and cloud technology to offer cost-effective and secure
data storage of medical data. They proposed a five-tier secure and reliable framework for
better interoperability between different healthcare providers. Next, Dhairya et al. in [13]
proposed an AI and blockchain-based secure approach to securely transmit securely a
patient’s medical data to the medical staff. Firstly, they applied machine learning models
to classify malicious data obtained by wearables and remove them from the healthcare
systems. Then, they used blockchain technology to store the non-malicious wearable data
to confront data integrity attacks. Similarly, the authors of [14] presented a collaborative
framework comprising a deep learning model, blockchain, and 6G network interface. In
their proposed framework, the predicted data from the deep learning models is stored
inside the public blockchain to offer secure data storage. Moreover, the communication
between each entity of their proposed framework is provided by the 6G network that offers
low latency communication.

Despite applying the above-mentioned technologies in the smart healthcare system,
numerous modern attacks still pose a threat to data security. Hence, the purpose of this
current study is to examine various security attacks and their countermeasures for the
smart healthcare ecosystem. First, we describe the emerging technologies and their impact
on the smart healthcare system. Then, we examine recent security attacks on the healthcare
environment, which includes smart healthcare systems, electronic health records, and
patient information systems. Then a security solutions taxonomy is proposed to illustrate
the different solutions proposed by the scientific community across the globe. Then, a
comprehensive case study is conducted to mitigate cyber attacks on the smart healthcare
system, which is evaluated using different performance metrics, such as accuracy, scalability,
and malware dynamic analysis. Finally, we discuss several open issues and research
challenges (in line with security) that still hinder the smart healthcare system’s performance.

1.1. Scope of the Survey

In this section, we discuss the current state-of-the-art literature and present a compara-
tive analysis of the existing solutions for security and privacy in smart healthcare systems.
Researchers have proposed many surveys on security and privacy prospects for the smart



Appl. Sci. 2022, 12, 11039 4 of 32

healthcare system, but most of the surveys target electronic healthcare record databases,
AI-based healthcare systems, and body area networks, where not all security attacks and
their countermeasures are explored. For instance, Usman et al. in [15] presented a layered
architecture for a body area network; then, at each layer, its security requirements are
investigated. The study investigated various security threats and challenges, particularly
for nano-networks and medical devices in body area networks. The authors of [16] explored
security and privacy concerns for network-based medical devices. This exhaustive survey
includes various medical devices, such as implantable, in and out body sensors, and remote
healthcare monitoring interfaces with their regulatory standards and security challenges.
The authors describe each security attack vector, such as eavesdropping, information dis-
closure, DoS, replay, sniffing attacks, etc., and its impact on medical devices. Further, they
reveal the shortcomings of the existing regulations and countermeasures applied to address
the security issues in network-based medical devices.

Then, Sun et al. in [17] studied the security and privacy vulnerabilities of IoT-based
healthcare devices. They first proposed an architecture where each level of the architecture is
endogenously explored for security and privacy challenges. They discuss attacks, such as au-
thentication, data integrity, access control, key management, and DoS attack with their security
solutions. The authors of [18] conducted a comprehensive study of security requirements of
Healthcare 4.0, and elaborated on the requirements such as mutual authentication, anonymity,
untraceability, perfect forward secrecy, and attack resistance [19]. Further, a taxonomy is
presented comprised of various components of Healthcare 4.0, feasible security solutions
are proposed. The authors of [20] explored the benefits of blockchain technology in tackling
security and privacy attacks in electronic health record systems. They reviewed different
blockchain-based schemes used to secure data storage, data sharing, and data audit of health-
care systems. Next, Bhuiyan et al. in [21] presented an exhaustive survey of IoT-based health-
care systems, where they focused on IoT-enabled healthcare infrastructure, standard protocols,
IoT healthcare security challenges, and market opportunities. In regard to security issues,
they reviewed device compromisation, information disclosure, and authentication attacks.
Furthermore, a threat model is discussed where they emphasise the importance of having a
risk management process to counter the security challenges. Jagatheesaperumal et al. in [22]
reviewed the emerging technologies to offer security solutions in the healthcare environment.
They discussed technologies such as IoT, futuristic networks, AI, and big data analytics and
the role of these technologies in providing effective healthcare security solutions. However,
most of the aforementioned studies explore general security attacks on a specific compo-
nent of healthcare, such as smart devices, electronic healthcare records, and remote patient
monitoring systems; but none of them gives a comprehensive details of those attacks and
how they influence healthcare organization and the patient’s life. Besides, a few surveys
have not explored possible modern-day attacks, and their countermeasures. For instance,
the authors of [20] reviewed only blockchain-based security solutions for the healthcare en-
vironment. In addition, the study did not investigates the recent attacks lunched on the
smart healthcare system and how they impacts on the healthcare organization. Therefore, a
comprehensive study is required that investigates recent security and privacy issues in smart
healthcare systems. Moreover, this study would examine the role of modern technologies
in confronting traditional and modern-day security attacks. Table 1 shows the comparative
analysis between the existing and presented studies.

Table 1. Comparative analysis of the existing state-of-the-art studies and the proposed studies.

Author Year Contributions Open
Issues Taxonomy Case

Study Cons

Usman et al. [15] 2018 Concise survey on security and privacy
issues of wireless body area network Yes No No Only body area network-based

security attacks were considered

Yaqoob et al. [16] 2019 Studied security threats in
network-based medical devices Yes Yes No

Security solutions are not
resistant towards modern

security attacks
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Table 1. Cont.

Author Year Contributions Open
Issues Taxonomy Case

Study Cons

Sun et al. [17] 2019 Survey on security requirements for
Internet of medical things Yes No No Very consice security attacks are

studied

Hathaliya et al. [18] 2020 Comprehensive survey on security and
privacy issues of healthcare 4.0 Yes Yes No Most of the security solutions are

based on authentication schemes

Shi et al. [20] 2020
Review of blockchain-based security

solutions for electronic healthcare
systems

Yes No No Only blockchain-based security
solutions are explored

Bhuiyan et al. [21] 2021

Review of healthcare applications,
security, protocols and market

opportunities of IoT-based healthcare
system

Yes Yes No Solutions are not operable with
advance security vulnerabilities

Jagathee saperumal
et al. [22] 2022

Explored emerging technologies to
offer security solutions in healthcare

systems
Yes No Yes Security attacks are partially

explored

The proposed
review 2022

Explored security and privacy
solutions with their countermeasures

in smart healthcare systems
Yes Yes Yes -

1.2. Research Contributions

Following are the major contributions of this article.

• We discuss emerging technologies (i.e., AI, IoT, cloud computing, and blockchain)
and emphasise the important role they play in the smart healthcare systems as a
means of offering predictive, automated, computationally inexpensive, and reliable
security services.

• We discuss the security challenges associated with the healthcare ecosystem (i.e., pa-
tient information systems, wearable systems, implantable and electronic health records)
to encourage researchers from industry and academia to provide endogenous secu-
rity solutions.

• We design a comprehensive taxonomy of existing security countermeasures to mitigate
security threats in the smart healthcare environment.

• We proposed a real-world case study by designing an AI and blockchain-based secure
architecture that confront malware samples and network attacks for smart healthcare
systems. The proposed architecture is evaluated using various performance metrics,
such as accuracy, scalability, and dynamic malware analysis.

1.3. Organization

This article comprises the following sections: Section 2 discusses the emerging technolo-
gies being applied in smart healthcare systems. Section 3 explores various security threats to
and vulnerabilities of the smart healthcare system. Section 4 presents a taxonomy of security
countermeasures that can ensure security. Section 5 proposes a secure architecture to mitigate
the security risks in smart healthcare systems. Section 6 discusses the open issues and research
challenges of smart healthcare systems. Finally, Section 7 concludes the paper.

2. Overview of Modern Technologies and Frameworks in Smart Healthcare Systems

Traditional healthcare systems consist of doctors, patients, clinical observatories, labo-
ratories, hospitals, electronic health record systems, and patient information systems. In
addition, they can include various healthcare services associated with healthcare moni-
toring, diagnosis and medical treatment, medical research, decision-making, and hospital
management that require key-enabler technologies to control and manage the aforemen-
tioned healthcare services. The integration of various modern technologies, such as AI, IoT,
blockchain, edge computing, and cloud computing, can offer the automation, intelligence,
security, and inexpensive computational ecosystem that constitute the cornerstone of health-
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care and improve the performance of the traditional healthcare system. The following
are the key technologies adapted by the smart healthcare systems. Figure 2 illustrates
key-enabler technologies with their essential characteristics in the smart healthcare system.
Moreover, Table 2 shows the comparative analysis of various services offered by the modern
technologies such as blockchain, IoT, AI, and cloud computing. Then, Table 3 presents a
comprehensive analysis of the aforementioned modern technologies in the smart healthcare
systems comprehensively.

Emerging 
technologies 
in healthcare

IoT

• Medical 
information 
distribution

• Smart 
wearable 
devices

• Cold chain 
logistics

• Telemedicine

• Telesurgery

• Remote 
patient 

monitoring

• Streamline
care and 

prevent costly 
mistakes

Blockchain

• Human organ 
supplychain 

management

• Secure 
EHR

• Privacy in
bio-informatics

• Drug 
traceability 
and safety

Cloud 
computing

• Virtual medical 
university

• Interoperability 
in devices

• Data storage 
and scalability

• Increased 
collaboration

in data sharing

• Hybrid cloud for 
data management

AI

• Predictive 
analysis

• Clinical 
decision 
support

• SOP's 
validation

• Patient 
lifestyle 
advice

• Improving 
diagnosis

• Patient 
stratification

Figure 2. Emerging technologies and framework of smart healthcare systems with their essen-
tial characteristics.

Table 2. Comparison analysis of various services offered by modern technologies.

Modern Technologies Advantages Challenges

Blockchain High security, decentralized, high latency, transfer-
able identity, high reliability, anonymity

security issues with private owner, high bandwidth
consumption, poor scalability with large network,
high resource consumption

AI High availability, dynamic compatibility with all
other platforms, and better efficiency

Low efficiency, high communication and computa-
tion costs, need to focus on protecting data

Cloud computing High computational capacity, efficient, improved
data storage, improved flexibility and mobility

High communication costs, security concern, relia-
bility, portability, and interoperability issues

IoT Requires low latency, lightweight algorithms,
greater heterogeneity

Low computational capacity, data storage, and pri-
vacy challenges
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2.1. Internet of Things-Based Smart Healthcare Systems

Previously, because the separate components of the healthcare system were not in-
terconnected, the system was not capable of continuously delivering medical services
to patients. Hence, it was challenging for medical practitioners to continue monitoring
their patient’s health and give recommendations accordingly. The incorporating of IoT
technology in the healthcare sector allows doctors to remotely diagnose and treat their
patients and enables medical staff to provide high-level care to their patients. This is
accomplished by lightweight IoT devices (sensors) that are deployed in the healthcare
environment, where each sensor has the potential to accumulate data from the surrounding
environment (e.g., patient’s body) and forward it to various healthcare applications via the
Internet. IoT allows patients to send their real-time medical data, such as blood pressure,
oxygen levels, calorie consumption, and heart rate, using wearable sensors attached to the
body. With the help of sensors placed on the body, the doctors can pervasively monitor
them (continuous monitoring) and suggest recommendations as per their live medical data.
Here, the patients do not have to come to the hospital; instead, it directly connects to the
doctor via a remote connection from their home. Due to this, the vital bed is free for other
patients who need emergency intensive care.

Moreover, the healthcare system has many physical assets, such as oxygen cylinders,
nebulizers, wheelchairs, oxygen meters, heart monitors, personal protective equipment, and
surgical tools that must be properly managed so that one can easily track down their numbers
and locations in the emergency situations [23,24]. IoT-based healthcare asset management
helps to track these assets in no time. For example, in [25], the authors discuss the COVID-
19 global pandemic that requires advanced medical facilities in a short span of time. To
this end, they proposed an IoT-based healthcare monitoring architecture that offers hybrid
communication, colossal medical screening, and cloud-based data centres to help hospitals,
rescue teams, and first aid units. Further, Subhai et al. in [26] presented an edge-enabled
IoT healthcare management system intended to improve the performance of the monitoring,
diagnosis, and management of the patient’s data. They proposed a system that monitors
different medical tasks and manages various healthcare activities using database systems.
However, because of the system’s centralized storage, the attacker can breach its security.

Table 3. Comparative analysis of various modern technologies in smart healthcare systems.

Authors Year Objective Modern
Technology Pros Cons

Subahi et al. [26] 2019

IoT edge-enabled medical
management system for

better recommendation in
healthcare systems

IoT Performance of system
needs to be improved

Anonymity, scalability,
and efficiency parameters

are not considered

Gupta et al. [27] 2020

Presented a UAV and
blockchain-based outdoor

delivery scheme for
healthcare 4.0

UAV Improved scalability, latency,
and network bandwidth

Communication and
computation overhead is

not focused

Ray et al. [28] 2021 Proposed an EHR scheme in
IoT-based blockchain system Blockchain Anonymous, high

interoperability, low cost
Should be implemented in

real-time environment

Gourob et al. [29] 2021
Studied a vision-based

gesture recognition system
for controlling robotic hand

Wearable
technology Real-time execution Need to consider latency

and reliability parameters

Subramanian et al. [30] 2021

Presented a consortium
blockchain-based system to
secure the data of diabetic

patients

Blockchain Authenticated and
improved transaction speed

Need to minimize
transaction fee and power

consumption

Tomasicchio et al. [25] 2022
Discussed a healthcare

emergency management to
monitor wide epidemics

IoT High robustness and quality
of service

Communication and
computation overhead is

not discussed
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Table 3. Cont.

Authors Year Objective Modern
Technology Pros Cons

Parra et al. [31] 2022
Presented an AI-based

recommendation system in
a healthcare scenario

AI Fair and preserve data
screening

Not focused security
attacks such as data

modification and spoofing

Elayan et al. [32] 2022
Performed healthcare data

analysis using deep
federated learning

AI Reduced operational costs
Need to ensure security

against cyber and
privilege attacks

Costa et al. [33] 2022
A Fog and blockchain-based
architecture to manage the

global vaccination

Cloud
computing

Low latency, high scalability,
and feasibility

Need to check feasibility in
a virtual environment

2.2. Artificial Intelligence in Smart Healthcare Systems

The healthcare industry requires intelligent and predictive services, providing endless
opportunities for precise and impactful patient care and administrative processes [34].
Moreover, with the incorporation of IoT devices, a colossal amount of data are generated
and transmitted from different entities in the healthcare industry. The generated data
needs efficient management and data improvisation by incorporating AI technology in the
healthcare sector. The application of AI technology in the healthcare sector offers numerous
advantages over the conventional healthcare system that uses cumbersome data analytics
and decision-making techniques. It interacts with medical data (training data) to provide
valuable insights into medical diagnosis, treatment, and clinical decision support. For
example, in [35], the researchers explored osteoporosis disorder (porous bones), which
is generally detected by standard X-rays and magnetic resonance imaging (MRI) scans.
The authors aimed to improve classification of osteoporosis patients over the ultrasound
features using an AI-based feature selection technique. As a result, they achieved 71%
accuracy in classifying the osteoporosis patients according to the risk of fracture. Further,
the studies [36,37] proposed an AI-based remote patient monitoring system (especially for
intensive care unit (ICU) patients) that provides readmission, vital sign assessment (body
temperature, pulse rate, respiratory rate), and any abnormality in the patient routine care.
Their proposed model outperforms others in terms of accuracy, i.e., 67.53% for readmission
and 67.40% for abnormality.

Wazid et al. [7] presented the essential characteristics of AI in healthcare sector, where
they use AI models to efficiently predict the chances of heart attacks and likelihood of
getting tumours, and finding intelligent patterns from the healthcare data. They presented
an AI-based lightweight and secure communication scheme for the healthcare ecosystem.
They evaluated their scheme using various performance parameters, such as end-to-end
delays and throughput with different simulation scenarios. They concluded that the
decision tree algorithm outperforms other algorithms in terms of computation time and
SVM outperforms in terms of accuracy over the existing algorithms. Then, Parra et al.
in [31] studied the application of AI algorithms for sustainable development. Here, they
examined the individuals who are in need of an AI-based question recommender system
for different scenarios. The sole purpose of their study was to strengthen the AI-based
question recommendation to not only for security screening and financial services, but
also for incorporation in the healthcare sector where it has potential for a number of
applications. Recently, federated learning has received much attention in order to data
offloading and preserving privacy in the healthcare sector [32,38]. From this perspective, the
authors of [32] proposed a federated learning-based healthcare data monitoring framework
to address the problem of local data acquisition. Their framework also helps medical
professionals to detect skin diseases effectively. The empirical results show that their
proposed framework preserves patients’ data privacy and reduces the operational cost
of the medical providers. Similarly, ref. [39] reviewed the problem associated with the
diverse data of healthcare, where machine learning models do not have the capability
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to train on the data. Therefore, they adopted the decentralized algorithm, i.e., federated
learning to develop a message queuing telemetry transport (MQTT)-based distributed
networking framework for brain tumour segmentation. Their results show that their
proposed framework has better accuracy and latency performance in the regular operations
of the healthcare systems.

2.3. Blockchain-Enabled Healthcare Systems

One of the imperative requirements of the healthcare sector is to secure medical data
(patient data) and efficiently manage different supply chains, such as pharmaceuticals,
human organ donation, and medical appliances or infrastructure of smart healthcare ecosys-
tems. Blockchain is a prominent technology that provides security, reliability, privacy, and
interoperability, thereby transforming the healthcare system [40]. Blockchain has an im-
mutable and decentralized ledger, where medical data are securely stored and safeguarded
from data integrity attacks. The ledger is protected from cryptographic features, such as
asymmetric keys, hashing, and digital signatures, making the data are tampered-proof [41].
Moreover, the ledger is decentralized, so if any small change occurs in the data transaction,
it will be known by each blockchain member, thereby improving improving the trans-
parency of the overall system. As the healthcare domain is always at a high risk of being
exploited by attackers, leveraging blockchain technology facilitates secure patient data
exchange, prevents disruptions, and efficiently manages medical resources. The authors
of [42] presented a blockchain-based smart healthcare system to protect the data privacy
of various healthcare system users. They developed different types of smart contracts to
validate data transactions, access control, and decision-making in an open network. In
addition, they utilized differential privacy mechanisms to preserve users’ privacy. Their
results show that the proposed scheme outperforms others in terms of reliability, stability,
and system-level traceability [43].

Ray et al. in [28] proposed a secure and reliable blockchain-based scheme to counter
security attacks on electronic healthcare record systems. They used private blockchain and
swarm intelligence approaches to ensure secure data exchange across the IoT network. Further,
Subramanian et al. in [30] explored the use-case of blockchain technology in tackling diabetes
disorder, especially during the COVID-19 pandemic. Using blockchain technology, they
prioritized healthcare resources, such as medical beds, oxygen, insulin pumps, telemedicine,
and a constant monitoring system for diabetic patients who were mostly affected by the
pandemic. They applied blockchain-based technologies, such as interplanetary file systems,
smart contracts, and the new economy movement, to encrypt and authenticate patient data
and develop a proof-of-concept model. Their proposed system shows notable outcomes in
terms of transaction speed, transaction fees, and power consumption.

2.4. Cloud Computing Technology for Healthcare

Cloud computing and its various domains, such as edge and fog computing, of-
fers a collaborative and connected environment for different sectors of the healthcare
industry [44]. The smart healthcare ecosystem is vast and faces many critical challenges,
including high operational costs, security, privacy, and centralized data storage. The use
of cloud technology strengthens the overall workflow of the healthcare sector in terms
of accessibility, quicker response time and better-personalized care, and resolves load
balancing issues. Furthermore, fog and edge computing are versatile cloud computing tech-
niques that reduce the latency between wearable devices and doctors. This is imperative
because an ICU patient requires critical care without any data transmission delay; if his
wearable device cannot relay the data quickly to the medical practitioners, his life can be at
risk. The fog and edge computing allow the medical devices to process their data locally
rather than transmitting it from the global model, resulting in less delay (quick response
time), which improves the performance of remote monitoring and strengthens the patient
engagement process.
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Researchers have adopted many solutions by employing on-demand computing
services [12,45]. For instance, Wang et al. in [46,47] presented the problem of delayed
response time in the safety-critical system of healthcare. To tackle the issue, they utilized
fog computing for reliable data exchange and rapid data processing. However, they
observed that fog devices generate an enormous amount of data which is difficult to
manage, so they used neighbourhood optimization that enhances the data transmission
and fault tolerance of the smart devices of the smart healthcare systems. Costa et al. in [33]
proposed a fog and blockchain-based global vaccination scheme to offer a quick and
efficient decision-making strategy for vaccination during the COVID-19 pandemic. The
proposed prototype was implemented and evaluated using different performance metrics,
such as response time, throughput, and data rates where the global vaccination campaign
was organized. Then, [48] studied task scheduling challenges (time delay) facing healthcare
services, where if the transmission of data to the healthcare providers is delayed, this
directly influences the quality of service delivery and patient’s life. To address the issue of
delayed communication, the authors used cloud computing in the IoT-based healthcare
system. They used swarm intelligence algorithms to optimize the data communication
between healthcare providers and the patients. Their proposed model outperforms the
baseline models in terms of waiting time, makespan, and resource utilization. Then,
Itoo et al. in [49] discuss the security and privacy issues associated with the traditional
medical system that uses precarious communication link between different entities of the
healthcare system. Further, they also examined the inefficiency of blockchain technology in
terms of computational complexity and its ability to store massive amounts of data. They
used cloud computing to store the medical data and blockchain technology to offer privacy
and security to the stored medical data. In addition, the authors validated their work using
AVISPA tool against different security attacks (e.g., replay attacks). Ansari et al. in [50]
studied the sensitive nature of medical data targeted by attackers. To overcome this issue,
the authors presented a privacy-enabled secure communication framework for a smart
healthcare system. Using cloud-based authentication, they provides a robust anonymity to
the doctors, patients, and communication between doctors and patients.

2.5. Wearable Sensing Technology for Healthcare

Wearable sensing technologies have a huge impact on people quality of life, with
the advancement of innovative technologies such as Artificial Intelligence (AI), big data
analytics (BDA), and blockchain. Wearable sensing technologies such as smart watch, smart
shoes, tracking sensors, smart eye-wear, help to track and manage the patient’s health data
remotely by utilizing either the wireless sensor network or the conventional network [51].
These wearable sensing technologies have proves to be beneficial for the treatment of
patients suffering from life-threatening diseases. Basically, these sensing devices can be
attached to the patient’s body or their clothing to gather and process data that can indicate
the patient’s health status. Moreover, these wearable technologies are made to be versatile
and comfortable to wear, especially for elderly people. Thus, wearable sensing devices have
completely transformed the working environment of hospitals because some patients can
now be treated remotely. Moreover, the remote monitoring of patient’s health overcomes the
high cost and efficient treatment challenges associated with traditional patient care. This has
motivated people to opt for wearable sensing technology, accounting for the increasing use
of these technologies over the years. Considering the outlook and usage of wearable sensor
technologies for healthcare, many researchers have considered the advantages of these
wearable technologies for benefit of the healthcare system. For instance, Gourob et al. [29]
developed a vision-based hand gesture recognition system for controlling the robotic hand.
They have improved the performance of gesture recognition system to implement it in
real-time scenarios. Further, by means of an implantable fluorescence image sensor the
authors of [52] performed the real-time monitoring of immune response in cancer therapy.
They have designed a prototype to improve the response time for 50% of cancer patients
who were undertaking immunotherapy. However, the aforementioned authors did not
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consider the scenario where elderly people are being treated with the help of wearable
sensor technologies. Thus, Mansour et al. [53] applied an AI and Internet of Things (IoT)-
based disease diagnosis model for smart healthcare systems. They have considered the
Cascaded Long Short Term Memory model for an efficient heart and diabetes diagnosis,
achieving the improved accuracy.

2.6. Unmanned Aerial Vehicles in Healthcare

With the evolution of Information and Communication Technology (ICT), the hospital
management have adopted the smart wearable technologies for the timely and efficient
treatment of patients. However, various innovative technologies such as DL, AI, swarm
intelligence, unmanned aerial vehicle (UAV) have been exploited to combat the severe
medical conditions of patients. For example, we can consider the scenario of coronavirus
disease which has had sever impacts on the people’s health, can be tackled using the usage
of aforementioned promising technologies. However, the main reason for for widespread
incidence of coronavirus is the increase in human interaction which occurs other during, and
which can be reduced with the help of drone (unmanned aerial vehicles—UAV) technology.
The usage of UAV minimizes the human contact and helps with clinical treatment by
providing the medical equipment and medicines within the threshold time required for
the patient’s early treatment. For example, the authors of [54] studied the role of drone
technology in tackling the surge of coronavirus disease worldwide. The authors analysed
various promising technologies such as IoT, edge computing, DL, and virtual reality (VR) to
mitigate the effect of coronavirus disease. Moreover, they have focused on the advantages
and limitations of adopting the drone technology in healthcare. Next, Gupta et al. [27]
utilized the blockchain technology to enable a secure and preserve outdoor delivery scheme
for Healthcare 4.0 with the help of UAVs. They mainly focused on securing the medical
supplies during the outdoor delivery process by performing a security analysis using the on
MyThril security tool. Further, the authors of [55] implemented the IoT and UAV-enabled
wireless body area networks (WBAN) for healthcare applications. They have considered
various sensors to ensure the smooth and faster interaction between patient and healthcare
professionals with the usage of UAVs, especially in cases of emergency.

3. Security Attacks in Smart Healthcare Systems

Nowadays, most traditional healthcare systems are connected with each other via
the Internet to offer ubiquitous medical services, such as telemedicine, remote diagnosis,
and patient information systems. Consequently, today’s healthcare system saves many
patients’ lives before their conditions become exacerbated, and reduces the expense of
medical treatment across the globe, thereby improving the individual’s quality of life.
However, connecting the medical services or devices through the open-access network,
i.e., the Internet, have inevitable consequences for security and privacy, as these devices
are susceptible to denial-of-service (DoS) attack, data modification attacks in the patient
information system, malware attacks to thwart the entire operation of the healthcare system,
and implantable (smart devices) controlled by the master node, which can be exploited
using IoT-based attacks [56]. Below, a detailed explanation is provided of each attack
that could be launched on a healthcare system. Figure 3 shows various security threats
associated with a smart healthcare system.

3.1. Denial-of-Service Attacks

Healthcare systems are most vulnerable to voluminous attacks (e.g., DoS and flooding),
where hackers or cybercriminals make the network resource inoperable by flooding the
network with a massive number of packets. As a result, several critical services in healthcare
systems, such as data sharing, appointment scheduling, and patient reports, cannot be
accessed by medical personnel. The attack could be more severe when multiple machines
are connected with each other to target a specific machine or resource in the healthcare
systems, commonly known as distributed denial-of-service (DDoS) attack. The traditional
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DoS attack sends multiple packets from a single machine; conversely, in a DDoS attack, the
attackers use previously-hijacked machines and interconnect them (botnets) so that each
machine sends multiple packets to the target machine simultaneously, thereby harming the
healthcare ecosystems. Several cases have been reported in the past where DDoS has been
considered one of the most significant attack vectors in the healthcare environment. For
example, in 2014, attackers unleashed a DDoS attack on the Boston Children’s Hospital,
where ≈ 40,000 network resources were manipulated and controlled by the attacker’s home
computer [57]. This attack was so massive that the Boston hospital not the only facility to be
affected; the attack also had severe effects on other hospitals connected to the same network
interface. Furthermore, the impact of DDoS attacks become more severe when integrated
with other passive or active attacks, such as malware and injection attacks, leading to
huge losses to healthcare infrastructure. Cybersecurity and Infrastructure Security Agency
(CISA) recently disclosed a new vulnerability in patient monitoring systems (CME8000
devices) that could cause a massive DDoS attack [58]. The attacker can craft multiple user
datagram protocol (UDP) packets to crash the CME8000 devices and to gain momentary
access to the system setting, where they can install malicious firmware. Consequently,
CME8000 devices’ functionality is permanently changed, which places the patient’s life
at risk. The authors of [59] designed a device authentication mechanism for IoT-enabled
healthcare systems. They have adopted the authentication mechanism to secure the IoT-
based healthcare system against DoS attack along with the other attacks such as MITM and
eavesdropping attacks.

Proposed 
taxonomy

Priviledge 
escalation attack

Masquerade attack

Unauthorized access

Weak authentication

DNS-based phishing

Spear phishing

Email and spam

Clone phishing

Phone phishing

MITM

DoS

Session hijaking

Jamming attack

Eavesdropping attack

Rowhammer attack

ECG malware

Buffer overflow

Side-channel attack

Brute force attack

Firmware modification

Ransomware

Outdated software

Hardware 
based attacks

Software
based attacks

System-level 
attacks

Phishing 
attacks

Communication 
attacks

Figure 3. Taxonomy of different security attacks on a smart healthcare system.

3.2. Data Breach Attacks

A data breach is a coordinated security incident where a cognizant insider or external
malicious user obtains unauthorized access to the authorized information (e.g., confidential
or protected data). This attack could be an accidental event, where an insider (employee)
accidentally reveals the sensitive information, or it could be a nefarious event, where an
attacker explicitly performs the privilege escalation approaches to extract the sensitive
information. In the context of smart healthcare systems, patients’ medical records, per-
sonal information, social security number, and financial information is the most sensitive
information that an attacker attempts to acquire. Most healthcare facilities have electronic
healthcare record databases where the patient’s information is centrally stored; these are
the prime target of cybercriminals. Once they acquire the central databases, they extract
patients’ critical information and sell it to third-party intermediaries, resulting in the health-
care sector having to sustain financial loss and reputational damage loss. In May 2022,
Partnership HealthPlan and Shields Health Care Group organizations of California and
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Quincy disclosed a data breach that affected ≈2 million individuals and 50 small facilities.
In a cyberattack, individuals’ data, such as date of birth, patient medical data, addresses,
patients health insurance, and social security numbers, where accessed by the attackers [60].
Later, in August 2022, Yuma Regional Medical Center was exposed to a ransomware attack
that stole the social security numbers of ≈700,000 individuals [61]. Sharma et al. [62]
proposed a blockchain-based architecture to secure and preserve the patient’s electronic
health records by executing a smart contract. Furthermore, they focused on confirming the
user’s identity utilizing the zero-knowledge proof and proxy re-encryption safeguard the
healthcare systems against data breaches.

3.3. Phishing Attacks

A phishing attack is an attempt to acquire the victim’s valuable information, such as
login credentials (e.g., username and password), bank details, credit card numbers, com-
pany data, and other personal information that potentially has value. In a smart healthcare
system, phishing is performed by creating a fake web link with malicious code running
in the backend. So, when a user clicks on the link, the malicious code silently installs the
malware on the healthcare system, which will spread rapidly to various medical devices.
The attackers use social engineering techniques (e.g., baiting, pretexting, scareware, etc.) to
create fake web links, which encourage the hospital staff or patients to deliberately click
on them. In April 2022, three medical institutions, i.e., Charleston Area Medical Center,
Central Minnesota Mental Health Center, and Christie Clinic were targeted by phishing
attacks and email security incidents. The attackers have collected many employees’ login
credentials, and social security numbers, which impacted 54,000 individuals [63]. Another
incident oocrred in August 2022, when Allegheny Health Network was compromised by
a phishing attack that affected ≈8000 patients, causing them to lose their login accounts.
To respond to this attack, the organization immediately shut down (temporarily disabled)
the compromised accounts, reset login credentials, and applied monitoring controls [64].
In addition, the Health Sector Cybersecurity Coordination Center reported that attackers
have developed a new phishing scheme that lures the victims to redirect to a phishing
web page (containing malicious Trojans) that steals your valuable information. Mostly, the
phishing attack is launched via emails, where catchy phrases are framed to manoeuvre the
human brain to click the malicious web page [65]. Therefore, to protect the smart healthcare
system from fraud and phishing detection, Mehbodniya et al. [66] applied ML and DL
models such as Random Forest, K-nearest Neighbor (KNN), Decision Tree, Naive Bayes
to identify the financial fraud detection in modern healthcare systems. Finally, the KNN
model yielded the best accuracy compared with the other conventional models used for
mitigate the phishing detection in healthcare.

3.4. Malware Attacks

Smart healthcare systems are susceptible to malware attacks. Particularly, electronic
healthcare record systems are at a high risk of being exploited by malware. This is because
these systems have up-to-date information about their patients (e.g., patient medical data,
patient health insurance, patient billing information), collected by the smart healthcare
system for the purpose of providing patient care. The attackers use modern tools, tactics,
and procedures to deploy different malware variants in the healthcare infrastructure to
compromise the electronic healthcare record systems. Formally, trojans are the widely
used malware in the healthcare industry, which deliberately target the infrastructure and
propagate their impact via the internet. Trojans are remotely controlled by attackers who
can perform undesired operations on the victim’s computers, such as modifying or deleting
the patient’s data from the electronic healthcare record system. Furthermore, ransomware
is the type of malware that makes the system and its files inaccessible to authentic users
until the ransom is paid.

Here, a trojan acts as a carrier that carries ransomware as a payload, and once installed
in the healthcare system, it encrypts the patient’s information. It uses asymmetric cryptog-
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raphy to generate public-private key pairs that encrypt and decrypt all files associated with
the system. Here, the attackers only publicize the private key only when the victim pays the
ransom. Such malware compromises the entire healthcare organization in terms of finance
and reputation. For instance, the Karakurt ransomware group extended its cyberattacks
and impacted thousands of lives. First, it performs scanning and reconnaissance to gather
information about its targets; then, it attempts to acquire sensitive patient information.
Once the information is acquired, it encrypts the files until the ransom is paid [67]. Further,
North Korean-based Maui ransomware is targeting US-based healthcare sectors, especially
electronic health records, imaging, and diagnostic services [68]. It is designed to remotely
control and encrypt a particular file on an infected machine; it uses advanced encryption
standard (AES) 128-bit encryption standard with unique public-private key pairs, here
the key pairs are further encrypted using the Rivest Shamir Adleman (RSA) algorithm.
Moreover, the authors of [69] explored different types of ransomware attacks and their
possible countermeasures in smart healthcare systems. They discussed the significant
benefits of modern technologies, such as AI, blockchain, software-defined networks, and
IoT, safeguarding the smart healthcare ecosystem against malicious attacks.

3.5. Man-in-the-Middle (Sniffing, Eavesdropping, Data Integrity) Attacks

MiTM attacks, where a preparatory (attacker) interferes with the conversation be-
tween two legitimate users. The preparatory (attacker) either intercepts (eavesdrop) the
communication or uses impersonation (using address resolution protocol (ARP) spoofing)
to jeopardize the communication between two parties. The sole purpose of this attack is to
passively listen to ongoing communication and steal personal information for their own
benefit. In a smart healthcare system perspective, the MiTM attacker hijacks the commu-
nication between healthcare providers, wearables, or patients and doctors, whereby they
unethically alter or copy healthcare data. Further, with MiTM attacks, the attacker inserts
malicious payloads that disrupt the patient’s monitoring system. The smart healthcare
system consists of different portable sensor nodes, which require short-range communica-
tion (with low bandwidth) to relay their information to other sensors. Formally, they use
conventional Bluetooth technology (with low energy) to exchange data with local servers;
however, intruders launch MiTM attacks by leveraging the precarious communication link
between sensors and local servers [70]. The attackers either uses publicly available tools,
such as Hetty, Bettercap, MiTMproxy, and Proxy.py, or they develop their own sophisti-
cated MiTM tool that the first line of defense (e.g., firewalls) cannot detect. Using the tools
mentioned above, an attacker can successfully intercept (sniff) the communication (both
HTTP and HTTPS) between sensors and local servers; then, it conducts traffic analysis to
find the sensitive information. As a result, the attacker can insert the healthcare emergency
or abnormal medical data into normal data and send it back to the local servers. For
example, in [71], a security expert from McAfee shows a MiTM attack on insulin pumps,
where a modified antenna and software are designed to wirelessly control the device.
They show how an attacker can remotely control the insulin dosage of a diabetic patient.
Further, two researchers, Billy Rios and Jonathan Butts from QED security, improved the
detection of attacks by determining the radio frequencies between the insulin pump and
its controller known as “boluses”. They stated that the communication between implant
device and controller is entirely unencrypted and that it is relatively easy for an attacker
to perform a coordinated MiTM attack [72]. Furthermore, the authors of [73] considered a
smart healthcare communication environment along with an elliptic curve-based secure
and preserve protocol to maintain the data authentication and integrity during the wireless
communication between patient and healthcare experts.

3.6. Software-Based Attacks

The smart healthcare system consists of various hardware and software that provide
necessary services to the medical staff, patients, and other sectors of the healthcare ecosys-
tem. One of the main critical weaknesses of a large technological organization is that it
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cannot adequately maintain its resources and infrastructure properly. This is one reason
that the attacker first uses reconnaissance, i.e., scans the entire organization’s network to
find strong and weak vulnerabilities, either in software or in hardware. Software-based
attacks can occur where the administrator does not update their software, tools, operating
system, utility, and firmware. Outdated and obsolete software poses a severe threat to the
healthcare infrastructure; for example, old bugs are not patched in the updated version of
the software. Recently, four vulnerabilities have been found in healthcare services, such
as CVE-2020-11022, 2020-11023, 2015-9251, and 2019-11358 are the basic jQuery-based vul-
nerabilities [74]. Another vulnerability, i.e., CVE-2020-0601, was found in the Biomerieux
product, where an attacker signed a malicious executable using a spoofed code-signing
certificate to proliferate ransomware attack [75]. Further, healthcare providers are not
updating their firmware, which opens up the gate for attackers to counterfeit firmware
that gains access to the medical devices and makes fake copies of the healthcare firmware.
Argaw et al. [76] proposed a risk-based approach to maintain the cybersecurity between
healthcare professionals, staff, patients, vendors, academics, and manufacturers in the
modern healthcare systems. Further, they have discussed about the recent security and
privacy research challenges to the healthcare systems due to the involvement of medical
devices during the remote monitoring of patient’s health.

3.7. Side-Channel (Information Gathering, Reconnaissance) Attacks

Before any cybersecurity attack, an attacker must scan and extract sensitive infor-
mation from the victim’s infrastructure, such as encryption methods, open service ports,
software version numbers, and network information. In a smart healthcare system, the at-
tackers have a wide opportunity to propagate their attacks due to the many heterogeneous
devices involved in an ongoing task. Here, attackers first discover how the medical device’s
circuit works, how data are exchanged between devices, their communication protocols,
and much more. For example, attackers can exploit the electromagnetic interference that
intercepts or jams the communication to infer/extract the patient’s sensitive information.
In addition, the attackers can manoeuvre the medical devices that show forged sensor
readings to trick the medical staff and practitioners. Also, an attacker alters the physical
resources (network) to passively disrupt the performance of medical devices (e.g., sensor
spoofing). By means of this attack, an adversary can easily find the cryptography keys and
digital certificates that are essentially as protection from cyber-attacks. The authors of [77]
show the impact of side-channel attacks in the smart healthcare sector, where an attacker
can compromise the smartphone-based personal health records consisting of patient medi-
cal reports, family medical history, mental health data, fitness data, physical activity data,
and other information. Furthermore, attackers can use more sophisticated side-channel
attacks, such as statistical and differential power analysis attacks. These are statistical
attacks that measure the power consumption of two samples to analyse the correlations
between them [78]. For instance, an adversary can analyse the RSA keys by averaging the
two samples, where ‘1’ is displayed as a taller bump, and ‘0’ has a shorter bump.

4. Taxonomy of Smart Healthcare Security Solutions

In this section, we present a solution taxonomy for different security solutions adopted
by researchers across the globe. The taxonomy is categorized according to various security
attacks, such as hardware, software, network, system-level, and side-channel, and their
countermeasures given by the scientific community and cyber experts for smart healthcare
systems. Table 4 shows the comparative analysis of different security solutions proposed
by the researchers across the globe. A summarized explanation of each security solution is
given below.

4.1. Hardware-Based Attacks

Hardware attacks are those where attackers manipulate medical devices to forge
medical data, thereby placing the patient’s life at risk. In order to address this security
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issue, Gountia et al. in [79] studied a vulnerability in the design flow of biochip devices
where an attacker can manipulate the samples by leveraging attacks, such as DoS, hardware
malware, and counterfeiting. To respond to these security issues, the authors developed a
user-defined algorithm that efficiently assigns a checkpoint for error recovery to improve
the security of microfluidic biochips. Their results show that the proposed algorithm
outperforms other baseline approaches in terms of computational complexity and error
detection rate. Further, the authors of [80,81] explored security issues (IoT device attacks) in
IoT-based healthcare systems. They proposed a multi-layered scheme where they integrate
programmable gate arrays consisting of hardware-based cipher algorithms to optimize the
security and privacy of the IoT-based healthcare ecosystem. Their results show that the
proposed scheme outperforms others in terms of energy consumption, computation time,
and frequency rate towards tackling security threats of IoT healthcare systems.

4.2. Software-Based Attacks

Software-based attacks directly impact healthcare resources, where an outdated soft-
ware/firmware/tool/utility/operating system leads to propagating security attacks in
smart healthcare systems. They are categorized as malware, outdated software, fake
firmware updates, and phishing; their countermeasures are explained below.

• Malware—These are malicious executable, files, or code that disrupts the behaviour of
the smart healthcare system. Thus, to counter such attacks on the healthcare ecosystem,
ref. [82] presented attention and deep learning (DL)-based detection and classification
approach to find IoT-based malware in healthcare devices. The authors extract the
byte sequence from the malware executable and automate the feature selection. Their
proposed approach was evaluated using malware detection and classification accuracy,
achieving 95% and 94%, respectively, compared to the existing approaches. Recently,
the android-based smartphone and wearables have been popularized by integrating
predictive and intelligent services, such as AI-based diet planning recommendations,
digital well-being, and tracking vital signs for any particular diseases. Nevertheless,
the wearables are susceptible to malware attacks that diminish the performance of
predictive services. Kong et al. in [83] designed a secure analysis system for medical
wearables. It first performs a matching analysis between smartphones and wearables
to ensure that a safe application is installed. Further, they conduct similarity analysis
of malicious applications using the oversampling method. Finally, their proposed
work is evaluated on the Google play store, where they found 44 applications that
have permission mismatches.

• Ransomware—Ransomware is a special type of malware that is installed from back-
doors or by clicking on an illegitimate web link. It encrypts the sensitive files using
asymmetric key encryption, which is decrypted using a private key that the victims
can obtain after the ransom is paid. Researchers have adopted AI-based algorithms
to tackle ransomware in the smart healthcare sectors. For instance, Almashhadani
et al. in [84] stated that modern detection systems are not capable of detecting the
anomalies and malware signatures promptly, and by the time these are detected,
the ransomware has already infected and exfiltrated a large number of healthcare
resources. They studied the behavioural properties (e.g., network activities) of ran-
somware, especially “Locky” ransomware which is one of the most rampant families
of ransomware. Subsequently, they developed an intrusion detection system that
analyses the packet and flow levels of the network, and based on that; they anal-
ysed the ransomware behaviour. Their detection system has better accuracy and low
false positive rates and efficiently tracks ransomware network activities. Further,
Butt et al. in [85] studied control systems and their security vulnerabilities, especially
in terms of ransomware. Smart healthcare systems also use control systems, such as
supervisory control and data acquisition (SCADA), to control various items of medi-
cal equipment. Ransomware targets different operations performed by the SCADA
system to jeopardize the overall performance of the healthcare ecosystem. The authors
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highlighted various security loopholes in SCADA systems where the ransomware can
be directly attacked; also, it shows different countermeasures to tackle the attack. The
authors of [86] proposed a blockchain-based ransomware defence system, where all
healthcare devices are associated with the blockchain network. Here, if the attackers
lock the system and personal files, the locked system can fetch the data from the
blockchain node (data recovery using blockchain backups). The proposed system also
saves the ransomware signatures in the blockchain to detect it and prevent it from
attacking the smart healthcare systems.

• Outdated software—Most smart healthcare systems still rely on old legacy systems
running on outdated operating systems and software easily accessible by the attacker.
This outdated software leaves many footprints (sensitive data), such as X-rays, MRI
scans, and doctor-patient conversations, that can raise several privacy concerns if
they fall into the wrong hands. Recently, security experts explored key-enabler tech-
nologies to integrate endpoint detection [87], reputational analysis [88], and real-time
behavioural analysis to detect any suspicious activities in smart healthcare systems.
In addition, the researchers also suggest using different vulnerability management
tools (e.g., Nessus, Nexpose, Tenable, Qualys, etc.) [89] that show device and software
vulnerabilities and software configurations in order to reduce the attack surface and
protect the healthcare resources from any security attacks.

• Fake firmware update—Smart healthcare systems are facing a major challenge in
regularly patching the firmware of their medical devices firmware. T. It is left to the
device manufacturer and maintenance vendor to update and patch the devices and
their associated firmware. Nonetheless, with modern security attacks, the attackers
can easily lure the old patched firmware and convert it into counterfeit firmware
using remote attacks, physical tampering, and indirect modification that helps the
attacker to propagate their attack surface and impact a large number of healthcare
resources. To secure the healthcare device’s firmware from the fake firmware update,
a maintenance vendor must analyse the firmware using the firmware security testing
methodology. The methodology is composed of nine consecutive steps, such as
reconnaissance, securely obtaining the firmware copy, analysing firmware using
firmware characteristics, analysing the firmware filesystem, performing static analysis
on the firmware to find code-based vulnerabilities, emulating the firmware, analysing
the binaries of firmware, performing dynamic analysis on firmware, and exploiting
the previously-identified firmware vulnerabilities [90].

4.3. Phishing Attacks

To address the security challenge posed by phishing attacks, ref. [91] proposed a novel
phishing detection system by incorporating equilibrium optimization, transfer function, and
AI models. The optimizer has exploration and exploitation capabilities that help with feature
selection, where a transfer function is used to optimize the algorithm’s exploration ability. As
a result, their system outperforms others in terms of accuracy and feature selection compared
to the existing state-of-the-art techniques. Further, Alshehri et al. in [92] presented a DL-based
phishing detection scheme to prevent the attacker from proliferating their attack surface. For
this, they used character-level decoding to analyse the phishing uniform resource locator
(URL). First, they created a standard dataset of labelled and unlabelled URLs that is processed
using data sanitization techniques; then, it is forwarded to tokenization, where the URLs are
separated into smaller units to achieve better inferences. Then, both inferences and token data
are fed as input to the DL model to detect the phishing URLs. As a result, they achieved a
detection rate of 98.13% in an energy-constrained environment. Additionally, the researchers
also used fuzzy logic and data mining techniques to alleviate the risk of phishing attacks; for
instance, Zahra et al. in [93] employs fuzzy logic, which takes specially crafted (COVID-19
themed) URL of the web page as an input. The fuzzy system has a rule-based approach where
it first checks the authenticity, content, address bar, and social criteria of the URL; then it
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forwards it to the inference engine, which output the severity of the URL, i.e., very low, low,
medium, and very high.

4.4. System Level Attacks

System-level attacks are those attacks where an attacker explicitly targets the system-
level resources by discovering loopholes in the authentication schemes, authorization,
and cryptographic key management infrastructure. In the smart healthcare sector, the
patient’s medical data have to be transmitted from various devices and services to reach
their intended recipients. An attacker finds the system-level vulnerability to gain access
to the patient’s data and disrupts the performance of smart healthcare systems. Several
researchers have proposed robust authentication schemes to overcome the aforementioned
issues and reduce the impact of system-level attacks. For example, Le et al. in [94] proposed
a three-stage authentication mechanism consisting of a smart card, password, and biomet-
rics to ensure secure authentication between patients and healthcare providers. Then, they
evaluated their proposed protocol using standard verification tools, i.e., real-or-random
model, automated validation of internet security protocol, and Burrows–Abadi–Needham
logic, wherein they outperform in terms of cost and secure functionalities compared to
other baseline works. A two-stage authentication mechanism was proposed in [95] which
involved hardware security, i.e., physical unclonable functions for IoT-based healthcare
systems. Since the physical unclonable functions do not use cryptographic solutions, they
can easily be integrated into the resource-constrained devices to offer lightweight authen-
tication schemes. The proposed mechanism provides better computation time and offers
robust security against system-level attacks in the smart healthcare ecosystem. Another
system-level attack can be launched via privilege escalation techniques, where the attacker
first carries out a reconnaissance of a victim’s system to find hardware or software-related
vulnerabilities that can be exploited at a later stage. Yin et al. in [96] presented a novel static
analysis framework that detects privilege escalation attacks in a unified extensible firmware
interface (UEFI). The authors used a callback programming procedure to find malicious
callable functions in the UEFI firmware. They collected 1148 UEFI binaries from different
vendors, and discovered 36 privilege escalation vulnerabilities. Those vulnerabilities can
cause random code execution and allow an attacker to modify the writing operation of the
physical device.

Table 4. Comprehensive analysis of existing state-of-the-art work for security solutions in smart
healthcare systems.

Author Year Objective 4 5 6 7 8 Security Approach OSI Layer
Secured

Hardware-
based attack

solutions

[79] 2019 To detect trojan attacks on
medical hardware devices Yes No No Yes No Checkpoint assignment Physical layer

[80] 2018
To develop a secure data
collection scheme for smart
healthcare system

Yes No No Yes Yes Field programmable
gate array (FPGA)

Physical layer,
network layer

[81] 2021 To improve the security
performance of IoT devices Yes No No Yes No

IoT Hardware Platform
Security Advisor
(IoT-HarPSecA)
framework

Physical and
network layer
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Table 4. Cont.

Author Year Objective 4 5 6 7 8 Security Approach OSI Layer
Secured

Software-
based attack

solution

[82] 2022 Detect malware in medical
devices No Yes No No No Attention-based AI

technique
Physical layer,
network layer

[83] 2022
Improve the security of
android wearable
applications

No Yes Yes No No Oversampling with AI
models Application layer

[84] 2019 Case study on Ransomware
detection No Yes Yes No Yes Dynamic malware

analysis Network layer

[85] 2019
Critical analysis of
ransomware on SCADA
systems

No Yes Yes No No

Provide a
comprehensive
analysis on
ransomware

Network layer

[86] 2022

To develop a secure
framework to detect
ransomware in smart
healthcare systems

No Yes Yes No Yes

Blockchain and
machine
learning-based secure
framework

Network and
Application layer

Phishing
security

solutions

[91] 2022 Detect and defend the
phishing attacks No No No No Yes

Equilibrium
optimization with
transfer function

Network layer

[92] 2022 Energy-Efficient phishing
URL detection No No No No Yes AI and Character-level

word encoding Network layer

[93] 2022
Study the impact of
COVID1-19 against the
malicious URL attacks

No No No No Yes Fuzzy logic and data
mining approaches

Application and
network layer

System-
based attack

solution

[94] 2022
Develop a three factor
authentication mechanism
for smart healthcare system

No No No Yes Yes

Centreless user
controlled single sign
on authentication
mechanism

Application and
network layer

[95] 2020
Two stage authentication
scheme for IoT healthcare
systems

No No No Yes Yes Physical unclonable
functions

Physical,
application and
network layer

[96] 2022
To develop a static detection
framework to detect
privilege escalation attack

No No No Yes Yes
Static analysis using
callback-based
programming

Physical,
application and
network layer

Communication-
based attack

solutions

[97] 2020
Proposed a self anomaly
detection system for
IoT-based devices

No No No Yes Yes Proof-of-concept for
anomaly detection Network layer

[98] 2021

Proposed an energy-efficient
and privacy preserving
framework to detect MiTM
attack for smart healthcare
system

No No No Yes Yes Cryptographic
mechanisms

Application and
network layer

[99] 2022
Proposed an authentication
mechanism for wearable
devices

No No No Yes Yes

Lightweight
authentication scheme
using different security
phases

Application and
network layer

Parameters- 4: DoS, 5: Malware, 6: Ransomware, 7: Data integrity, 8: Communication attack.

4.5. Communication Attacks

A smart healthcare system is comprised of different IoT-enabled devices that inter-
connect with each to other to accomplish the shared objective. For interconnection the
IoT devices have to utilize different communication protocols, such as MQTT, constrained
application protocol (CoAP), hypertext transfer protocol (HTTP), extensible messaging
and presence protocol (XMPP), and an advanced message queuing protocol (AMQP) that
have rules and regulations that allow different IoT-based medical devices to exchange
their data. However, the communication protocols are exposed to numerous security
vulnerabilities, such as including SYN, flooding, and fragmentation attacks [21,94]. In this
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subsection, we discuss the countermeasures for different communication attacks, such as
MiTM, eavesdropping, impersonation, and replay attacks. A detailed explanation of each
countermeasure is given below.

• MiTM—These attacks exploit the communication channel between two legitimate
users (healthcare components) in order intercept or inject malicious data into the
communication channel [95]. To counter this attack, Gong et al. in [97] studied channel-
based MiTM attacks on healthcare devices. The authors of [97] adopted self-anomaly
detection using access point scans to detect the MiTM attacks. The self-anomaly
detection allows Wireless-Fidelity (Wi-Fi) devices to authenticate themselves without
needing access points. With this advantage of self-anomaly detection, they achieved a
99% of detection accuracy. Further, Salem et al. in [98] proposed a secure framework to
detect the MiTM attack on IoT-based medical devices. Here, they transmit a small-size
signature and message authentication code along with the patient data to detect any
MiTM attack. They achieved an excellent detection rate with a low false positive
rate (3%).

• Eavesdropping—To tackle eavesdropping, the authors of [100] examined the effect
of eavesdropping in multiple input and single output (MISO)-based wireless chan-
nels for image transmission. They segmented the image into two parts: an image
consisting of important diagnostic information (requiring high level of reliability and
confidentiality) and the image’s background (requires less security). Then, the authors
observed the link quality of both image segments to control and monitor the eaves-
dropper interception. Further, in [101], the authors discussed the essential benefits of
implantable devices that sends patient’s critical healthcare data to the hospital staff.
However, they emphasize the risk of security attacks, especially eavesdropping attack
on implantables that place the patient’s life risk [102]. In their study, they revealed
a proper trade-off between information rate and eavesdropping while transmitting
sensitive healthcare data. Their study helps the implantable manufacturers to design
their devices in a more secure way, i.e., with less security-associated vulnerability.

• Replay attack—Data integrity is one of the significant challenges in the healthcare
industry, since the data can be intercepted and forged by attackers. To prevent this type
of attack, Rughoobur et al. in [103] proposed a lightweight framework by utilizing
different attributes, such as timestamps, unique identifiers, and self-learning, to detect
any replay attacks on IoT devices. The authors of [104] presented a reliable and
lightweight framework to tackle replay attacks in the smart healthcare system. Their
framework uses unique registration identifiers, timestamps, and authentication phases
that improve the data rate and security of the medical data. Their results shows that the
proposed framework outperforms current baseline works in terms of computational
and communication overhead.

• Protocol-based attack—IoT-based medical devices communicate with each other us-
ing IoT and communication-based protocols, such as HTTP, MQTT, and CoAP. How-
ever, these protocols are prone to various security threats. To overcome that, several
authors have proposed solutions; for example, The authors in [105] presented a
proximity-based secure protocol for smart healthcare systems. This offers a seamless
balance between security, privacy, and scalability. Their protocol first verifies the
users interacting with the healthcare interface using registration identifier, then it is
authenticated using digital signatures. The result shows that the proposed protocol
offers acceptable computational complexity and communication overhead. Further,
Zia et al. in [99] explored the security challenges of wireless body area network in
patient healthcare information system. To confront the potential security threats, they
proposed a secure and lightweight authentication protocol that securely exchanges the
data between sensors and controller. Their result shows that the proposed protocol
has better computation and communication costs, i.e., 20.3% and 12.3%, respectively.
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5. Case Study for Mitigating Security Attacks in Smart Healthcare System

This section presents a case study of how security attacks can be mitigated in the
smart healthcare system. The proposed architecture consists of five-layers: data, malware
analysis, intelligence, blockchain, and application layers as shown in Figure 4. A detailed
description of each layer is given below.

Pharmacy

Hospital

Ambulance

6G

Attacker

Malicious and
non-malicious 

binaries

Data Layer Malware Analysis Layer Intelligence Layer Blockchain Layer Application Layer

Non-malicious 
binary with 

network 
attack data

Discard 
malicious 

binary

Store hash 
value of data

Data store 
to IPFS

Smart contracts

IPFS

IPFSIPFS

IPFS

Block 2Block N

Block 1

Block 3

Block hash

Block hashBlock hash

Classifier 
model

Data 
validation

Raw data

Testing 
data

Training 
data

Data splitting

Pre-processing
(Norm, missing value, 

outlier detection)

csv csv csv

Dynamic 
Analysis

Windows 

Sysinternals

6G

Figure 4. Smart healthcare architecture for mitigating security attacks.

5.1. Data Layer

This section discusses various wearables devices (sensors) associated with an individ-
ual or critical patient. The sensors collect the data, such as blood pressure, oxygen rate,
heartbeat, temperature, from the patient’s body and transmit the data to various the health-
care providers such as pharmacies, hospitals, ambulances, and government organizations
via the traditional Internet. However, the precarious link between the sensor node and its
recipient is impeded by different security attacks, such as malware, communication, and
software-based attacks, which disrupt the performance of different healthcare services (e.g.,
medicine, nursing, telesurgery). Therefore, there is a need for a robust system that detects
and alleviates the security threats from the smart healthcare system. Here, the data layer
collects the malware samples (malicious and non-malicious binaries) and forwards them to
the malware analysis layer.

5.2. Malware Analysis Layer

The malware samples collected at the data layer are forwarded in this layer, where we
utilized dynamic malware analysis techniques to find intuitive features associated with the
malware. For that, Pestudio, process explorer, Sysinternal tools, and Hexeditors are used
to analyse the runtime behaviour of the malware. Dynamic analysis helps in bifurcating
the malware and non-malware files by their specific signatures shown in the dynamic
analysis tools. Few binaries are analysed using an automated malware analysis tool, like
a Hybrid analysis web-based tool that gives information, such as hash signatures, threat
score, risk assessment, and scope of the MiTM attack. This layer discards all the malware
samples from the proposed architecture; only the non-malware sample is forwarded to the
intelligence layer.

5.3. Intelligence Layer

The non-malware samples acquired from the previous layer (malware analysis layer)
still have network-related vulnerabilities that, if they fall into the wrong hand (attacker),
will have severe consequences on the healthcare sector. Therefore, in this layer, we utilize
AI algorithms’ significant benefits to efficiently classify non-malware samples, according
to whether that contain malicious or non-malicious data. AI algorithms, such as logistic
regression (LR), support vector machine (SVM), random forest (RF), perceptron, and Naive
Bayes (NB), are used for classification purposes [106]. Initially, the AI algorithms are
trained using a standard wearable security dataset, i.e., ICU dataset, that has network-
related features and a binary class label (0-non-attack and 1-attack) [107]. Here, the standard
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dataset is first analyzed using a statistical test to observe the distribution of the feature
space. For that, a parametric test is applied to the feature space (e.g., tcp.srcport, tcp.dstport,
tcp.windows, tcp.checksum, etc.) of the dataset to analyze the normal distribution. Figure 5
show that the dataset feature space does not follow a normal distribution. Therefore, we
used a non-parametric test, i.e., the Mann–Whitney U test, to analyse the dependency
between dependent and independent features.

Figure 5. Parametric test to observe the normal distribution of the dataset.

A null hypothesis is created, i.e., a significant correlation between two features. The
null hypothesis is rejected if the p-value is smaller than the significance value, i.e., 0.05.
We used different features, i.e., mqtt.client and mqtt.conack.flags, to the Mann-Whitney U
Test that gives the p-value of 0.04, which is smaller than the significance. Hence, it rejects
the null hypothesis is rejected as there is no strong correlation between mqtt.client and
mqtt.conack.flags.

s t a t , p_value = mannwhitneyu ( data . mqtt . c l i e n t ,
data . mqtt . conack . f l a g s )
s ign = 0 . 0 5
i f p_value < sign :

p r i n t ( ’No s i g n i f i c a n t c o r r e l a t i o n between two f e a t u r e s ) ’ )
e l s e :

p r i n t ( ’ S i g n i f i c a n t c o r r e l a t i o n between two f e a t u r e s ) ’ )

Further, the dataset is preprocessed using various data preprocessing techniques,
such as missing values, normalization, and datatype casting. Then, the processed data
are forwarded to the AI models, where it is trained and validated using the real-time
network data extracted from the non-malware samples. Finally, the non-malware samples
containing malicious data are discarded from the proposed architecture, and only the
non-malware sample containing non-malicious data is forwarded to the next layer.

5.4. Blockchain Layer

The data or file which is forwarded from the intelligence layer is still at a high risk
of being exploited by the attackers; usually, they can perform data modification attacks
in order to jeopardize healthcare operations. For example, an attacker can launch an
MiTM attack to change the emergency alert of the patient data into non-emergency, thereby
placing the patient’s life at risk. Thus, there is an urgent need for technology, such as
a blockchain that can securely store non-malicious data or files in a decentralized and
immutable ledger [108]. Here, the ledger is distributed among all the blockchain members
(all the entities of hospitals), so if any change is made to the stored data by attackers, this
will be known to all the blockchain members. This builds robust transparency in smart
healthcare systems. Initially, the healthcare data (non-malicious data) is validated using a
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smart contract, which has predetermined conditions; upon meeting those conditions, the
data are validated [109]. Then, the data are received by the interplanetary file system (IPFS),
which hash the raw data to improve the response time of the blockchain network. Finally,
the hashed data are stored inside the public blockchain, where it is safeguarded from data
integrity attacks.

5.5. Application Layer

This layer comprises all the recipients for whom the healthcare data are intended. It
consists of a destination sensor, medical device, hospitals, pharmacy, laboratories, ambu-
lances, and the government healthcare organization that collects the data from the secure
pipeline (data layer to blockchain layer). Here, all the components are connected to a next-
generation wireless network, i.e., a 6G network interface, which offers several advantageous
features such as high data rates, low latency, high reliability, and availability. Furthermore,
incorporating a 6G network interface improves the latency (response time); therefore, one
can quickly send the data to the intended recipient who can use it for patient care.

5.6. Performance Evaluation of the Proposed Architecture

This section discusses the evaluation of the proposed architecture’s performance eval-
uation by applying different metrics, such as accuracy, scalability, and internal details
of the malware from the dynamic analysis. For dynamic malware analysis, we utilized
PEstudio, which provides an initial malware assessment that consists of malware indi-
cators, important strings, directories, sections, resources, file headers, manifest files, and
certificates. Here, we analysed various malware samples of smart healthcare systems
that target web-based resources and patient data. For example, one malware sample
(md5-584B853E5F597883FB56CC5E879D8A3D), written in C++, specifically targets the
web-based login credentials using functions, such as get_Browser(), GetSavedPassword(),
GetSavedCookies, GetValueNames(), urlHistroy(), getPasswordHash(), and many more (as
shown in Figure 6). Further, they imported different malicious and illegitimate dynamic link
libraries (DLL) and application programming interfaces (API), such as dmpushproxy.dll,
dmenterprisediagnostics.dll to spoof the user into installing malicious executable files as
shown in Figure 7. In addition, it contains another graphical user interface (GUI) executable
file that propagates its attack surface once installed on the victim’s physical device.

Figure 6. Malicious functions used in malware sample.

Figure 7. Malicious DLL used in malware sample.

Further, Figure 8 shows the evaluation of the intelligence layer, where different AI-
based algorithms are trained using a standard dataset and validated using a generated
dataset from the malware samples. Here, the RF outperforms other algorithms in terms of
accuracy, i.e., 93.14%, because RF splits the entire dataset into small samples (as a decision
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tree) by using split node criteria. Then, each sample is individually trained, and the best
decision tree is chosen using majority voting (highest accuracy). Nevertheless, the other AI
algorithms are not optimized compared to RF because they need a few hyperparameters
so as to achieve good accuracy. Table 5 shows the performance analysis of the proposed
architecture in terms of precision, recall, log-loss score, and F1 score. Here, RF outperforms
in terms of precision, recall, log-loss score, and F1 score, i.e., 93.24%, 92.99%, 6.34%, and
93.67%, respectively compared to other AI models. Specifically, the accuracy parameter
shows how efficiently an AI model predicts the output. The higher the accuracy score, the
higher the AI model’s prediction performance. Conversely, the log-loss score shows an
error in the prediction output, i.e., the higher the log-loss score, the lower the AI model’s
prediction performance and vice-versa. Figure 9 illustrates the scalability comparison of the
blockchain network. The proposed architecture applies an IPFS-based blockchain that uses
hash data to store in the immutable ledger, unlike the conventional blockchain, which uses
raw data. The incorporation of IPFS improves the response time of the blockchain network
because one can more easily fetch the hash data from the blockchain network compared to
the raw data, resulting in a quick response time. This implies the higher the response time,
the higher the scalability of the proposed architecture. It is clear from the Figure 9 that the
IPFS-based blockchain has greater scalability than the conventional blockchain.

Table 5. Performance parameters of the proposed architecture.

Algorithm Precision Recall Log-Loss Score F1 Score

Random Forest 93.24% 92.99% 6.34% 93.67%

Support Vector
Machine 82.13% 82.78% 14.19% 82.90%

Naïve Bayes 66.89% 65.13% 32.84% 67.12%

Logistic
Regression 42.56% 43.60% 48.67% 44.02%

Perceptron 32.90% 33.53% 69.89% 33.19%
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Figure 8. Evaluation of the intelligence layer where different AI-based algorithms are trained using a
standard dataset and validated using a generated dataset from the malware samples.

The proposed architecture achieves a better performance compared to the existing
state-of-the-art models. For instance, [7] proposed a lightweight and intelligent framework
to protect medical devices from security threats, and they achieved an accuracy of 87.57%
to predict the network-based attack. Conversely, the proposed architecture uses different
AI models, wherein the RF achieves an accuracy of 93.14% compared to [7] in detecting
attacks on smart healthcare systems. Moreover, the proposed architecture uses malware
analysis, i.e., dynamic analysis, to discard malicious malware from the regular operations
of the smart healthcare system. However, most of the previous studies do not conduct
malware analysis in their proposed solutions. Furthermore, the authors of [11] used a
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private blockchain to store their data, although most of the private blockchain has a central
repository to maintain and control the private data of the healthcare ecosystem. The private
blockchains are severely affected by network-related attacks; therefore, the blockchain
is useful only for critical applications, such as covert military applications, where they
can integrate more sophisticated solutions at the cost of latency to strengthen the security
of the central repository of private blockchain. However, in smart healthcare systems,
maintaining the latency is challenging; hence, it is advisable not to use it. In our proposed
work, we have two security filters, i.e., malware and network-related attacks; both malware
and intelligence layers discard the malicious data from the proposed architecture. Only
non-malicious data are forwarded to the public blockchain; further, to improve the latency
of the smart healthcare system, we utilize the significant benefits of IPFS that improve the
response time of the blockchain network, resulting in greater scalability. As a result, the
proposed work is better and more robust than the existing work [11] in terms of accuracy,
scalability, and security.

0 15 30 45 60 75 90 105

Number of transactions

0

10

20

30

40

50

60

70

80

S
ca

la
bi

lit
y 

(m
s)

Proposed architecture with IPFS
Proposed architecture with traditional blockchain

Figure 9. Evaluation of the scalability comparison of the blockchain network.

6. Open Issues and Research Challenges

This section discusses the open issues and research challenges associated with the
smart healthcare systems which eventually have a detrimental effect on the patients’ health
during the remote monitoring of their health status.

• There is a lack of security standardization in smart healthcare—current health safety
standards are too conventional and have become obsolete. Neither are they robust
enough to sustain modern security attacks. The need for standardization, particularly
in health care, can minimize the risk of mistakes, increase patient safety, and make
a real difference to the patients experience. Moreover, arising security issues arising
from the remote monitoring of patients can have a deleterious impact on their health,
and can discourage them from taking medication from that particular healthcare
provider. Thus, it can affect the reputation of the hospital’s management which can
reduce their overall revenue [110];

• Inefficient first line of defence—The spectrum of security risks and newly discovered
security vulnerabilities for intelligent health systems keeps expanding. Security threats
have less of an impact on smart healthcare environments when a variety of defences,
including firewalls and intrusion detection systems, are used effectively and efficiently.
However, despite the fact that they offer a number of advantages that can safeguard
health systems, they are ineffective at spotting contemporary security threats; hence
they continue to be open to assault [111];

• Non-availability of physical layer access control—The basis of all security measures
is the physical security layer. The access control restrictions imposed by the existing
security measures apply only to the application layer. Because the wireless communi-
cation in the physical layer is unprotected, the new security threats target it. The loss
of physical security typically leaves the smart healthcare system completely exposed.
Further, an adversary can easily modify the data extracted from implantable medical
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devices such as pacemaker, artificial joints, cardiac implants., attached to the patient’s
body, which gives rise to security issues in wireless communication between patient
and healthcare professionals during the remote treatment [112];

• Modern security attacks on smart healthcare systems—In addition to the typical at-
tacks such as DDoS, MITM, ransomware., the attackers have discovered new methods
of system attacking a system. The latest attacks include: software supply chain attacks;
attackers take advantage of the supplier network of a healthcare institution and capi-
talize on the system’s vulnerability. Internet of Things (IoT) attacks, A wide variety of
endpoint devices is now remotely connected to the Internet. The malware interprets
the changes caused by the system and manipulates the signals it receives to carry out
destructive activities [113];

• Accessibility of advanced technology in smart healthcare—With the modernization of
smart healthcare systems, healthcare professionals and staff have to manage advanced
technologies to handle the medical equipment for the remote monitoring of patients.
However, not all the healthcare professionals have had sufficient experience and
training enabling them to tackle the patient’s health symptoms through the usage of
innovative technologies. Thus, hospital management should train their professionals
or staff so that they become familiar with these technologies, although this can be
costly for hospitals [111,114];

• Scalability: Scalability is one of the major concerns that needs to be managed during
the wireless communication between patient and doctor in the remote treatment
set up. Depending on the patient’s health symptoms, healthcare professionals may
require several items of medical equipment and various implantable sensors to gather
the health data of patients and determine further treatment. Therefore, network
bandwidth needs to be optimized in smart healthcare systems for the reliable and
timely treatment of patients, since, low scalability communication between patient
and healthcare professionals can delay their treatment which can exacerbate a health
condition or even lead to the death or severe condition of patients [115].

7. Conclusions

The adoption of noteworthy catalyzers of innovations, such as AI, blockchain, IoT,
and cloud computing, will reshape the future of healthcare systems. However, the in-
tegration of these innovations of healthcare ecosystems comes with associated security
threats, including the manipulation of the patient monitor, exploitation of the healthcare
data repository, and interception of the communication between the healthcare provider
and the patient, all of which can jeopardize healthcare operations. Therefore, there is a
need to study different security challenges associated with smart healthcare systems along
with their security countermeasures. Hence, in this study, we first reviewed emerging
technologies and frameworks that offer automation, quality-of-service, fault tolerance, and
intelligent healthcare functionalities to patients. Then, we explored the various security and
privacy challenges facing the smart healthcare system, such as DoS, MiTM, data integrity
attacks, phishing, and hardware-based attacks. Further, based on the security challenges of
the healthcare industry, we reviewed prominent security solutions intended to strengthen
the security and privacy of smart healthcare systems. Another contribution to this study
is our proposal of an AI and blockchain-based secure architecture (as a case study) that
analyses the malware and network attacks on the smart healthcare system. First, medical
data are acquired from the data layer, which consists of different healthcare providers and
patients. Then, dynamic malware analysis is used to remove the data associated with the
malware by analysing its different characteristics, such as DLL, file size, hidden strings,
and signatures. Further, a standard dataset is used to train AI models for network-related
attacks in smart healthcare systems. The data are first preprocessed using data prepro-
cessing steps, such as the insertion of missing values, data normalization, and datatype
casting. Then, the preprocessed data are forwarded to the different AI models, such as
RF, NB, LR, and perceptron. The RF outperforms other existing AI algorithms in terms
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of accuracy, i.e., 93.14%. Further, the non-malicious data (classified from AI models) are
passed to the blockchain layer for secure data storage from data integrity attacks. Then,
the proposed architecture is evaluated using performance parameters, such as blockchain
scalability, accuracy, and dynamic malware analysis. Lastly, we discussed open issues and
research challenges associated with smart healthcare systems in order to encourage other
researchers and youngsters to offer better security solutions.

In future work, we intend to strengthen the security and privacy of AI and blockchain-
based smart healthcare systems by considering the various security attacks such as rowham-
mer, buffer overflow, masquerade, clone phishing, and phone phishing attacks, and the
mechanism to tackle the aforementioned security attacks to further maintain the security of
smart healthcare systems.
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