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1. Details regarding our DFTB parametrerization

The following text summarizes the ChIMES force field used for part of this work.
The text is largely taken from Ref. 1. Similar to previous work[2], for Pu interactions we
have used a wavefunction compression radius of 4.5 au for the s, p, and d-orbitals and
a compression radius of 4.0 au for the f-orbitals, though in this case we use a density
compression radius of 6.0 au. Once again we place a partial occupancy of 0.4 in the 6d-
orbitals. DFTB+ is parameterized with Slater type orbitals for all elements. We have found
that the underlying parameterization is largely insensitive to the choice of exponential
coefficients[2].

2. The Chebyshev Interaction Model for Efficient Simulation (ChIMES)

The design philosophy behind ChIMES involves mapping quantum mechanical en-
ergies onto linear combinations of many-body Chebyshev polynomials of the first kind.
Chebyshev polynomials of the first kind have a number of desirable properties for creation
of interatomic potential energy surfaces, including: (i) they are orthogonal (with respect to
a weighting function) and can be generated recursively, allowing for basis set completeness
and user defined complexity, (ii) higher order polynomials tend to have decreasing expan-
sion coefficient values (due to their monic form), and (iii) they are “nearly optimal” (the
error in an expansion will closely resemble a minimax polynomial). In addition, derivatives
of Chebyshev polynomials of the first kind are are related to Chebyshev polynomials
of the second kind, which themselves are orthogonal and can be generated recursively.
This allows for easy and reliable determination of forces and stress tensor components for
atomistic calculations.

Briefly, the ChIMES total energy corresponds to an n-body expansion:
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where EnB is the total ChIMES system energy, nB is the maximum bodiedness, nEi1i2 ... in is
the n-body ChIMES energy for a given set of atoms with indices i = {i1, i2, . . . , in}, and na
is the total number of atoms in the system. The one-body energies, 1Ei1 , correspond to the
atomic energy constants for each element type.

The two-body (pairwise) energies are expressed as linear combinations of Chebyshev
polynomials of the first kind:
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In this case, Tm
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represents a Chebyshev polynomial of order m, and s
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distance transformed to occur over the interval [−1, 1] using a Morse-like function[3,4] (See
Ref. 5 for details). Here, s
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and λe1e2 is an element-pair distance

scaling constant, usually taken to be the peak position of the first coordination shell. C
ei1

ei2
m

is the corresponding permutationally invariant coefficient for the interaction between atom
types ei1 and ei2 , taken from the set of all possible element types, {e}. The term f

ei1
ei2

c (ri1i2)
is a Tersoff cutoff function[6] which is set to zero beyond a maximum distance defined
for a given {e1, e2} pair set. In order to prevent sampling of ri1i2 distances below what is
sampled in our DFT training set, we introduce use of a smooth penalty function fp(ri1i2).
We refer the reader to previous work for additional details[7].

We can now create a greater than two-body orthogonal basis set by taking products of
the (n

2) unique constituent pairwise polynomials of the higher order terms. In other words,
a three-body term has (3

2) = 3 pairs, which yields the following expression for the ChIMES
three-body energy:
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We take a triple sum for the i1i2, i1i3, and i2i3 polynomials over the hypercube up to O3,
and include a single permutationally invariant coefficient for each set of powers and atom
types, C

ei1
ei2 ei3

mpq . We use the primed sum to denote that only terms for which two or more
of the m, p, q polynomial powers are greater than zero are included in order to guarantee
that three distinct atom-centers are evaluated. The expression for 3Ei1i2i3 also contains the
fc smoothly varying cutoff functions for each constituent pair distance. Penalty functions
are not included in this case and instead are handled entirely by the two-body interaction.
Similarly, the four-body energy can be written as a product of the (4

2) = 6 unique pairwise
interactions, though these were not sampled in this work.

Optimal ChIMES parameters (the coefficients of linear combination) can then readily
be determined through the overdetermined matrix equation AC = Brep. The matrix A
corresponds to the values of the requisite polynomials for a given training configuration,
or in other words the derivatives with respect to the fitting coefficients. The column vectors
C and Brep correspond to the linear ChIMES coefficients and the numerical values for the
training set, respectively.

3. Determination of the DFTB repulsive energy from ChIMES

The ChIMES training set was determined by computing DFTB forces (F) and diagonal
stress tensor components (σ) for each configuration with the chosen set of Hamiltonian
parameters with zero values for those components from ERep. These “repulsive energy free”
results were then subtracted from the DFT values for those quantities, i.e.,

Fτ∗
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= Fτ
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− Fτ
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στ∗
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= στ
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− στ
QM,DFTBαα

(4)

Here, τ corresponds to a specific MD configuration, α to the cartesian direction, and i is the
atomic index. The ‘*’ is used to denote that the quantities being computed are part of the
training set, and ‘QM,DFTB’ refers to the quantum components of the DFTB calculation,
i.e., only forces and stresses from EBS and ECoul. Inclusion of configurational total energies
generally resulted in minimal impact on quality of the ERep fit and were thus excluded from
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our training data, similar to previous efforts[1,2]. This results in the following objective
function:
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where M is the total number of configurations in the training set, and Nd is the total number
of data entries (3MN force components plus 3M stress tensor components).

4. ChIMES hyperparameters for H/PuO2

Two-body ChIMES interactions were truncated at 12th order and three-body interac-
tions at 8th order, similar to our previous efforts. All minimum and cutoff radii for the
ChIMES ERep were set to include the first coordination shell sampled in our training set,
only: 3.2 ≤ rPuPu ≤ 4.2 Å, 1.85 ≤ rPuO ≤ 2.85 Å, and 1.75 ≤ rPuH ≤ 4.05 Å. We use
values of λPuPu = 3.75 Å, λPuO = 2.25 Å, and λPuH = 2.25 Å for the Morse-like coordinate
transforms and a value of 0.5 rmax for the onset of the Tersoff cutoff function. H-H, O-H,
and O-O repulsive interaction were not sampled in our training set and were thus takes
from the miomod-hh-0-1 and mio-1-1 parameter sets.
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