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Abstract: The determination of existing cable forces is essential for evaluating the performance of
bridges. The vibration technique is preferred among available practical methods because it is simple,
fast, and economical. To apply this method, many researchers introduced analytical and empirical
formulas considering bending rigidity, cable length, and boundary conditions. Nevertheless, most
existing procedures to determine cable forces are for single cables, which are unsuitable for cable
networks. To measure the cable forces of the cable networks, engineers should remove any cross-ties
before conducting field tests. However, the removal of cross-ties separates the cable network into two
independent cables, which does not reflect the actual behavior of the cable network. Hence, to save
time and improve accuracy, this paper introduces a method to directly identify the cable tensions of a
two-cable network without removing any cross-ties. This technique can precisely estimate the cable
forces of the two-bending cable networks with arbitrary boundary conditions with an error of less
than 1.0 percent.

Keywords: cable-network; bending effect; effective vibration length; cross-tie axial stiffness estimation

1. Introduction

Cable forces in cable-stayed bridges may vary in design values due to the adjustment
of the cable tension during construction to fit geometric designs. Furthermore, the cable
tension may be changed in the service stage due to bridge modifications, such as the change
of pavement layers and barriers. Moreover, the cable loading capacity could decrease due to
fatigue, anchor damage, and corrosion. If bridge maintenance engineers cannot determine
the current cable conditions, failure may occur, such as the collapse of the Nanfangao
bridge in Taiwan in 2019. Hence, diagnosing the current cable conditions, including tendon
force, anchor rigidity, and bending rigidity, is crucial to bridge safety evaluation at certain
confidence levels. Among the known NDT methods for cable force measurements, the
vibration technique is simple, fast, and economical. Thus, the vibration technique was used
by many researchers, such as Casas [1], Russell and Lardner [2], Cunha et al. [3], Geier [4],
and Li et al. [5]. For practical applications, Fang and Wang [6], Marcelo and Carlos [7],
Zui et al. [8], and Ren et al. [9] introduced empirical formulas to calculate cable tensions by
considering the bending stiffness, the cable length, and the boundary conditions.

Nevertheless, these functional equations are derived for a single cable and, therefore,
inappropriate for cable networks where flexible or rigid cross-ties interconnect two or
more cables. Suppose the measured frequencies of the cable networks are inputted in
these equations to obtain the cable forces of the cable network. In that case, the estimated
cable forces are significantly different from the cable network’s actual cable forces because
the natural frequencies of the cable networks are much different from those of the single
cables. For instance, a cable network is created from two simply supported cables AB and
CD, with cable lengths L1 and L2, cable tensions T1 and T2, and interconnected by a rigid
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cross-tie at nodes N1 and N2 at location l11 and l21 from the left restraints of cable AB and
CD, respectively, as shown in Figure 1. (x11, v11), (x12, v12), (x21, v21), and (x22, v22) are the
local axes of cable segments 1–1, 1–2, 2–1, and 2–2, respectively. Axis (x, z) is the global
coordinate of the cable system. The comparison of the natural frequencies of the cable
network and the single cable is shown in Figure 2. The natural frequencies fN at point S1
and S2 on cables AB and CD of the cable network are identical but different from the natural
frequency fS at point S1 on single cable 1. Noticeably, the subscript N denotes the cable
network and the subscript S denotes the single cable. Since many terms of “frequency”
are used in this paper, three terms are defined to classify their uses. The term “computed
frequency” is used for the cable frequency computed using backward analysis. The term
“natural frequency” is used for the cable frequency obtained from solving the eigenvalue
problem. The term “measured frequency” is used for the cable frequency obtained from
the field measurements or the finite element models.
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To apply existing vibration techniques for the cable networks, engineers have to release
the cross-ties to separate the cable networks into single cables. Each cable is excited under
free vibration to identify the cable tensile force. However, removing the cross-ties will
increase the inspection cost and not reflect the cable network’s actual behaviors. Thus,
developing a new method to identify the cable forces of a cable network without removing
the cross-ties to preserve the accuracy of cable-force identification and reduce the inspection
cost is worthy of attention.

Nevertheless, most existing research about cable networks uses forward analysis. In
this research, the analytical solutions of cable networks with fixed-end boundary con-
ditions [10–19], dampers [10,11,17,18], distributed cross-ties [16], and flexible or rigid
cross-ties [12–15] are used to calculate the networks’ natural frequencies from given cable
tensions. These analytical solutions are based on string theory and do not consider the
cable bending rigidity, which may limit their application to cables with high bending
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stiffness. Chen et al. [20] and Younespour and Cheng [21] first presented the effect of
cable bending stiffness on the behavior of the cable network. The cables were modeled as
axially tensioned beams with fixed-end boundary conditions in their cable network models.
However, since the boundary conditions of cables are fixed-end, their models may not
be appropriate to estimate the internal cable forces of an existing cable network where its
boundary conditions are rarely fixed-ends. Hence, it is necessary to develop a method
to identify cable forces of cable networks considering cable bending rigidity and actual
boundary conditions.

Many previous studies introduced methods to estimate the cable forces of a single
cable with partly fixed boundary conditions. Chen et al. [22], Yu [23], and Syamsi et al. [24]
introduced a method to determine the cable forces of a cable stayed-bridge based on the
effective vibration length with a two-frequency approach. The effective vibration length
is the equivalent length that leads the dynamic behaviors of a cable with non-hinged-end
supports to be similar to those of a cable with hinged-end supports. Thus, cable force can be
obtained from a cable with hinged-end supports and the effective vibration length instead
of the cable with partly fixed-end supports and the actual length. In the real application,
Chen et al. [22] suggested that the rubber-to-rubber length can be treated as the effective
vibration length if multiple measurements are difficult to be conducted. When multiple
measurements can be performed, Chen et al. [22] suggested using the vibration signals at
five sensor locations to determine the effective vibration length of the cables. However,
their technique is appropriate for a single cable.

Wang et al. [25] studied the dynamic behaviors of two bending cable networks with
hinged-end boundary conditions. They combined their analytical solution and the ideas of
cable vibration effective length [22] to determine the natural frequencies and mode shapes
of two bending cable networks with partly fixed-end boundary conditions, which are
similar to those of actual cables. This study will follow the combined method promoted by
Wang et al. [25] to develop an inverse analysis to identify the cable forces of cable networks
with actual boundary conditions, i.e., partly fixed ends, through measured frequencies.

In conclusion, there are many techniques to determine the cable forces of single
cables, but few researchers study methods to identify cable forces of cable networks while
considering cable bending rigidity and arbitrary boundary conditions. Hence, this study
will develop a technique to determine the cable forces of two-bending cable networks
with actual boundary conditions without repeated removals of cross-ties. This method
is necessary because it can preserve the accuracy of cable-force identification and reduce
bridge health monitoring costs.

2. Formulation of Analytical Solution

This Section describes the analytical solution for the dynamic behavior of two bending
cable networks interconnected by an inclined flexible cross-tie. Then, the analytical solution
will be applied to the backward analysis to identify the cable forces of the cable networks.

2.1. Modeling the Cable System

Two simply supported cables, AB and CD, with cable lengths of Li, average mass
per unit lengths of mi, bending rigidity of EIi,, and cable tension of Ti (i = 1,2), have the
same material properties. Notably, i denotes the cable i-th. An inclined flexible cross-tie
connects the cables at locations li1 from the left support of cable i-th. The cross-tie has
axial stiffness Kc and inclined angle θc. The cross-tie divides each cable into two segments
labeled i–j (i, j = 1, 2) with segment length lij. Notably, i–j denotes the segment j-th on the
cable i-th. The positive directions of the transverse displacements of each cable segment vij
are shown in Figure 3.
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2.2. Governing Equation of Free Vibration System

To describe the governing equation of the two-bending cable network interconnected
using cross-ties, five assumptions are adopted similar to those in research promoted by
Wang et al. [25].

By applying Hamilton’s principle to the total energy of the cable system, the governing
differential equations of the motion for the axially tensioned beams [26] under free vibration
can be obtained:

mi
∂2vij

(
xij, t

)
∂t2 + EIi

∂4vij
(

xij, t
)

∂x4
ij

− Ti
∂2vij

(
xij, t

)
∂x2

ij
= 0; i, j = 1, 2 (1)

The solutions of the system can be assumed by using the separation of the variable
method as:

vij
(
xij, t

)
= vij

(
xij
)
h(t); i, j = 1, 2 (2)

where vij
(

xij
)

represents the local mode shape of the j-th segment of the i-th cable and h(t)
is the time function that indicates the vibration type.

The governing equations for the local mode shape functions can be obtained:

EIi
d4vij

(
xij
)

dx4
ij

− Ti
d2vij

(
xij
)

dx2
ij

−miω
2vij
(
xij
)
= 0; i, j = 1, 2. (3)

where ω is also the natural frequency of the cable networks.
By solving Equation (3), the local mode shapes of cable segment i–j can be obtained

and shown in Equation (4).

vij
(

xij
)
= Cij,1 cosh

(
βixij

)
+ Cij,2sinh

(
βixij

)
+ Cij,3 cos

(
φixij

)
+ Cij,4 sin

(
φixij

)
(4)

where Cij,k (i, j = 1, 2; k = 1, 2, . . . , 4) are constants and the auxiliary wave number parameters
are defined as follows:

βi =

√√√√1
2

√(
Ti
EIi

)2
+

4miω2

EIi
+

1
2

Ti
EIi

; φi =

√√√√1
2

√(
Ti
EIi

)2
+

4miω2

EIi
− 1

2
Ti
EIi

Equation (4) has 16 unknown coefficients. Thus, 16 equations of boundary conditions,
continuities, and force equilibriums are acquired to determine these unknowns. The
boundary conditions of the vertical displacements and curvatures of the cables at the
hinged supports are equal to zero.

vij(0) = 0 and v′′ ij(0) = 0 ;i, j = 1, 2 (5)
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By applying the boundary condition in Equation (5), the constants Cij,1 and Cij,3 can
be determined to equal zero. Hence, 16 unknown constants reduce to 8 unknowns. Then,
the local mode shapes of cable segment i–j are rewritten as

vij
(
xij
)
= Cij,2sinh

(
βixij

)
+ Cij,4 sin

(
φixij

)
(6)

For continuity conditions, the vertical displacements and curvatures of the left-side
segments equal those of the right-side segments at the cross-tie location. However, the
cable slopes are opposite because the positive directions of the xi1 and xi2 (i = 1, 2) axes are
reversed. Moreover, the difference between the lateral displacements of Segment 2–1 at
x21 = l21 and Segment 1–1 at x11 = l11 equals the vertically projected axial deformation in the
cross-tie, as shown in Equation (8). Noticeably, the details of the derivation of Equation (8)
may be found in Appendix A.

vi1(li1) = vi2(li2)
v′ i1(li1) = −v′ i2(li2)
v′′ i1(li1) = v′′ i2(li2)

; i = 1, 2 (7)

v21(l21)− v11(l11) = Tc/(Kc sin θc) (8)

For the force equilibrium at nodes N1 and N2, as shown in Figure 4, the total vertically
projected shears, tensions, and axial force in the cross-tie must equal zero.

−V11 −V12 + T1 sin(θ11)− T1 sin(θ12) + Tc sin θc = 0 (9)

−V21 −V22 + T2 sin(θ21)− T2 sin(θ22)− Tc sin θc = 0 (10)

where Vij = −EIiv′′′ ij
(
lij
)
; θij is small deformation, and then sin θij ≈ tan θij ≈ v′ ij

(
lij
)
.
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In Figure 4, symbols Ti, Vij, Mij,, and θij are the tensions, shears, moments, and slopes
of the four segments at location lij, respectively.

The conditions in Equation (7)–(10) are substituted into Equation (6) to solve the
8 unknowns. These equations are written in matrix form, as shown in Equation (11). More
details of the matrix form are shown in Appendix B.

RC = 0 (11)

For a nontrivial solution of C, the determinant of matrix R must be equal to zero.
The analytical expression of the characteristic equation of the two-bending-cable network
can be obtained by calculating the determinant of matrix R. The solution is shown in
Equation (12)

F(ω) =



φ1
√

T2
1 +4m1ω2EI1

Kc sin2 θc
sin(φ1L1) sin(φ2L2)

−
{

φ1
β1

sinh(β1 l11)sinh[β1(L1−l11)]
sinh(β1 L1)

sin(φ1L1) sin(φ2L2)

− sin(φ1l11) sin[φ1(L1 − l11)] sin(φ2L2)

}

− φ1
√

T2
1 +4m1ω2EI1

φ2
√

T2
2 +4m2ω2EI2

{
φ2
β2

sinh(β2 l21)sinh[β2(L2−l21)]
sinh(β2 L2)

sin(φ1L1) sin(φ2L2)

− sin(φ2l21) sin[φ2(L2 − l21)] sin(φ1L1)

}


= 0 (12)
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3. Methodology

This Section will introduce a backward analysis to obtain the cable forces of the cable
network and the axial stiffness of the cross-tie by applying the analytical solution described
in Section 2. Besides, this section introduces a method to remove bias results of cable force
and cross-tie axial stiffness, which may occur during the procedure.

3.1. Statistic Method to Remove Outliers

In this paper, the cable tensions and cross-tie axial stiffness are identified from cable
network frequencies that are obtained from acceleration signals at an arbitrary location
on the cables of a cable network system under free vibration or ambient vibration. Since
some errors may occur during the measurement of cable frequency, estimated cable forces
and cross-tie axial stiffness might be biased. Hence, this paper will apply the median
absolute deviation (MAD) method in statistics to remove the outliers and improve the
method’s accuracy. The median absolute deviation or absolute deviation from the median
was discovered and introduced by Hampel [27]. The median (M), similar to the mean value
of a data set, has the benefit of being less effective in the occurrence of outliers. The MAD
method helps to determine the range that most data points condense. Huber [28] defined
the MAD value as follows:

MAD = bM(|xi −M(xi)|) (13)

where xi is the data point and b is “a constant linked to the assumption of normality
of the data, disregarding the abnormality induced by outliers” [28]. Constant b usually
equals 1.4826.

The criteria to detect outliers depend on the researchers’ definition and justification.
In general, the decision criteria are defined in Equation (14). If a data point xi is out of the
detected range, it is considered an outlier.

M(xi)− c×MAD ≤ xi ≤ M(xi) + c×MAD (14)

where c, varying from 2.0 to 3.0, is a constant related to the researchers’ decision. Leys [29]
strongly recommended a threshold of 2.5 as a reasonable choice. Thus, this paper also uses
this c constant equal to 2.5 to remove outliers.

3.2. Identification of Cable Forces

The procedure to identify the cable forces of the cable network system is summarized
as shown in Figure 5. The procedure contains six steps that are explained as follows:
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Step 1: Collect all necessary information about the cable network, such as material
properties (e.g., Young’s modulus E and mass density γ), section properties (e.g., cross-
section area A, inertia moment I), the network configuration (e.g., the lengths of two cables
Li, four segments lij (i, j = 1, 2) and cross-tie Lc, the inclined angle of the cross-tie θc),
cable boundary conditions, and initial cable tensile forces (if possible) of two cables from
design documents or field inspection. When the cable boundary conditions differ for
hinged–hinged ends, the effective vibration lengths Leff should be determined forehand.

Step 2: Record the acceleration signal at an arbitrary location on the cables of a cable
network system under ambient vibration from field measurement. Nevertheless, this
paper will generate acceleration signals from a finite element model with known cable
internal forces for study purposes. Hence, the accuracy and effectiveness of this method
can be verified easily by comparing the obtained cable tensile forces and the known cable
tensile forces.

Step 3: Transfer the acceleration signal obtained in Step 2 in the time domain to those
in the frequency domain by using the Fast Fourier Transform (FFT) to obtain the measured
frequencies fm of the cable networks. For illustration, this study uses ABAQUS code to
create a cable network model and obtain the measured frequencies of the cable network.

Step 4: Substitute the measured frequencies in Step 3 and corresponding mode orders
into Equation (15) to calculate the mean cable forces. Notably, Equation (15) is the equation
to determine the cable force of a single cable with hinged–hinged supports. Nevertheless,
if the design documents can provide the initial cable forces of the cable network, this step
can be ignored. Then, the predicted ranges of the cable network tensile forces T1 and T2
equal the mean cable forces ± 10% or the designed cable tensions ± 10%.

Ti =
1
Ni

Ni

∑
ni=1

[
4miL2

i

(
f n
m

ni

)2
−

EIy,i

L2
i
(niπ)2

]
, i = 1, 2; n = 1, 2, 3, . . . , (15)

where, mi, Li, and EIi are the average mass per unit length, cable length, and cable bending
rigidity of cable i (i = 1,2), respectively. n-th is the mode order related to the vibration
mode of separated cables. N is the number of modes used to calculate the cable forces of
separated cables. f n

m is the measured frequency of the cable network obtained from the
field measurement or numerical simulation at mode n-th. For cables with full or partly
fixed ends, the cable length L is replaced by the effective vibration length Leff.

Step 5: Create numerous combinations of T1, T2,, and the measured frequencies (in
Step 3). Then, these combinations are substituted in Equation (16) to identify the cable
tensions. Only the combinations that satisfy the condition F(T1, T2, fm) = 0 are selected.
If the cable forces of the selected combinations are in the predicted range of the cable
force (in Step 4), they could be the cable forces (i.e., T1 and T2) of the cable network.
Notably, the values T1 and T2 should vary in a wide range of cable forces to cover the
possible cable forces. Nonetheless, the existing cable forces are expected in the predicted
ranges. The ranges of T1 and T2 can be, therefore, reduced to the predicted ranges to save
computational time.

F(T1, T2, fm) =

{
φ1
β1

sinh(β1 l11)sinh[β1(L1−l11)]
sinh(β1 L1)

sin(φ1L1) sin(φ2L2)

− sin(φ1l11) sin[φ1(L1 − l11)] sin(φ2L2)

}
− φ1
√

T2
1 +16π2 f 2

mm1EI1

Kc sin2 θc
sin(φ1L1) sin(φ2L2)

+
φ1
√

T2
1 +16π2 f 2

mm1EI1

φ2
√

T2
2 +16π2 f 2

mm2EI2

{
φ2
β2

sinh(β2 l21)sinh[β2(L2−l21)]
sinh(β2 L2)

sin(φ1L1) sin(φ2L2)

− sin(φ2l21) sin[φ2(L2 − l21)] sin(φ1L1)

}


= 0

(16)
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For cables with fixed or partly fixed ends, the cable lengths Li and segment lengths lij are
replaced by the cable effective vibration length Leff,i and leff,ij, respectively. The auxiliary
wave number parameters are defined as follows:

βi =

√√√√1
2

√(
Ti
EIi

)2
+

16π2mi f 2
m

EIi
+

1
2

Ti
EIi

, φi =

√√√√1
2

√(
Ti
EIi

)2
+

16π2mi f 2
m

EIi
− 1

2
Ti
EIi

(17)

Step 6: Substitute the cable forces, i.e., T1 and T2, of the selected combinations (in
Step 5) in Equation (18) to compute the cable network frequencies. This study will occupy
the mean absolute percentage error (MAPE) method to select the pair of cable tensions T1
and T2 in which the computed frequencies are the closest to the measured frequencies. If
T1 and T2 in any combination can provide the minimum MAPE between measured and
calculated frequencies, they are identified as the cable tensions of the cable network. The
minimum MAPE between measured frequencies fm and the computed frequencies fc are
defined as in Equation (19). Notably, the MAPE method is occupied because it is more
robust to data with bias measured frequencies. Additionally, the non-zero values of cable
network frequencies are suitable for applying the MAPE method. Moreover, the MAPE
method can provide relative errors between the measured and computed frequencies. The
relative errors are instrumental in judging the error size.

F( fc) =



{
φ1
β1

sinh(β1 l11)sinh[β1(L1−l11)]
sinh(β1 L1)

sin(φ1L1) sin(φ2L2)

− sin(φ1l11) sin[φ1(L1 − l11)] sin(φ2L2)

}
−

φ1

√
T2

1 +16π2 f 2
c m1EI1

Kc sin2 θc
sin(φ1L1) sin(φ2L2)

+
φ1

√
T2

1 +16π2 f 2
c m1EI1

φ2

√
T2

2 +16π2 f 2
c m2EI2

{
φ2
β2

sinh(β2 l21)sinh[β2(L2−l21)]
sinh(β2 L2)

sin(φ1L1) sin(φ2L2)

− sin(φ2l21) sin[φ2(L2 − l21)] sin(φ1L1)

}


= 0 (18)

MAPEmin = Min

[(
1
N

N

∑
k=1

∣∣∣∣ fm,k − fc,k

fm,k

∣∣∣∣× 100%

)]
p

(19)

where N is the number of used modes to calculate the cable forces, k indicates the mode
k-th, and p indicates the selected combination p-th.

3.3. Identification of the Cross-Tie Axial Stiffness

Since this paper introduces a method to identify the cable forces of the cable network
without removing the cross-tie, the axial stiffness of the cross-tie, an important parameter,
needs to be determined beforehand. The axial stiffness of the cross-tie can be directly deter-
mined from the design document or the relationship among three measured parameters of
the cross-tie: the cross-section area, length, and material Young’s modulus. Nevertheless,
the material Young’s modulus is difficult to obtain directly from the field measurement. The
cross-tie must be released and sent to a material laboratory to acquire the Young’s modulus
using a tensile test. This procedure is time-consuming and the tensile test also damages the
cross-tie sample. Hence, this paper will introduce a dynamic method to determine the axial
stiffness of the cross-tie from the measured frequencies of the cable network. This dynamic
method can directly obtain the cross-tie’s axial stiffness at the inspection field and does not
damage it. The procedure to obtain the axial stiffness of the cross-tie from the dynamic
measurement is described as follows:

The cross-tie is released to transform the cable network into two independent cables.
Each cable is excited by an impulse load to obtain acceleration signals under free vibration at
five locations. The acceleration signals at five locations are used to determine the measured
cable frequency, cable force, cable vibration effective length, and cable bending rigidity.

The cross-tie is reconnected to form the cable network. Then, the cable network is
excited by an impulse load to obtain an acceleration signal under free vibration at any
location on Cable 1 or 2. The acceleration signals are transferred in the time domain to
those in the frequency domain by using FFT to obtain the measured frequencies. Since the
cable force, cable vibration effective length, and measured cable frequencies are known, the
cross-tie axial stiffness can be obtained using Equation (20). For cables with full or partly
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fixed ends, the cable lengths Li and segment lengths lij are replaced by the cable effective
vibration length Leff,i and leff,ij, respectively.

F(Kc, fm) =

{
φ1
β1

sinh(β1 l11)sinh[β1(L1−l11)]
sinh(β1 L1)

sin(φ1L1) sin(φ2L2)

− sin(φ1l11) sin[φ1(L1 − l11)] sin(φ2L2)

}
− φ1
√

T2
1 +16π2 f 2

mm1EI1

Kc sin2 θc
sin(φ1L1) sin(φ2L2)

+
φ1
√

T2
1 +16π2 f 2

mm1EI1

φ2
√

T2
2 +16π2 f 2

mm2EI2

{
φ2
β2

sinh(β2 l21)sinh[β2(L2−l21)]
sinh(β2 L2)

sin(φ1L1) sin(φ2L2)

− sin(φ2l21) sin[φ2(L2 − l21)] sin(φ1L1)

}


= 0

(20)

Equation (20) can be reformed as follows:

F(Kc, fm) = A( fm)− B( fm)
Kc

+ C( fm) = 0

Kc =
B( fm)

A( fm)+C( fm)

(21)

where A, B, and C variables are defined as follows:

A( fm) =

{
φ1
β1

sinh(β1l11)sinh[β1(L1−l11,)]
sinh(β1L1)

sin(φ1L1) sin(φ2L2)

− sin(φ1l11) sin[φ1(L1 − l11)] sin(φ2L2)

}
B( fm) =

φ1
√

T2
1+16π2 f 2

mm1EI1

sin2 θc
sin(φ1L1) sin(φ2L2)

C( fm) =
φ1
√

T2
1+16π2 f 2

mm1EI1

φ2
√

T2
2+16π2 f 2

mm2EI2

{
φ2
β2

sinh(β2l21)sinh[β2(L2−l21)]
sinh(β2L2)

sin(φ1L1) sin(φ2L2)

− sin(φ2l21) sin[φ2(L2 − l21)] sin(φ1L1)

} (22)

Since this study uses the measured frequencies to obtain the axial stiffness of the
cross-tie by Equation (21), some abnormal axial stiffness values may occur due to the error
of the measured frequencies. These abnormal axial stiffness values are treated as outliners
and can be removed using the MAD method.

4. Application of Cable Force Identification Method

In this Section, this paper will do two numerical examples to explain and verify the
accuracy and efficiency of this method in identifying the cable forces of a two-cable network.
The Matlab program is employed for calculating the cable force, cross-tie axial stiffness, and
data statistics. As mentioned in Section 3, this study uses ABAQUS code to create a cable
network model and obtain the measured frequencies. The pretension cables with initial
stress are modeled using 100 B21 beam elements. The cross-tie is modeled using a T2D2
truss element. The cable boundary conditions are dependent on the study cases described
in Sections 4.1 and 4.2. The measured frequencies and acceleration data are extracted from
the ABAQUS results.

4.1. A Two-Cable Network with Hinged-End Supports

In this case study, two cables have similar cross-sections and materials but vary in
cable lengths and tensions. The cable properties are selected from the cable network of
the stay cables on the Fred Hartman Bridge [14]. The flexible cross-tie is located at the
position of 0.400L1 and 0.429L2 from the left-side supports of Cables 1 and 2, respectively.
The boundary conditions of the two cables are hinged ends, as shown in Figure 6.

Step 1: All necessary information on the cable network is listed as follows:



T1 = 1900 kN; T2 = 1598 kN

EI1 = EI2 = 2700 kN·m2

m1 = m2 = 47.9 kN/m

Kc = 4487.5 kN·m−1

;

 L1 = 76.55 m

L2 = 67.34 m
;

 l11 = 30.620 m

l12 = 45.930 m
;

 l21 = 28.889 m

l22 = 38.451 m
; θc = 150

◦
. (23)
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Step 2 + 3: The cable network model is created in ABAQUS to obtain measured
frequencies at the first 10 modes, as shown in Table 1.
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Table 1. Measured frequencies of the cable network with hinged-end support determined by
ABAQUS.

Mode Number 1 2 3 4 5 6 7 8 9 10

Measured Frequency (Hz) 1.3278 2.2564 2.6883 3.2030 4.0023 4.6050 5.4582 6.5048 6.6917 7.2340

Step 4: In the following step, the predicted cable forces are calculated using Equation (15).
From the observation of many study cases of two-cable networks, we found that the
fundamental natural frequency of the cable network is usually closest to the fundamental
natural frequencies of the single Cables 1 and 2. Hence, we use the fundamental measured
frequency of the cable network to compute the predicted range of cable forces 1 and 2.
For higher modes, the mode order is selected by the smallest difference between the cable
forces obtained from the fundamental measured frequency and those obtained from the
other measured frequencies and the corresponding mode order. For example, the second
measured frequency of the cable network, i.e., 2.2564 Hz, is used to calculate the predicted
cable force of single Cable 1. If the mode order equal to 1 is selected, the predicted cable
force of the single Cable 1 is 5711.79 kN. If the mode order equal to 2 is selected, the
predicted cable force of the single Cable 1 is 1410.90 kN. Since the cable force difference of
1974.93 kN and 5711.79 kN is larger than that of 1974.93 kN and 1410.90 kN, the selected
mode order is 2. Higher modes follow the same procedure. The predicted value of cable
forces is shown in Table 2.

Table 2. The predicted values of cable forces.

Cable Network Single Cable 1 Single Cable 2

Mode
Number

Measured
Frequency (Hz)

Mode
Number

¯
T1 (kN)

Mode
Number

¯
T2 (kN)

1 1.3278 1 1974.93 1 1525.94
2 2.2564 2 1410.90 2 1082.39
3 2.6883 2 2010.34 2 1546.27
4 3.2030 3 1238.92 3 937.52
5 4.0023 3 1957.38 3 1493.50
6 4.6050 4 1415.32 3 1994.30
7 5.4582 4 2017.81 4 1523.76
8 6.5048 5 1786.58 5 1323.60
9 6.6917 5 1897.34 5 1409.32

10 7.2340 5 2236.50 5 1671.78

By applying the MAD technique, the detected ranges of the cable forces are from
1498.83 kN to 2355.9 kN for the first single cable and from 1022.23 kN to 1995.03 kN for the
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second single cable. The cable forces out of the detected ranges are removed, and the cable
forces inside the detected ranges are shown in Table 3

Table 3. The refinement of the predicted values of cable forces.

Cable Network Single Cable 1 Single Cable 2

Mode
Number

Measured
Frequency (Hz)

Mode
Number

¯
T1 (kN)

Mode
Number

¯
T2 (kN)

1 1.3278 1 1974.93 1 1525.94
2 2.2564 - - 2 1082.39
3 2.6883 2 2010.34 2 1546.27
4 3.2030 - - - -
5 4.0023 3 1957.38 3 1493.50
6 4.6050 - - 3 1994.30
7 5.4582 4 2017.81 4 1523.76
8 6.5048 5 1786.58 5 1323.60
9 6.6917 5 1897.34 5 1409.32

10 7.2340 5 2236.50 5 1671.78
Average 1982.98 1507.87

Finally, the cable forces of Cable 1 are predicted from 1784.69 kN to 2181.28 kN
(1982.98 kN ± 10%), and those of Cable 2 are predicted from 1281.69 kN to 1734.05 kN
(1507.87 kN ± 10%).

Step 5: In this step, the measured frequencies of the cable network from mode 1 to
mode 10 and the cable forces T1 and T2 varying from 1784.69 kN to 2181.28 kN and from
1281.69 kN to 1734.05 kN are used to create numerous combinations, such as (1784.69 kN,
1715.42 kN, 1.3278 Hz), (1919.67 kN, 1588.03 kN, 2.6883 Hz), (1784.69 kN, 1293.34 kN,
6.6917 Hz), etc. These combinations are substituted into Equation (16) to find the combi-
nations that satisfy the condition F(T1,T2,fm) = 0. Thirty examples in numerous satisfied
combinations are listed in Table 4 for reference.

Table 4. Thirty combinations in numerous satisfied combinations.

No. T1 (kN) T2 (kN) fm (Hz) No. T1 (kN) T2 (kN) fm (Hz)

1 1784.69 1715.42 1.3278 16 1784.69 1665.43 4.6050
2 1919.67 1578.13 1.3278 17 1919.67 1570.53 4.6050
3 2054.65 1454.34 1.3278 18 2054.65 1482.74 4.6050
4 1816.45 1729.70 2.2564 19 1784.69 1663.36 5.4582
5 1943.49 1526.69 2.2564 20 1919.67 1582.02 5.4582
6 2070.53 1426.50 2.2564 21 2054.65 1502.12 5.4582
7 1784.69 1647.56 2.6883 22 1784.69 1630.08 6.5048
8 1919.67 1588.03 2.6883 23 1919.67 1560.54 6.5048
9 2054.65 1524.93 2.6883 24 2054.65 1504.59 6.5048

10 1784.69 1672.68 3.2030 25 1784.69 1293.34 6.6917
11 1919.67 1562.12 3.2030 26 1975.25 1707.68 6.6917
12 2054.65 1465.93 3.2030 27 2082.44 1655.24 6.6917
13 1836.30 1731.93 4.0023 28 1784.69 1607.81 7.2340
14 1947.46 1509.33 4.0023 29 1899.82 1589.19 7.2340
15 2058.62 1362.32 4.0023 30 2054.65 1564.63 7.2340

Step 6: For identifying the most appropriate cable tensions, T1 and T2 in numerous
selected combinations obtained in Step 5 are introduced in Equation (18) to calculate
the cable network frequencies. The MAPE values of thirty satisfying combinations are
shown in Table 5 for reference. The combination with the minimum MAPE of computed
frequencies, as defined in Equation (19), provides the most accurate cable tensions T1 and
T2. The combination with T1 = 1899.82 kN and T2 = 1589.19 kN has the minimum MAPE
of computed frequencies at 0.11%. Hence, the cable tensions, i.e., T1 = 1899.82 kN and
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T2 = 1589.19 kN with errors of 0.00% and 0.55%, respectively, are identified as the cable
forces of the cable network. Noticeably, the relative errors are calculated by comparing the
obtained cable forces in this stage and the known cable forces in Step 1. This method is
proved effective and precise in identifying the cable tensions of a general cable network
with an inclined flexible cross-tie at arbitrary locations.

Table 5. MAPE of thirty satisfying combinations.

No. T1 (kN) T2 (kN) MAPE (%) No. T1 (kN) T2 (kN) MAPE (%)

1 1784.69 1715.42 0.95 16 1784.69 1665.43 0.75
2 1919.67 1578.13 0.22 17 1919.67 1570.53 0.22
3 2054.65 1454.34 1.17 18 2054.65 1482.74 1.02
4 1816.45 1729.70 1.17 19 1784.69 1663.36 0.75
5 1943.49 1526.69 0.58 20 1919.67 1582.02 0.22
6 2070.53 1426.50 1.42 21 2054.65 1502.12 1.01
7 1784.69 1647.56 0.83 22 1784.69 1630.08 0.98
8 1919.67 1588.03 0.27 23 1919.67 1560.54 0.26
9 2054.65 1524.93 1.15 24 2054.65 1504.59 1.02

10 1784.69 1672.68 0.76 25 1784.69 1293.34 5.95
11 1919.67 1562.12 0.25 26 1975.25 1707.68 2.64
12 2054.65 1465.93 1.09 27 2082.44 1655.24 3.22
13 1836.30 1731.93 1.35 28 1784.69 1607.81 1.20
14 1947.46 1509.33 0.79 29 1899.82 1589.19 0.11
15 2058.62 1362.32 2.17 30 2054.65 1564.63 1.57

4.2. A Two-Cable Network with Mixed Boundary Conditions

In this case study, the cable network configurations are similar to those in the previous
case study but different in the boundary conditions. The supports of Cables 1 and 2 are
fixed–fixed ends and hinged–fixed ends, respectively, as shown in Figure 7. The cable
forces and axial stiffness of the cross-tie are assumed to be unknown. The values of the
cable forces and the cross-tie axial stiffness shown below are just for verifying this method.
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Step 1: All necessary information on the cable network is listed as follows


T1 = 1900 kN; T2 = 1598 kN

EI1 = EI2 = 2700 kN·m2

m1 = m2 = 47.9 kN/m

Kc = 4487.5 kN·m−1

;

{
L1 = 76.55 m

L2 = 67.34 m
;

{
l11 = 30.620 m

l12 = 45.930 m
;

{
l21 = 28.889 m

l22 = 38.451 m
; θc = 150

◦

Since the boundary conditions of Cable 1 are not hinged–hinged supports, the ana-
lytical solutions in Equation (16) and (18) are not suitable for identifying the cable forces
and computed frequencies of the cable network. For applying the solutions of the model
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with hinged-end supports, the effective vibration length of Cable 1 must be determined
beforehand. Then, the actual cable length is replaced with the effective vibration length
to transform Cable 1 with fixed-end supports into the cable with hinged-end supports.
The effective vibration length of Cable 1 is determined by the technique proposed by
Chen et al. [22]. However, since their technique is appropriate for a single cable, the cables
of the cable network need to be separated by releasing the cross-tie. Although the cross-tie
is required to be removed in this stage, it is necessary to obtain the effective vibration length
and other unknown parameters of the cable network, such as the axial stiffness of the
cross-tie and the current cable forces. It is noted that the cross-tie is required to be removed
one time only. For later measurements such as cable health monitoring, the cable forces
can be identified directly without further removing the cross-tie. The effective vibration
length of Cable 1 is determined by using the vibration signals at five sensor locations. The
cable configurations and sensor locations on Cable 1 are shown in Figure 8. The measured
frequency spectra of the single Cable 1 at five sensor locations under free vibration are
shown in Figure 9.
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By applying the Chen et al. [22] method, the cable effective vibration lengths and cable
tensions of single Cables 1 and 2 at the first five modes are obtained and shown in Table 6.
The mean value of effective vibration lengths in five modes is the equivalent lengths of
Cable 1 with hinged–hinged supports. Since the supports of Cable 2 are hinged-ends, the
effective vibration lengths of Cable 2 are equal to the actual length of Cable 2, namely
67.34 m.

Table 6. Cable effective vibration lengths of the single Cable 1.

Mode
Cable 1 Cable 2

Measured
Frequency (Hz)

Effective
Length (m)

Cable
Force (kN)

Measured
Frequency (Hz)

Effective
Length (m)

Cable
Force (kN)

1 1.3434 74.133 1895.48 1.3586 67.34 1597.83
2 2.6969 74.167 1897.02 2.7318 67.34 1597.48
3 4.0678 74.202 1896.00 4.1338 67.34 1596.79
4 5.4669 74.234 1894.89 5.5787 67.34 1595.98
5 6.9024 74.279 1893.85 7.0787 67.34 1594.53

Average - 74.203 1895.45 - 67.34 1596.52

By replacing the actual cable lengths with the effective vibration lengths and fixed-end
supports with hinged-end supports, the original configuration of the cable network is
transferred to the equivalent configuration, as shown in Figure 10.
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In the following step, this study determines the axial stiffness of the cross-tie for cable
force identification later. The cable network obtained from the ABAQUS simulation is
shown in Table 7.

Table 7. Measured frequencies of the cable network obtained from free vibration.

Mode
Number 1 2 3 4 5 6 7 8 9 10

Measured
Frequency

(Hz)
1.3498 2.2888 2.7178 3.2621 4.0858 4.6516 5.5268 6.5773 6.8967 7.2613

By introducing cable forces, cable effective vibration length, and measured frequencies
obtained from the previous step into Equation (21) the axial stiffness of the cross-tie Kc can
be estimated and shown in Table 8.

Table 8. Estimated axial stiffness of the cross-tie.

Mode
Number

Measured Frequency of
the Cable Network (Hz) Exact Kc (kN/m) Estimated Kc

(kN/m) Error (%)

1 1.3498 4487.50 −74.06 −101.65
2 2.2888 4487.50 4027.27 −10.26
3 2.7178 4487.50 2191.93 −51.15
4 3.2621 4487.50 4010.18 −10.64
5 4.0858 4487.50 812.05 −81.90
6 4.6516 4487.50 3878.34 −13.57
7 5.5268 4487.50 696.95 −84.47
8 6.5773 4487.50 3885.37 −13.42
9 6.8967 4487.50 −6210.50 −238.40
10 7.2613 4487.50 3623.76 −19.25

Since the axial stiffness of the cross-tie is always positive, the estimated Kc at modes 1 and 9
can be ignored. By applying the MAD method, the detected range of the cross-tie axial
stiffness is from 2758.9 kN to 4732.2 kN. Thus, the estimated Kc at modes 3, 5, and 7 can
also be ignored. The mean value of the other estimated Kc is 3884.98 kN, approximately
13.43% error compared to the exact value of Kc. The error of the estimated Kc, namely
more than 10%, is acceptable because it does not affect the cable force identification much.
The explanation will be discussed later. Then, this paper uses the estimated Kc equal to
3884.98 kN to identify the cable forces of the cable network.

Step 2 + 3: The measured frequencies obtained from the ABAQUS simulation are
shown in Table 7.
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Since the supports of Cable 1 in this case study are fixed-end supports, the measured
frequencies of the cable network in this case study are slightly higher than those in the
previous study case.

Step 4: Since the cable forces of single cables are determined in Step 1, these values are
beneficial for calculating the cable network’s predicted range of cable forces. Then, we can
expect the cable forces from 1705.91 kN to 2085.00 kN (1895.45 kN ± 10%) for Cable 1 and
from 1436.87 kN to 1756.17 kN (1596.52 kN ± 10%) for Cable 2.

Step 5: In this step, the cable network’s measured frequencies from mode 1 to mode
10 and the cable forces T1 varying from 1705.91 kN to 2085.00 kN, and T2 varying from
1436.87 kN to 1756.17 kN are used to create numerous combinations, such as (1744.02 kN,
1755.80 kN, 1.3498 Hz), (1705.91 kN, 1680.99 kN, 2.7178 Hz), (1833.19 kN, 1627.74 kN,
5.5268 Hz), etc. These combinations are substituted into Equation(16) to find the combi-
nations that satisfy the condition F(T1,T2,fm) = 0. Thirty examples in numerous satisfied
combinations are listed in Table 9 for reference.

Table 9. Thirty combinations in numerous satisfied combinations.

No. T1 (kN) T2 (kN) fm (Hz) No. T1 (kN) T2 (kN) fm (Hz)

1 1744.02 1755.80 1.3498 16 1705.91 1725.72 4.6516
2 1857.24 1636.17 1.3498 17 1833.19 1637.68 4.6516
3 1970.46 1527.08 1.3498 18 1960.47 1553.03 4.6516
4 1802.48 1755.39 2.2888 19 1705.91 1709.98 5.5268
5 1896.46 1601.93 2.2888 20 1833.19 1627.74 5.5268
6 1990.44 1510.20 2.2888 21 1960.47 1550.60 5.5268
7 1705.91 1680.99 2.7178 22 1711.83 1756.01 6.5773
8 1885.73 1600.64 2.7178 23 1837.26 1627.67 6.5773
9 1960.47 1566.08 2.7178 24 1962.69 1563.80 6.5773

10 1721.45 1756.10 3.2621 25 1883.51 1741.47 6.8967
11 1843.55 1646.33 3.2621 26 1884.99 1618.70 6.8967
12 1965.65 1548.30 3.2621 27 1886.47 1486.53 6.8967
13 1823.20 1755.39 4.0858 28 1705.91 1619.60 7.2613
14 1883.14 1615.60 4.0858 29 1833.19 1600.65 7.2613
15 1943.08 1509.78 4.0858 30 1960.47 1581.47 7.2613

Step 6: Cable forces T1 and T2 in numerous selected combinations obtained in Step 5
are introduced in Equation (18) to calculate the cable network frequencies. The MAPE val-
ues of thirty satisfying combinations are shown in Table 10 for reference. The combination
with T1 = 1892.02 kN and T2 = 1597.78 kN has the minimum MAPE of the computed fre-
quencies at 0.07%. Hence, the cable tensions, namely T1 = 1892.02 kN and T2 = 1597.78 kN
with errors of 0.42% and 0.01%, respectively, are identified as the cable forces of the cable
network. Noticeably, the relative errors are calculated by comparing the obtained cable
forces in this step and the known cable forces in Step 1.

Although the error of the estimated Kc is more than 10.0%, the error of the identified
cable forces is less than 1.0%. To evaluate the effect of the error size of the estimated Kc
on the correctness of the cable force identification, the authors will vary the error of the
estimated Kc in a wide range from−40% to 50%. The relationship between the relative error
of Kc and the relative errors of T1 and T2 is shown in Figure 11. Though the relative error of
the estimated Kc is significant, the effect on the correctness of the cable force identification
is minor. The relative error of the estimated Kc does not affect the relative error of the cable
force identification of Cable 1. Nevertheless, the relative error of the estimated Kc has a
slightly inverted influence on the cable force identification of Cable 2. Since this study uses
the equivalent cable network configuration, the intersection point of lines T1 and T2 occurs
at −13.43% of Kc error. For the cable network with all hinged-end supports, the intersection
point of lines T1 and T2 will occur at 0.0% of Kc error.
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Table 10. MAPE of thirty satisfied combinations.

No. T1 (kN) T2 (kN) MAPE (%) No. T1 (kN) T2 (kN) MAPE (%)

1 1744.02 1755.80 1.40 16 1705.91 1725.72 1.40
2 1857.24 1636.17 0.35 17 1833.19 1637.68 0.46
3 1970.46 1527.08 0.61 18 1960.47 1553.03 0.43
4 1802.48 1755.39 1.49 19 1705.91 1709.98 1.43
5 1896.46 1601.93 0.13 20 1833.19 1627.74 0.45
6 1990.44 1510.20 0.74 21 1960.47 1550.6 0.43
7 1705.91 1680.99 1.56 22 1711.83 1756.01 1.42
8 1892.02 1597.78 0.07 23 1837.26 1627.67 0.42
9 1960.47 1566.08 0.46 24 1962.69 1563.8 0.47
10 1721.45 1756.10 1.40 25 1883.51 1741.47 1.89
11 1843.55 1646.33 0.45 26 1884.99 1618.7 0.22
12 1965.65 1548.30 0.46 27 1886.47 1486.53 1.69
13 1823.20 1755.39 1.59 28 1705.91 1619.6 2.11
14 1883.14 1615.60 0.17 29 1833.19 1600.65 0.70
15 1943.08 1509.78 0.93 30 1960.47 1581.47 0.62

Appl. Sci. 2022, 12, 11012 18 of 23 
 

6 1990.44 1510.20 0.74 21 1960.47 1550.6 0.43 

7 1705.91 1680.99 1.56 22 1711.83 1756.01 1.42 

8 1892.02 1597.78 0.07 23 1837.26 1627.67 0.42 

9 1960.47 1566.08 0.46 24 1962.69 1563.8 0.47 

10 1721.45 1756.10 1.40 25 1883.51 1741.47 1.89 

11 1843.55 1646.33 0.45 26 1884.99 1618.7 0.22 

12 1965.65 1548.30 0.46 27 1886.47 1486.53 1.69 

13 1823.20 1755.39 1.59 28 1705.91 1619.6 2.11 

14 1883.14 1615.60 0.17 29 1833.19 1600.65 0.70 

15 1943.08 1509.78 0.93 30 1960.47 1581.47 0.62 

Although the error of the estimated Kc is more than 10.0%, the error of the identified 

cable forces is less than 1.0%. To evaluate the effect of the error size of the estimated Kc on 

the correctness of the cable force identification, the authors will vary the error of the esti-

mated Kc in a wide range from −40% to 50%. The relationship between the relative error 

of Kc and the relative errors of T1 and T2 is shown in Figure 11. Though the relative error 

of the estimated Kc is significant, the effect on the correctness of the cable force identifica-

tion is minor. The relative error of the estimated Kc does not affect the relative error of the 

cable force identification of Cable 1. Nevertheless, the relative error of the estimated Kc 

has a slightly inverted influence on the cable force identification of Cable 2. Since this 

study uses the equivalent cable network configuration, the intersection point of lines T1 

and T2 occurs at −13.43% of Kc error. For the cable network with all hinged-end supports, 

the intersection point of lines T1 and T2 will occur at 0.0% of Kc error.  

 

Figure 11. Relationship between the relative error of Kc and relative errors of T1 and T2. 

5. Conclusions 

This current search attempts to develop a method to determine the cable forces of a 

two-bending cable network interconnected by a flexible cross-tie. Errors of less than 1.0 

percent prove the method’s accuracy. The following conclusions can be drawn. 

For estimating the predicted range of cable forces, it is better to use the value from 

the design document or field measurement of a single cable. In the case of insufficient 

information, the measured frequencies of cable networks could be used to calculate the 

predicted cable tensions using Equation (15). For determining the cable’s effective vibra-

tion lengths, it is better to use the vibration signals at five sensor locations. However, if 

multiple measurements are difficult to be conducted, the effective vibration lengths can 

be obtained from the rubber-to-rubber lengths of the cables.  

The dynamic experiment can determine the axial stiffness of the cross-tie without 

damaging the cross-tie. The accuracy of the axial stiffness determination just lightly affects 

the accuracy of the cable force identification. Hence, the cross-tie axial stiffness can be 

determined approximately. Although this method requires the release of the cross-tie to 

Figure 11. Relationship between the relative error of Kc and relative errors of T1 and T2.

5. Conclusions

This current search attempts to develop a method to determine the cable forces of
a two-bending cable network interconnected by a flexible cross-tie. Errors of less than
1.0 percent prove the method’s accuracy. The following conclusions can be drawn.

For estimating the predicted range of cable forces, it is better to use the value from
the design document or field measurement of a single cable. In the case of insufficient
information, the measured frequencies of cable networks could be used to calculate the
predicted cable tensions using Equation (15). For determining the cable’s effective vibration
lengths, it is better to use the vibration signals at five sensor locations. However, if multiple
measurements are difficult to be conducted, the effective vibration lengths can be obtained
from the rubber-to-rubber lengths of the cables.

The dynamic experiment can determine the axial stiffness of the cross-tie without
damaging the cross-tie. The accuracy of the axial stiffness determination just lightly affects
the accuracy of the cable force identification. Hence, the cross-tie axial stiffness can be
determined approximately. Although this method requires the release of the cross-tie to
obtain the precise cable effective vibration lengths and axial stiffness of the cross-tie, this
requirement is performed only once. Hence, this method can avoid repeated cross-tie
removal, which helps preserve the accuracy of cable-force identification and reduce the
bridge health monitoring cost.
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Appendix A

This section derives the continuity condition as shown in Equation (8).
Figure A1 presents the deformation of the cables and cross-tie at the cross-tie location.

Because the axial deformation of the cables is ignored, the horizontal distance N1N2 is
constant during the vibration. Hence, we will have the relationship:

L′c cos θ′c = Lc cos θc (A1)

The vertical displacement of the cross-tie during the system vibration is calculated as:

L′c sin θ′c = Lc sin θc + (v21(l21)− v11(l11)) (A2)

The deformed length of the cross-tie during the system vibration can be obtained as:

L′c =
√
(Lc cos θc)

2 + [Lc sin θc + (v21(l21)− v11(l11))]
2 (A3)

or L′c = Lc

√
1 +

2 sin θc(v21(l21)− v11(l11))

Lc
+

[
(v21(l21)− v11(l11))

Lc

]2
(A4)
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For the flexible cross-link as in cable-stayed bridges, due to the restrain of the cross-
tie, the relative vertical displacement of two adjacent cables is minimal compared to the
length of the cross-link, i.e., (v21(l21)− v11(l11)) � Lc. Hence, for small deformation,
the deformed length of the cross-tie can be approximately determined by neglecting the
high-order term and using the approximation

√
1 + x ≈ 1 + x/2.

L′c ≈ [Lc + (v21(l21)− v11(l11)) sin θc] (A5)

Since the axial deformation of the cross-tie equals the ratio of axial force Tc and axial
stiffness Kc, we will have the relationship as in Equation (A6):

L′c − Lc = Tc/Kc (A6)

or (v21(l21)− v11(l11)) sin θc = Tc/Kc (A7)
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Appendix B

This section derives the analytical solution of the two-cable network. Considering
the boundary conditions, continuity conditions and force equilibrium are substituted in
Equation (6) to determine the 8 unknown constants, that is Cij,k (i, j = 1, 2; k = 2, 4).

The mode shape function of the cable segment is rewritten as:

vij = Cij,2sinh
(

βixij
)
+ Cij,4 sin

(
φixij

)
; i, j = 1, 2 (A8)

The continuity condition of the lateral displacements at xij = lij, namely vi1(li1) = vi2(li2),
is introduced to Equation (A8) to obtain:

Ci1,2sinh(βili1) + Ci1,4 sin(φili1)− Ci2,2sinh(βili2)− Ci2,4 sin(φili2) = 0; i, j = 1, 2 (A9)

The continuity condition of the cable slopes at xij = lij, namely v′ i1(li1) = −v′ i2(li2), is
introduced to Equation (A8) to obtain:

Ci1,2βi cosh(βili1) + Ci1,4φi cos(φili1)
+Ci2,2βi cosh(βili2) + Ci2,4φi cos(φili2) = 0

; i, j = 1, 2 (A10)

The continuity condition of the cable curvatures at xij = lij, namely v′′ i1(li1) = v′′ i2(li2),
is introduced to Equation (A8) to obtain:

Ci1,2β2
i sinh(βili1)− Ci1,4φ2

i sin(φili1)
−Ci2,2β2

i sinh(βili2) + Ci2,4φ2
i sin(φili2) = 0

; i, j = 1, 2 (A11)

From the force equilibrium in the vertical direction at node N1 in Equation (9) and the
condition in Equation (8), we have:

EI1v′′′ 11(l11) + EI1v′′′ 12(l12) = −[v21(l21)− v11(l11)]Kc sin2 θc (A12)

Differentiating the mode shapes in Equation (A8) and introducing them into Equation (A12)
to obtain:

EI1
[
C11,2β3

1 cosh(β1l11)− C11,4φ3
1 cos

(
φ1l11

)]
+EI1

[
C12,2β3

1 cosh(β1l12)− C12,4φ3
1 cos

(
φ1l12

)]
=

−
[

C21,2sinh(β2l21) + C21,4 sin(φ2l21)
−C11,2sinh

(
β1l11

)
− C11,4 sin

(
φ1l11

) ]Kc sin2 θc

(A13)

[
EI1β3

1
Kc sin2 θc

cosh(β1l11)− sinh
(

β1l11
)]

C11,2

−
[

EI1φ3
1

Kc sin2 θc
cos
(
φ1l11

)
+ sin

(
φ1l11

)]
C11,4

+
EI1β3

1
Kc sin2 θc

cosh(β1l12)C12,2 −
EI1φ3

1
Kc sin2 θc

cos
(
φ1l12

)
C12,4

+C21,2sinh(β2l21) + C21,4 sin(φ2l21) = 0

(A14)

From the force equilibrium in the vertical direction at node N2 in Equation (10) and
the condition in Equation(8), we have:

EI2v′′′ 21(l21) + EI2v′′′ 22(l22) = [v21(l21)− v11(l11)]Kc sin2 θc (A15)

Differentiating the mode shapes in Equation (A8) and introducing them into Equation (A15)
to obtain:

EI2
[
C21,2β3

2 cosh(β2l21)− C21,4φ3
2 cos

(
φ2l21

)]
+EI2

[
C22,2β3

2 cosh(β2l22)− C22,4φ3
2 cos

(
φ2l22

)]
=[

C21,2sinh
(

β2l21
)
+ C21,4 sin

(
φ2l21

)
− C11,2sinh

(
β1l11

)
− C11,4 sin

(
φ1l11

)]
Kc sin2 θc

(A16)
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C11,2sinh
(

β1l11
)
+ C11,4 sin

(
φ1l11

)
+

[
EI2β3

2
Kc sin2 θc

cosh(β2l21)− sinh(β2l21)

]
C21,2

+

[
EI2φ3

2
Kc sin2 θc

cos(φ2l21)− sin(φ2l21)

]
C21,4 +

EI2β3
2

Kc sin2 θc
cosh(β2l22)C22,2

− EI2φ3
2

Kc sin2 θc
cos(φ2l22)C22,4 = 0

(A17)

Equations from (A9) to (A17) are presented in matrix form for a better expression:

R11 R12 R13 R14 0 0 0 0
R21 R22 R23 R24 0 0 0 0
R31 R32 R33 R34 0 0 0 0
R41 R42 R43 R44 R45 R46 0 0
0 0 0 0 R55 R56 R57 R58
0 0 0 0 R65 R66 R67 R68
0 0 0 0 R75 R76 R77 R78

R81 R82 0 0 R85 R86 R87 R88





C11,2
C11,4
C12,2
C12,4
C21,2
C21,4
C22,2
C22,4


=



0
0
0
0
0
0
0
0


or RC = 0 (A18)

where
R11 = sinh(β1l11)
R12 = sin(φ1l11)
R13 = −sinh(β1l12)
R14 = − sin(φ1l12)

;


R21 = β1 cosh(β1l11)
R22 = φ1 cos(φ1l11)
R23 = β1 cosh(β1l12)
R24 = φ1 cos(φ1l12)

;


R31 = β2

1sinh(β1l11)
R32 = −φ2

1 sin(φ1l11)
R33 = −β2

1sinh(β1l12)
R34 = φ2

1 sin(φ1l12)
R55 = sinh(β2l21)
R56 = sin(φ2l21)
R57 = −sinh(β2l22)
R58 = − sin(φ2l22)

;


R65 = β2 cosh(β2l21)
R66 = φ2 cos(φ2l21)
R67 = β2 cosh(β2l22)
R68 = φ2 cos(φ2l22)

;


R75 = β2

2sinh(β2l21)
R76 = −φ2

2 sin(φ2l21)
R77 = −β2

2sinh(β2l22)
R78 = φ2

2 sin(φ2l22)

R41 =
EI1 β3

1
Kc sin2 θc

cosh(β1l11)− sinh
(

β1l11
)

R42 = −
[

EI1φ3
1

Kc sin2 θc
cos
(
φ1l11

)
+ sin

(
φ1l11

)]
R43 =

EI1 β3
1

Kc sin2 θc
cosh(β1l12)

R44 = − EI1φ3
1

Kc sin2 θc
cos
(
φ1l12

)
R45 = sinh

(
β2l21

)
R46 = sin

(
φ2l21

)
;



R81 = sinh
(

β1l11
)

R82 = sin
(
φ1l11

)
R85 =

[
EI2 β3

2
Kc sin2 θc

cosh
(

β2l21
)
− sinh

(
β2l21

)]
R86 =

[
EI2φ3

2
Kc sin2 θc

cos
(
φ2l21

)
− sin

(
φ2l21

)]
R87 =

EI2 β3
2

Kc sin2 θc
cosh

(
β2l22

)
R88 = − EI2φ3

2
Kc sin2 θc

cos
(
φ2l22

)
For a nontrivial solution of C, the determinant of matrix R must equal zero. The

determinant of matrix R is shown in Equation (A19):

F(ω) =



φ1
√

T2
1 +4m1ω2EI1

Kc sin2 θc
sin(φ1L1) sin(φ2L2)

−
{

φ1
β1

sinh(β1 l11)sinh[β1(L1−l11)]
sinh(β1 L1)

sin(φ1L1) sin(φ2L2)

− sin(φ1l11) sin[φ1(L1 − l11)] sin(φ2L2)

}

− φ1
√

T2
1 +4m1ω2EI1

φ2
√

T2
2 +4m2ω2EI2

{
φ2
β2

sinh(β2 l21)sinh[β2(L2−l21)]
sinh(β2 L2)

sin(φ1L1) sin(φ2L2)

− sin(φ2l21) sin[φ2(L2 − l21)] sin(φ1L1)

}


= 0 (A19)
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