
Citation: Wang, C.; Xiao, Z. A Deep

Learning Approach for Credit

Scoring Using Feature Embedded

Transformer. Appl. Sci. 2022, 12,

10995. https://doi.org/10.3390/

app122110995

Academic Editor: Habib Hamam

Received: 29 September 2022

Accepted: 28 October 2022

Published: 30 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Deep Learning Approach for Credit Scoring Using Feature
Embedded Transformer
Chongren Wang 1,2,* and Zhuoyi Xiao 1

1 School of Management Science and Engineering, Shandong University of Finance and Economics,
Jinan 250014, China

2 Digital Economy Research Institute, Shandong University of Finance and Economics, Jinan 250014, China
* Correspondence: wangchongren@sdufe.edu.cn

Abstract: In this paper, we introduce a transformer into the field of credit scoring based on user online
behavioral data and develop an end-to-end feature embedded transformer (FE-Transformer) credit
scoring approach. The FE-Transformer neural network is composed of two parts: a wide part and a
deep part. The deep part uses the transformer deep neural network. The output of the deep neural
network and the feature data of the wide part are concentrated in a fusion layer. The experimental
results show that the FE-Transformer deep learning model proposed in this paper outperforms the LR,
XGBoost, LSTM, and AM-LSTM comparison methods in terms of area under the receiver operating
characteristic curve (AUC) and the Kolmogorov–Smirnov (KS). This shows that the FE-Transformer
deep learning model proposed in this paper can accurately predict user default risk.

Keywords: credit scoring; machine learning; deep learning; transformer

1. Introduction

With the development of financial technology, big data and artificial intelligence tech-
nology have been paid increasingly more attention by financial enterprises. For financial
enterprises, such as banks and P2P lending platforms, the most important risk is credit risk,
that is, user default risk. Therefore, an increasing number of enterprises are trying to apply
artificial intelligence technology, i.e., deep learning, to user credit risk assessment so as to
reduce the loan default rate and to improve the ability of enterprises to resist risks [1,2];
this problem has attracted increasing attention.

Credit scoring is essentially a classification problem in machine learning. With the
help of a credit risk assessment model, applicants can be divided into “good” customers
and “bad” customers. Financial institutions can make loan approval decisions and risk
pricing based on the credit scoring results.

With the development of financial technology, some loan businesses are carried out
on online platforms, from basic websites to the current mobile application (APP), which
has accumulated massive amounts of user online behavioral data, such as data on user
registration behavior, user login behavior, user click behavior, and user authentication
behavior. These online behavioral data have important mining value. In recent years, with
the maturity of deep learning technology, it has become feasible to mine these data.

Based on the online behavioral data of users and the credit data of financial enterprises,
this study proposed an end-to-end transformer credit scoring system, which can accurately
predict users’ default risk.

The main contributions of this study are as follows:

1. This paper introduces transformer into the field of credit scoring based on user online
behavioral data, and the experimental results show that the transformer used in this
study outperforms LSTM and traditional machine learning models.

Appl. Sci. 2022, 12, 10995. https://doi.org/10.3390/app122110995 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122110995
https://doi.org/10.3390/app122110995
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122110995
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122110995?type=check_update&version=1

Appl. Sci. 2022, 12, 10995 2 of 14

2. We make use of credit feature data and user behavioral data and develop a novel
end-to-end deep learning credit scoring framework. The framework is composed
of two parts, a wide part and a deep part, and it can automatically learn from user
behavioral data and feature data.

The structure of this study is as follows: Section 2 summarizes the literature relevant
to this study, Section 3 introduces the relevant theories and the transformer method pro-
posed in this study, Section 4 analyzes the experimental results, and Section 5 summarizes
this study.

2. Related Work

At the early stage of the development of credit scoring methods, due to the lack of
comprehensive historical data in financial institutions, credit scoring mainly depended on
the personal experience of experts. Later, with an increase in credit data, many statistical
models and credit scoring methods gradually emerged. Altman [3] built a Z-score credit
scoring model based on multivariate discriminant analysis technology, and Parnes [4]
verified the superiority of the Z-score credit scoring method through detailed comparative
analysis experiments. Logistic regression models are the most representative of statistical
models. They are widely used because of their high prediction accuracy, simple calculation,
and strong interpretation ability [5].

At present, a large number of scholars are introducing machine learning methods
into the field of credit scoring research [6,7]. The traditional machine learning methods
in this research field can be divided into individual classifier methods and ensemble
learning methods. Individual classifiers that have been studied and applied in credit
scoring include decision trees (DTs) [8] and SVM [9]. In addition, some recent studies have
also proposed some improved individual classifiers [10]. Munkhdalai et al. [11] proposed a
credit scoring approach that combines linear (softmax regression) and non-linear (neural
network) methods.

Ensemble learning improves model performance by building and combining base
learners, which can be further divided into homogeneous ensemble learning and heteroge-
neous ensemble learning. Homogeneous ensemble learning methods only use one kind of
base learner for ensemble, such as random forest (RF) [12] and extreme gradient boosting
(XGBOOST) [13]. Heterogeneous ensemble learning combines several kinds of base learn-
ers to improve model performance. Wang et al. [2] proposed a two-stage credit scoring
model. The first stage is credit scoring, and the second stage is profit scoring. They used
stacked generalization (stacking) to build the model, and the base learner includes LR, DT,
and SVM. However, the features of the experimental data in these studies were usually
low-dimensional and designed by experts [14].

In recent years, deep learning has shown remarkable results in many application fields,
such as text sentiment classification [15], image classification [16], and recommendation
systems [17]. Similarly, many studies have applied deep learning to the field of credit
scoring, and research has proven the abilities of deep learning algorithms, which can
automatically learn features from data. Tomczak and Zi ę Ba [18] proposed a new RBM-like
credit risk prediction approach and proved the advantages of this credit scoring method
through experiments. Yu et al. [19] proposed a new multi-level deep belief network (DBN)
credit risk prediction method based on limit learning machine (ELM), which improved
the credit risk prediction performance of this approach. Zhang et al. [20] proposed a
hybrid model that combines transformer networks with CatBoost decision trees, and their
experimental data came from a bank, but they were low-dimensional feature data.

With the development of the Internet industry, people’s lives are becoming increasingly
Internet-based, resulting in a large amount of user online behavioral data. Considering
the large volume, high dimension, and sequential characteristics of user online behavioral
data, for these kinds of data, the learning ability of traditional machine learning algorithms
is limited; therefore, researchers have begun to use deep learning methods to deeply
mine user online behavioral data. Some researchers have attempted to apply deep learning

Appl. Sci. 2022, 12, 10995 3 of 14

methods based on user online behavioral data to recommendation systems. Hidasi et al. [21]
built a recommendation system using a recurrent neural network (RNN) based on users’
online operation behavioral data. The experimental results show that this recommendation
method is superior to existing methods. Lang and Rettenmeier [22] introduced a long
short-term memory network (LSTM) to predict consumer behavior on e-commerce websites
using user behavioral data, and the experimental results show that this approach has good
prediction effects.

Similarly, some studies have attempted to apply deep learning methods based on user
behavioral data to the field of credit scoring. Wang et al. [1] made use of borrowers’ online
operation behavioral data and proposed a consumer credit scoring method based on an
attention mechanism LSTM. This method only uses user behavioral data, and the research
results show that this approach has advantages over existing methods.

To sum up, credit scoring methods based on machine learning and deep learning
are increasingly becoming a research hotspot. The research on deep learning methods
based on user behavioral data is still relatively scarce, and there are still some research
gaps in the research field of deep learning credit scoring models based on user online
behavioral data. On the one hand, the LSTM model has long-term dependence and cannot
be parallelized, and further research on deep learning algorithms is required. On the other
hand, existing studies have only built deep learning credit scoring models based on user
behavioral data, and they have not used feature data to build an end-to-end neural network
model. Therefore, further research combining user behavioral data and feature data to
build deep learning credit scoring models needs to be carried out.

3. Theory and Method
3.1. LSTM

LSTM, which was proposed by Hochreiter and Schmidhuber [23], is widely used to
process sequence information, such as text classification [24] and machine translation [25],
because it can alleviate long-term dependencies. LSTM can realize the remembering and
forgetting of long-term historical states through different gate structures.

As shown in Figure 1, suppose xt is the parameter information of the new incoming
training process, and ht−1 is the staged result of the last iteration process. The input xt,
the memory state Ct−1, and the intermediate output ht−1 in the forget gate determine the
forgetting part of the memory state. xt in the input gate is changed by sigmoid and tan h
functions, and then, it determines the reserved vector in the memory state. Finally, the
effective information is output by the output gate control, and a performance model with
better prediction can be obtained by iterating the error correction many times. However,
LSTM can only calculate in sequence, which leads to two problems. On the one hand, the
calculation of each time period depends on the calculation results of the previous time
period, so the model cannot calculate in parallel. On the other hand, although the gate
structure of LSTM alleviates the problem of long-term dependence, LSTM still cannot solve
this problem.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 15

Figure 1. Structure of the LSTM model.

3.2. Transformer
The transformer model proposed by Google was first applied to the task of machine

translation [26]. In this research, a transformer is an encoder–decoder structure. The trans-
former consists of an encoder and a decoder, which are stacked with 6 layers in total. This
model does not use a recurrent structure. After passing through the 6-layer encoder in the
model, the input data are output to the decoder of each layer in order to calculate the
attention. The architecture of a transformer consists of four modules: an input module, an
encoding module, a decoding module, and an output module.

A transformer is a deep neural network based on the self-attention mechanism and
parallel data processing. It outperforms RNNs and convolutional neural networks
(CNNs) in machine translation tasks, and it has become the current mainstream feature
extractor. At the same time, the transformer solves two problems of LSTM. On the one
hand, it uses an attention mechanism to reduce the distance between any two positions in
a sequence to a constant. On the other hand, the transformer can be computed in parallel
unlike the sequential structure of LSTM. The transformer is obviously superior to LSTM
in terms of comprehensive feature extraction ability. Therefore, in the task of machine
translation, the traditional attention-mechanism-based LSTM has migrated to the network
structure based on the transformer model.

3.3. Feature Embedded Transformer
In this study, we introduce a transformer into the field of credit scoring and develop

an end-to-end deep learning credit scoring framework; we named this framework the fea-
ture embedded transformer (FE-Transformer). The architecture of this method is shown
in Figure 2. The FE-Transformer neural network is composed of two parts: a wide part
and a deep part. The deep part uses the transformer neural network; the output of the
transformer neural network and the feature data of the wide part are concentrated in the
fusion layer; and finally, the prediction results are output. The FE-Transformer can auto-
matically learn from user behavioral data and feature data.

Figure 1. Structure of the LSTM model.

Appl. Sci. 2022, 12, 10995 4 of 14

3.2. Transformer

The transformer model proposed by Google was first applied to the task of machine
translation [26]. In this research, a transformer is an encoder–decoder structure. The
transformer consists of an encoder and a decoder, which are stacked with 6 layers in total.
This model does not use a recurrent structure. After passing through the 6-layer encoder in
the model, the input data are output to the decoder of each layer in order to calculate the
attention. The architecture of a transformer consists of four modules: an input module, an
encoding module, a decoding module, and an output module.

A transformer is a deep neural network based on the self-attention mechanism and
parallel data processing. It outperforms RNNs and convolutional neural networks (CNNs)
in machine translation tasks, and it has become the current mainstream feature extractor.
At the same time, the transformer solves two problems of LSTM. On the one hand, it uses
an attention mechanism to reduce the distance between any two positions in a sequence
to a constant. On the other hand, the transformer can be computed in parallel unlike the
sequential structure of LSTM. The transformer is obviously superior to LSTM in terms of
comprehensive feature extraction ability. Therefore, in the task of machine translation, the
traditional attention-mechanism-based LSTM has migrated to the network structure based
on the transformer model.

3.3. Feature Embedded Transformer

In this study, we introduce a transformer into the field of credit scoring and develop
an end-to-end deep learning credit scoring framework; we named this framework the
feature embedded transformer (FE-Transformer). The architecture of this method is shown
in Figure 2. The FE-Transformer neural network is composed of two parts: a wide part
and a deep part. The deep part uses the transformer neural network; the output of the
transformer neural network and the feature data of the wide part are concentrated in
the fusion layer; and finally, the prediction results are output. The FE-Transformer can
automatically learn from user behavioral data and feature data.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 15

Figure 2. Network architecture of the FE-Transformer.

3.3.1. Input Data and Data Coding
There are two kinds of input data in this model: one is feature data, and the other is

behavioral data. Feature data include users’ gender, age, credit record, and other credit
data. The users’ behavioral data mainly include the users’ online operation behavioral
data, such as click behavior and input behavior. After the feature data are processed, they
are used as the input of the model.

For the behavioral data, inspired by NLP, each kind of behavior event can be re-
garded as a word. The behavioral data of each user are composed of a series of events,
which constitute a sequence of events and can be regarded as a sentence. We process the
raw online operation behavior record data and convert these behaviors into event se-
quences in chronological order. Then, we encode the input behavioral data via embedding
and position encoding.

An event is the basic unit of model processing. First, the input event needs to be con-
verted into a vector through a word embedding algorithm. In order to understand a se-
quence of events, the model needs to know the position of the event in the sentence in
addition to understanding the meaning of the event. Since the calculation of the trans-
former abandons the recursion and convolution of the cyclic structure, it cannot simulate
the positional information of the events in the sequence, so it is necessary to obtain the
positional vectors of the events through positional encoding. The position vector is then
added to the event vector to obtain the input to the model. We take the sine function to
generate the position vector for each event: 𝑃𝐸 , = sin 𝑝𝑜𝑠/10000 / (1)𝑃𝐸 , = cos 𝑝𝑜𝑠/10000 / (2)

where 𝑝𝑜𝑠 is the position of the event in the behavior sequence of events, 𝑑 is the
dimension of positional encoding, 2𝑖 is the even dimension, and 2𝑖 + 1 is the odd dimen-
sion (2𝑖 𝑑 , 2𝑖 + 1 𝑑). After data coding, the data are used as the input of the
transformer layer.

3.3.2. Transformer Encoding Layer
The transformer encoding layer is composed of one or more layers of stacked encod-

ers. Each layer of the encoder is mainly composed of a multi-head attention layer and a

Figure 2. Network architecture of the FE-Transformer.

3.3.1. Input Data and Data Coding

There are two kinds of input data in this model: one is feature data, and the other is
behavioral data. Feature data include users’ gender, age, credit record, and other credit
data. The users’ behavioral data mainly include the users’ online operation behavioral data,
such as click behavior and input behavior. After the feature data are processed, they are
used as the input of the model.

Appl. Sci. 2022, 12, 10995 5 of 14

For the behavioral data, inspired by NLP, each kind of behavior event can be regarded
as a word. The behavioral data of each user are composed of a series of events, which
constitute a sequence of events and can be regarded as a sentence. We process the raw
online operation behavior record data and convert these behaviors into event sequences
in chronological order. Then, we encode the input behavioral data via embedding and
position encoding.

An event is the basic unit of model processing. First, the input event needs to be
converted into a vector through a word embedding algorithm. In order to understand a
sequence of events, the model needs to know the position of the event in the sentence in
addition to understanding the meaning of the event. Since the calculation of the trans-
former abandons the recursion and convolution of the cyclic structure, it cannot simulate
the positional information of the events in the sequence, so it is necessary to obtain the
positional vectors of the events through positional encoding. The position vector is then
added to the event vector to obtain the input to the model. We take the sine function to
generate the position vector for each event:

PE(pos,2i) = sin (pos/100002i/dmodel) (1)

PE(pos,2i+1) = cos (pos/100002i/dmodel) (2)

where pos is the position of the event in the behavior sequence of events, dmodel is the
dimension of positional encoding, 2i is the even dimension, and 2i + 1 is the odd dimension
(2i ≤ dmodel , 2i + 1 ≤ dmodel). After data coding, the data are used as the input of the
transformer layer.

3.3.2. Transformer Encoding Layer

The transformer encoding layer is composed of one or more layers of stacked encoders.
Each layer of the encoder is mainly composed of a multi-head attention layer and a fully
connected feed-forward layer. Layer normalization [27] is used in front of each sublayer,
and residual connection is used behind each sublayer. The transformer encoding layer
structure is shown in Figure 2.

The event vector matrix obtained by the embedding layer is passed into the encoder
through the multi-head attention layer and into the fully connected feed-forward layer, and
then, the output is passed up to the next encoder. After one or more encoders, the encoding
information matrix of all events in the behavior sequence is obtained.

The self-attention mechanism is an improvement in the attention mechanism, and
it has the advantages of reducing the network’s dependence on external information
and being good at capturing internal correlations in data. The transformer architecture
introduces a self-attention mechanism, which avoids the use of recursive structures in
neural networks and completely relies on the self-attention mechanism to draw the global
dependencies between the input and output [28].

The attention layer uses scaled dot-product attention. Compared with general atten-
tion, scaled dot-product attention uses the dot product for similarity calculation, which
has the advantages of a faster calculation speed and being more space-saving. The basic
structure is shown in Figure 3.

The self-attention mechanism is used to calculate the degree of relatedness between
events. When calculating, each event in the input is first linearly projected into three
different spaces to obtain a query vector (Q), a key vector (K), and a value vector (V). When
obtaining self-attention information, the Q vector is used to query all candidate positions.
Each candidate position has a pair of K and V vectors. The query process is the processing
of dot products between the Q vector and the K vector of all candidate positions [29]. The
product result is divided by the scaling factor (the square root of the dimension of the key
vector) to improve the convergence speed. The result is normalized using the softmax

Appl. Sci. 2022, 12, 10995 6 of 14

function and then weighted to the respective V vector, and the summation determines the
final self-attention result. The calculation formula is shown in Formula (3):

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (3)

dk is the number of columns of matrices Q and K, that is, the vector dimension.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 15

fully connected feed-forward layer. Layer normalization [27] is used in front of each sub-
layer, and residual connection is used behind each sublayer. The transformer encoding
layer structure is shown in Figure 2.

The event vector matrix obtained by the embedding layer is passed into the encoder
through the multi-head attention layer and into the fully connected feed-forward layer,
and then, the output is passed up to the next encoder. After one or more encoders, the
encoding information matrix of all events in the behavior sequence is obtained.

The self-attention mechanism is an improvement in the attention mechanism, and it
has the advantages of reducing the network’s dependence on external information and
being good at capturing internal correlations in data. The transformer architecture intro-
duces a self-attention mechanism, which avoids the use of recursive structures in neural
networks and completely relies on the self-attention mechanism to draw the global de-
pendencies between the input and output [28].

The attention layer uses scaled dot-product attention. Compared with general atten-
tion, scaled dot-product attention uses the dot product for similarity calculation, which
has the advantages of a faster calculation speed and being more space-saving. The basic
structure is shown in Figure 3.

Figure 3. Scaled dot-product attention.

The self-attention mechanism is used to calculate the degree of relatedness between
events. When calculating, each event in the input is first linearly projected into three dif-
ferent spaces to obtain a query vector (Q), a key vector (K), and a value vector (V). When
obtaining self-attention information, the Q vector is used to query all candidate positions.
Each candidate position has a pair of K and V vectors. The query process is the processing
of dot products between the Q vector and the K vector of all candidate positions [29]. The
product result is divided by the scaling factor (the square root of the dimension of the key
vector) to improve the convergence speed. The result is normalized using the softmax
function and then weighted to the respective V vector, and the summation determines the
final self-attention result. The calculation formula is shown in Formula (3): Attention Q, K, V = softmax QKd V (3)d is the number of columns of matrices Q and K, that is, the vector dimension.

Multi-head self-attention enables the model to jointly learn the representation infor-
mation of different locations from different representation subspaces. It is equivalent to a
collection of different self-attention heads. As shown in Figure 4, after Q, K, and V are
subjected to different linear projections, the scaled dot-product attention calculation is
performed so that different parts of the input can be paid attention to and different se-

Figure 3. Scaled dot-product attention.

Multi-head self-attention enables the model to jointly learn the representation infor-
mation of different locations from different representation subspaces. It is equivalent to
a collection of different self-attention heads. As shown in Figure 4, after Q, K, and V
are subjected to different linear projections, the scaled dot-product attention calculation
is performed so that different parts of the input can be paid attention to and different
semantic information can be learned. After multiple operations in parallel, the attention
information in all subspaces is finally merged. The calculation process of each multi-head
module shown in Equations (4) and (5) indicates that the results of multiple self-attention
heads are spliced and converted into an output vector of a specific dimension.

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(4)

MultiHead(Q, K, V) = Concat(head1, . . . , headh)W
O (5)

WQ
i , WK

i , and WV
i are the weight matrices after the linear transformation of Q, K, and

V, respectively; WO ∈ Rdmodel×dk is the weight matrix for the multi-head self-attention
mechanism; and h is the number of self-attention heads.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 15

mantic information can be learned. After multiple operations in parallel, the attention in-
formation in all subspaces is finally merged. The calculation process of each multi-head
module shown in Equations (4) and (5) indicates that the results of multiple self-attention
heads are spliced and converted into an output vector of a specific dimension. head = Attention QW , KW , VW (4)MultiHead Q, K, V = Concat head , . . . , head W (5)W , W , and W are the weight matrices after the linear transformation of Q, K,
and V, respectively; W ∈ R × is the weight matrix for the multi-head self-attention
mechanism; and h is the number of self-attention heads.

Figure 4. Multi-head attention.

The multi-head self-attention mechanism is the key to the transformer model, as it
enriches the relationship between events and can even understand the semantic and syn-
tactic structure information of sequences of events.

3.3.3. Concatenate Layer and Output Layer
The output of the transformer encoding layer is connected to an average pooling

layer and output as a vector. In the concatenate layer, the vector output by the transformer
encoding layer and the feature data are concatenate. In order to make the dimension of
the data consistent, a batch normalization layer is added behind the feature data.

On this basis, following the full connection layer is the output layer. The output layer
uses the sigmoid activation function to obtain the output, and the output result is the
user’s possibility of default. The formula of the output layer is as follows: 𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑊𝑥 + 𝑏 (6)

In the process of model training, we choose cross-entropy as the loss function: cross-
entropy represents the gap between the actual category of the model and the probability
of the category predicted by the model. The smaller the value of the cross-entropy loss,
the closer the model prediction probability and the real value. The loss function is calcu-
lated as follows:

𝐿 = 1𝑁 𝑦 log 𝑝 + 1 𝑦 log 1 𝑝 (7)

where 𝑦 represents the real label of the sample, 𝑝 represents the prediction probability
of the model, and 𝑁 represents the number of samples.

Finally, we select the back propagation (BP) algorithm to update the model parame-
ters.

3.4. Evaluation Metrics

Figure 4. Multi-head attention.

Appl. Sci. 2022, 12, 10995 7 of 14

The multi-head self-attention mechanism is the key to the transformer model, as
it enriches the relationship between events and can even understand the semantic and
syntactic structure information of sequences of events.

3.3.3. Concatenate Layer and Output Layer

The output of the transformer encoding layer is connected to an average pooling layer
and output as a vector. In the concatenate layer, the vector output by the transformer
encoding layer and the feature data are concatenate. In order to make the dimension of the
data consistent, a batch normalization layer is added behind the feature data.

On this basis, following the full connection layer is the output layer. The output layer
uses the sigmoid activation function to obtain the output, and the output result is the user’s
possibility of default. The formula of the output layer is as follows:

y = sigmoid(Wx + b) (6)

In the process of model training, we choose cross-entropy as the loss function: cross-
entropy represents the gap between the actual category of the model and the probability of
the category predicted by the model. The smaller the value of the cross-entropy loss, the
closer the model prediction probability and the real value. The loss function is calculated
as follows:

L = − 1
N

N

∑
i=1

[yi log(p1) + (1− yi) log(1− pi)] (7)

where yi represents the real label of the sample, pi represents the prediction probability of
the model, and N represents the number of samples.

Finally, we select the back propagation (BP) algorithm to update the model parameters.

3.4. Evaluation Metrics

In order to test the validity of the model, we choose two commonly used indicators of
credit scoring to evaluate the performance of the model: area under the receiver operating
characteristic curve (AUC) and Kolmogorov–Smirnov (KS).

Let TP be the real status of the customer classified as non-default and who is judged
to be non-default. FN is the real status of the customer classified as non-default and who is
judged to be default. TN is the real status of the customer who is judged to be default. FP is
the actual status of the customer classified as default and who is judged to be non-default.
Define the True Positive Rate (TPR) as the number of TPs divided by the total number of
positive customers, and define the False Positive Rate (FPR) as the number of FPs divided
by the total number of negative customers; the formulae of TPR and FPR is as follows:

TPR =
TP

TP + FN
× 100% (8)

FPR =
FP

FP + TN
× 100% (9)

Taking TPR as the abscissa and FPR as the ordinate, we draw the receiver operating
characteristic (ROC) curve of the model. The closer the ROC curve is to the upper left corner,
the better the performance of the classifier. However, since “close to the upper left corner”
is only an intuitive description of the graph, it is generally only chosen to calculate the AUC
value to better quantify the degree of proximity. AUC also considers the model’s ability to
discriminate between defaulting customers and non-defaulting customers, avoiding the
problem of model evaluation criteria failure caused by sample imbalance. The larger the
AUC value, the stronger the ability of the model to Identify defaults.

The Kolmogorov–Smirnov (KS) is a commonly used credit score evaluation index,
and it is mainly used to measure the model’s ability to distinguish default users. After
the model predicts the default probability of all samples, we sort the samples according to

Appl. Sci. 2022, 12, 10995 8 of 14

the predicted default probability, calculate the cumulative TPR value and the cumulative
FPR value under each default rate, and then calculate the sum of the two values under
each default rate. Then, after obtaining the absolute value of the difference, we take the
maximum value of these absolute values as the KS value. The larger the value of KS, the
better the ability of the model to distinguish between defaulting borrowers and on-time
borrowers.

4. Experimental Results
4.1. Experimental Set

Our experimental environment is a server with a Ubuntu 16 operating system, and
the programming language is Python. The Python libraries used in this experiment mainly
include Numpy, Pandas, Scikit-learn, Matplotlib, and Keras. Numpy is a scientific com-
puting library of Python, and it provides the function of matrix operation; Pandas is a
library mainly used for data processing and data analyses; Scikit-learn is a machine learning
library; and Matplotlib is a drawing library. The deep learning framework used in this
experiment is Keras (Tensorflow as the back end).

The dataset used in this research comes from an anonymous P2P lending company in
China. The dataset includes feature data and behavioral data, with a total of 100,000 bor-
rowers. The label of the data is whether the borrower defaults. If the borrower defaults, the
label is 1; otherwise, the label is 0. The dataset includes five months of user loan data. To
verify the stability of the model in predicting future loans, we first sort the loans according
to the loan date, and then, we divide the data with the loan date in the last month into test
sets. The test set data account for about 20% of the dataset, and the remaining data are
divided into training sets. The training set is mainly used for training the model, and the
test set is mainly used for testing model performance.

Then, data preprocessing and data coding are carried out. For user behavioral data,
considering that the length of each user’s behavior sequence is different, this paper converts
all sequences into fixed length sequences. After a series of experiments, the length of the
time series is fixed to 100, the sequences whose length exceeds 100 intercept the first
100 events, and the sequences whose length is less than 100 are filled with 0. For the
FE-Transformer credit scoring model proposed in this paper, the number of transformer
coding layers is set to 2, and the number of headers of the multi-head attention mechanism
is set to 4. In order to alleviate the overfitting problem, Dropout [30], which is a method
of dropping neural units with a certain probability from the network while training the
neural network, is added to the transformer coding layer, and the dropout ratio is set to
0.3. The model training adopts mini-batch random gradient descent, the learning rate is
set to 0.001, the parameter update adopts adaptive motion estimation (Adam) rules, and
the early stopping strategy is adopted in the process of deep learning model training to
alleviate overfitting problem.

In order to evaluate the FE-Transformer credit scoring method proposed in this paper
and to prove the superiority of this approach, we conducted a detailed comparative analysis,
and the comparison methods are as follows:

Logistic regression (LR): Logistic regression is the most representative of statistical
models, and the input of this model is feature data.

XGBoost: XGBoost [31] is an ensemble learning algorithm, and the input data process-
ing method of the XGBoost model is the same as that of the LR model.

LSTM: In the deep part of the model, LSTM is adopted. Firstly, user behavioral data
are converted into event sequences as the input of LSTM; then, the output of LSTM is fused
with the feature data; and finally, the sigmoid function is used for classification.

AM-LSTM: Using the method proposed by Wang et al. [2], the attention mechanism is
added to the LSTM approach.

FE-Transformer: The approach proposed in this study.
In order to demonstrate the performance advantages of the FE-Transformer approach

proposed in this study, we conducted three types of experiments, which used different

Appl. Sci. 2022, 12, 10995 9 of 14

datasets: one dataset only comprises feature data, one dataset only comprises behavioral
data, and one dataset comprises all data.

The first type of experiment only used feature data to examine the effect of the machine
learning models on the traditional credit data. Considering that the feature data only
contain feature data and have low dimensions, they are not suitable for training deep
learning models, so we chose two traditional models, namely, logical regression and
XGBoost. The second type of experiment used the dataset with only behavioral data. For
the deep learning models of LSTM, AM-LSTM, and the transformer, user event sequences
can be directly used as model input, but for the traditional machine learning models of LR
and XGBoost, sequence data cannot be used as input, so we manually extracted features
and selected the frequency of each event as the feature. The third type of experiment used
the dataset with all the data, and the five models LR, XGBoost, LSTM, AM-LSTM, and
FE-Transformer were selected for the experiment.

4.2. Performance Analysis

The results of the models only using the feature data are shown in Table 1. As can be
seen in the experimental results, the AUC and KS values of the XGBoost model are higher
than those of LR, indicating that the performance of the ensemble learning algorithm is
superior to that of the single linear model.

Table 1. Results of models only using credit data.

Models Training Set Test Set

KS AUC KS AUC

LR 0.23 0.622 0.23 0.621
XGBoost 0.248 0.634 0.241 0.63

The results of the models only using the behavioral data are shown in Table 2 and
Figure 5. For the models only using the behavioral data, the performance of the deep
learning models (LSTM and transformer) exceed that of the traditional machine learning
algorithms (LR and XGBoost). This is because the deep learning algorithm can extract
higher-level feature information. At the same time, consistent with the results of existing
research, the effect of the AM-LSTM model is better than that of the basic LSTM model.
The transformer model used in this study performs better than LSTM, AM-LSTM, and
traditional machine learning models, and it achieves the highest AUC and KS values.

Table 2. Results of models only using behavioral data.

Models Training Set Test Set

KS AUC KS AUC

LR 0.092 0.57 0.09 0.54
XGBoost 0.1 0.58 0.095 0.553

LSTM 0.203 0.631 0.198 0.62
AM-LSTM 0.243 0.66 0.238 0.661

Transformer 0.26 0.679 0.25 0.672

The input data of the models using all data include the behavioral data and feature
data. The results of the models using all data are shown in Table 3 and Figure 6. From
the experimental results, it can be seen that the performance of the LR and XGBoost
models is better when using all data than when only using feature data. This indicates
that user behavioral data can improve the prediction effect of the credit scoring model.
The performance of the deep learning models (LSTM and the transformer) exceeds that
of the traditional machine learning models (LR and XGBoost). The performance of the
FE-Transformer model proposed in this study is better than that of the other machine

Appl. Sci. 2022, 12, 10995 10 of 14

learning models, and it also achieved the highest AUC (0.72) and the highest KS values
(0.32) on the test dataset.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 15

XGBoost 0.248 0.634 0.241 0.63

The results of the models only using the behavioral data are shown in Table 2 and
Figure 5. For the models only using the behavioral data, the performance of the deep
learning models (LSTM and transformer) exceed that of the traditional machine learning
algorithms (LR and XGBoost). This is because the deep learning algorithm can extract
higher-level feature information. At the same time, consistent with the results of existing
research, the effect of the AM-LSTM model is better than that of the basic LSTM model.
The transformer model used in this study performs better than LSTM, AM-LSTM, and
traditional machine learning models, and it achieves the highest AUC and KS values.

Table 2. Results of models only using behavioral data.

Models Training Set Test Set
 KS AUC KS AUC

LR 0.092 0.57 0.09 0.54
XGBoost 0.1 0.58 0.095 0.553

LSTM 0.203 0.631 0.198 0.62
AM-LSTM 0.243 0.66 0.238 0.661

Transformer 0.26 0.679 0.25 0.672

Figure 5. Performance comparison of models only using behavioral data.

The input data of the models using all data include the behavioral data and feature
data. The results of the models using all data are shown in Table 3 and Figure 6. From the
experimental results, it can be seen that the performance of the LR and XGBoost models
is better when using all data than when only using feature data. This indicates that user
behavioral data can improve the prediction effect of the credit scoring model. The perfor-
mance of the deep learning models (LSTM and the transformer) exceeds that of the tradi-
tional machine learning models (LR and XGBoost). The performance of the FE-Trans-
former model proposed in this study is better than that of the other machine learning
models, and it also achieved the highest AUC (0.72) and the highest KS values (0.32) on
the test dataset.

Table 3. Results of models using all data.

Models Train Set Test Set
 KS AUC KS AUC

LR 0.25 0.670 0.251 0.658
XGBoost 0.262 0.679 0.26 0.665

LSTM 0.273 0.7 0.26 0.682
AM-LSTM 0.31 0.707 0.313 0.71

Figure 5. Performance comparison of models only using behavioral data.

Table 3. Results of models using all data.

Models Train Set Test Set

KS AUC KS AUC

LR 0.25 0.670 0.251 0.658
XGBoost 0.262 0.679 0.26 0.665

LSTM 0.273 0.7 0.26 0.682
AM-LSTM 0.31 0.707 0.313 0.71

FE-Transformer 0.33 0.731 0.32 0.72

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 15

FE-Transformer 0.33 0.731 0.32 0.72

Figure 6. Performance comparison of models with all data.

4.3. Parameter Analysis
In this section, we analyzed the influence of different hyper-parameters on the perfor-

mance of the FE-Transformer model. We selected two important parameters for analysis,
the number of heads and the number of transformer layers. As can be seen in Figure 7, the
experimental results show that, with an increase in parameters, the performance of the
model increases first and then decreases. When the number of heads is set to 4, the KS and
AUC of the FE-Transformer achieve the highest values, and when the number of trans-
former layers is set to 2, the KS and AUC of the FE-Transformer achieve the highest values.
The reason for this may be that, when the hyper-parameters value is very small, the model
training is not enough, so the performance of the model is general, and when the hyper-
parameter values are too large, overfitting problems occur, which affect the performance of
the FE-Transformer.

Figure 7. Influence of different hyper-parameters on the performance of FE-Transformer model.

Figure 6. Performance comparison of models with all data.

4.3. Parameter Analysis

In this section, we analyzed the influence of different hyper-parameters on the perfor-
mance of the FE-Transformer model. We selected two important parameters for analysis,
the number of heads and the number of transformer layers. As can be seen in Figure 7,
the experimental results show that, with an increase in parameters, the performance of
the model increases first and then decreases. When the number of heads is set to 4, the
KS and AUC of the FE-Transformer achieve the highest values, and when the number of
transformer layers is set to 2, the KS and AUC of the FE-Transformer achieve the highest
values. The reason for this may be that, when the hyper-parameters value is very small,
the model training is not enough, so the performance of the model is general, and when
the hyper-parameter values are too large, overfitting problems occur, which affect the
performance of the FE-Transformer.

Appl. Sci. 2022, 12, 10995 11 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 15

FE-Transformer 0.33 0.731 0.32 0.72

Figure 6. Performance comparison of models with all data.

4.3. Parameter Analysis
In this section, we analyzed the influence of different hyper-parameters on the perfor-

mance of the FE-Transformer model. We selected two important parameters for analysis,
the number of heads and the number of transformer layers. As can be seen in Figure 7, the
experimental results show that, with an increase in parameters, the performance of the
model increases first and then decreases. When the number of heads is set to 4, the KS and
AUC of the FE-Transformer achieve the highest values, and when the number of trans-
former layers is set to 2, the KS and AUC of the FE-Transformer achieve the highest values.
The reason for this may be that, when the hyper-parameters value is very small, the model
training is not enough, so the performance of the model is general, and when the hyper-
parameter values are too large, overfitting problems occur, which affect the performance of
the FE-Transformer.

Figure 7. Influence of different hyper-parameters on the performance of FE-Transformer model.

Figure 7. Influence of different hyper-parameters on the performance of FE-Transformer model.

For the deep learning model containing all data, when we fuse the feature data
with the data output from the deep learning model, we added a batch normalization
layer. Batch normalization can normalize the data and improve the generalization ability
of neural networks [32]. In order to verify the impact of batch normalization on the
performance of the model, we conducted a comparative experiment on whether to conduct
batch normalization. The results are represented in Table 4 and Figure 8. For the three
deep learning models LSTM, AM-LSTM, and FE-Transformer, the performance of the
models with batch normalization significantly exceeds that of the models without batch
normalization. The reason for this may be that batch normalization can make the output
of the deep learning model be consistent with the dimension of the feature data, which is
conducive to the use of the gradient descent algorithm to optimize the model.

Table 4. Performance comparison of deep learning models with normalization and without normal-
ization.

Models With Normalization Without Normalization

KS AUC KS AUC

LSTM 0.26 0.682 0.175 0.61
AM-LSTM 0.313 0.71 0.21 0.6

FE-Transformer 0.32 0.72 0.24 0.63

Finally, to analyze the impact of behavioral data on credit scores, we chose the XGBoost
model using only the behavioral data for analysis. For this model, the input of the model
is the frequency of each event. After building the XGBoost model, we extracted the Top
15 important features. The feature importance score represents the usefulness of the
input feature to the user’s credit default prediction; the results are shown in Figure 9. In
consideration of commercial confidentiality requirements, we desensitized the event names.
The results show that the feature importance of different events varies greatly, and some
events have a significant prediction effect on user default risk.

Appl. Sci. 2022, 12, 10995 12 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 15

For the deep learning model containing all data, when we fuse the feature data with
the data output from the deep learning model, we added a batch normalization layer.
Batch normalization can normalize the data and improve the generalization ability of neu-
ral networks [32]. In order to verify the impact of batch normalization on the performance
of the model, we conducted a comparative experiment on whether to conduct batch nor-
malization. The results are represented in Table 4 and Figure 8. For the three deep learning
models LSTM, AM-LSTM, and FE-Transformer, the performance of the models with batch
normalization significantly exceeds that of the models without batch normalization. The
reason for this may be that batch normalization can make the output of the deep learning
model be consistent with the dimension of the feature data, which is conducive to the use
of the gradient descent algorithm to optimize the model.

Table 4. Performance comparison of deep learning models with normalization and without normal-
ization.

Models With Normalization Without Normalization
 KS AUC KS AUC

LSTM 0.26 0.682 0.175 0.61
AM-LSTM 0.313 0.71 0.21 0.6

FE-Transformer 0.32 0.72 0.24 0.63

Figure 8. Performance comparison of models with normalization and models without normaliza-
tion.

Finally, to analyze the impact of behavioral data on credit scores, we chose the
XGBoost model using only the behavioral data for analysis. For this model, the input of
the model is the frequency of each event. After building the XGBoost model, we extracted
the Top 15 important features. The feature importance score represents the usefulness of
the input feature to the user’s credit default prediction; the results are shown in Figure 9.
In consideration of commercial confidentiality requirements, we desensitized the event
names. The results show that the feature importance of different events varies greatly, and
some events have a significant prediction effect on user default risk.

Figure 8. Performance comparison of models with normalization and models without normalization.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 15

Figure 9. Feature importance of XGBoost model.

The FE-Transformer model proposed in this research outputs the predicted user de-
fault probability. The probability value is between 0 and 1. Based on this probability value,
the user’s credit score can be calculated. The credit score is used as the basis for loan ap-
proval and pricing. If the APP of financial institutions is upgraded, the events of user
behavior will change. Therefore, after the APP is upgraded, the deep learning model
needs to be updated.

To sum up, the experimental results show that the FE-Transformer model proposed
in this study outperforms the LR, XGBoost, LSTM, and AM-LSTM comparison methods
in terms of AUC and KS. This shows that the FE-Transformer deep learning model pro-
posed in this research can accurately predict user default risk, which is conducive to re-
ducing the loan default rate of financial enterprises, reducing the credit risk of financial
enterprises, and maintaining the healthy and sustainable development of financial enter-
prises.

5. Conclusions
With the development of big data and artificial intelligence technology, deep learn-

ing models have become the research focus of credit scoring. We study the credit scoring
methods of financial enterprises and propose a FE-Transformer neural network model.

The main conclusions of this study are as follows:
On the one hand, user online behavioral data provide a novel credit scoring data

source. The research results show that user online behavioral data can help improve the
effect of user default prediction models. On the other hand, the performance of the FE-
Transformer model proposed in this paper is better than that of the other comparison
methods, and this proves the effectiveness and feasibility of this method in the field of
credit scoring. The user default probability output by the model can provide the basis for
loan approval decisions and the risk pricing of financial institutions, and it can help finan-
cial institutions improve their credit risk management levels and abilities.

For future research, several issues can be considered. On the one hand, due to the
difficulty of data acquisition, this experiment only uses the datasets of one enterprise, and
we will continue to look for other enterprise datasets for research. On the other hand, the
credit scoring model in this study is a static model, and the dynamic update of credit scor-
ing models is a research hotspot. On the basis of this study, the dynamic update of the
model proposed in this research can be further studied.

Figure 9. Feature importance of XGBoost model.

The FE-Transformer model proposed in this research outputs the predicted user default
probability. The probability value is between 0 and 1. Based on this probability value,
the user’s credit score can be calculated. The credit score is used as the basis for loan
approval and pricing. If the APP of financial institutions is upgraded, the events of user
behavior will change. Therefore, after the APP is upgraded, the deep learning model needs
to be updated.

To sum up, the experimental results show that the FE-Transformer model proposed in
this study outperforms the LR, XGBoost, LSTM, and AM-LSTM comparison methods in
terms of AUC and KS. This shows that the FE-Transformer deep learning model proposed
in this research can accurately predict user default risk, which is conducive to reducing the
loan default rate of financial enterprises, reducing the credit risk of financial enterprises,
and maintaining the healthy and sustainable development of financial enterprises.

5. Conclusions

With the development of big data and artificial intelligence technology, deep learning
models have become the research focus of credit scoring. We study the credit scoring
methods of financial enterprises and propose a FE-Transformer neural network model.

The main conclusions of this study are as follows:
On the one hand, user online behavioral data provide a novel credit scoring data

source. The research results show that user online behavioral data can help improve
the effect of user default prediction models. On the other hand, the performance of the

Appl. Sci. 2022, 12, 10995 13 of 14

FE-Transformer model proposed in this paper is better than that of the other comparison
methods, and this proves the effectiveness and feasibility of this method in the field of
credit scoring. The user default probability output by the model can provide the basis
for loan approval decisions and the risk pricing of financial institutions, and it can help
financial institutions improve their credit risk management levels and abilities.

For future research, several issues can be considered. On the one hand, due to the
difficulty of data acquisition, this experiment only uses the datasets of one enterprise, and
we will continue to look for other enterprise datasets for research. On the other hand,
the credit scoring model in this study is a static model, and the dynamic update of credit
scoring models is a research hotspot. On the basis of this study, the dynamic update of the
model proposed in this research can be further studied.

Author Contributions: Conceptualization, C.W. and Z.X.; methodology, C.W. and Z.X.; experiment,
C.W.; writing—original draft preparation, C.W. and Z.X.; writing—review and editing, C.W.; project
administration, C.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Key R&D Plan funded by the Science and Technology
Department of Shandong Province, China (No. 2019GSF108222).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, C.; Han, D.; Liu, Q.; Luo, S. A Deep Learning Approach for Credit Scoring of Peer-to-Peer Lending Using Attention

Mechanism LSTM. IEEE Access 2018, 7, 2161–2168. [CrossRef]
2. Wang, C.; Liu, Q.; Li, S. A two-stage credit risk scoring method with stacked-generalisation ensemble learning in peer-to-peer

lending. Int. J. Embed. Syst. 2022, 15, 158–166. [CrossRef]
3. Altman, E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Financ. 1968, 23, 589–609.

[CrossRef]
4. Parnes, D. Applying Credit Score Models to Multiple States of Nature. J. Fixed Income 2007, 17, 57–71. [CrossRef]
5. Bolton, C. Logistic Regression and Its Application in Credit Scoring; University of Pretoria: Pretoria, South Africa, 2010.
6. Lessmann, S.; Baesens, B.; Seow, H.-V.; Thomas, L.C. Benchmarking state-of-the-art classification algorithms for credit scoring:

An update of research. Eur. J. Oper. Res. 2015, 247, 124–136. [CrossRef]
7. Bhatia, S.; Sharma, P.; Burman, R.; Hazari, S.; Hande, R. Credit scoring using machine learning techniques. Int. J. Comput. Appl.

2017, 161, 1–4. [CrossRef]
8. Mandala, I.G.N.N.; Nawangpalupi, C.B.; Praktikto, F.R. Assessing Credit Risk: An Application of Data Mining in a Rural Bank.

Procedia Econ. Financ. 2012, 4, 406–412. [CrossRef]
9. Harris, T. Credit scoring using the clustered support vector machine. Expert Syst. Appl. 2015, 42, 741–750. [CrossRef]
10. Abellán, J.; Castellano, J.G. A comparative study on base classifiers in ensemble methods for credit scoring. Expert Syst. Appl.

2017, 73, 1–10. [CrossRef]
11. Munkhdalai, L.; Ryu, K.; Namsrai, O.-E.; Theera-Umpon, N. A Partially Interpretable Adaptive Softmax Regression for Credit

Scoring. Appl. Sci. 2021, 11, 3227. [CrossRef]
12. Malekipirbazari, M.; Aksakalli, V. Risk assessment in social lending via random forests. Expert Syst. Appl. 2015, 42, 4621–4631.

[CrossRef]
13. Xia, Y.; Liu, C.; Li, Y.; Liu, N. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring.

Expert Syst. Appl. 2017, 78, 225–241. [CrossRef]
14. Kang, Y.; Chen, L.; Jia, N.; Wei, W.; Deng, J.; Qian, H. A CWGAN-GP-based multi-task learning model for consumer credit scoring.

Expert Syst. Appl. 2022, 206, 117650. [CrossRef]
15. Ghorbanali, A.; Sohrabi, M.K.; Yaghmaee, F. Ensemble transfer learning-based multimodal sentiment analysis using weighted

convolutional neural networks. Inf. Process. Manag. 2022, 59, 102929. [CrossRef]
16. Bae, J.-H.; Yu, G.-H.; Lee, J.-H.; Vu, D.T.; Anh, L.H.; Kim, H.-G.; Kim, J.-Y. Superpixel Image Classification with Graph

Convolutional Neural Networks Based on Learnable Positional Embedding. Appl. Sci. 2022, 12, 9176. [CrossRef]
17. Liu, Q.; Mu, L.; Sugumaran, V.; Wang, C.; Han, D. Pair-wise ranking based preference learning for points-of-interest recommenda-

tion. Knowl.-Based Syst. 2021, 225, 107069. [CrossRef]

http://doi.org/10.1109/ACCESS.2018.2887138
http://doi.org/10.1504/IJES.2022.123312
http://doi.org/10.1111/j.1540-6261.1968.tb00843.x
http://doi.org/10.3905/jfi.2007.700304
http://doi.org/10.1016/j.ejor.2015.05.030
http://doi.org/10.5120/ijca2017912893
http://doi.org/10.1016/S2212-5671(12)00355-3
http://doi.org/10.1016/j.eswa.2014.08.029
http://doi.org/10.1016/j.eswa.2016.12.020
http://doi.org/10.3390/app11073227
http://doi.org/10.1016/j.eswa.2015.02.001
http://doi.org/10.1016/j.eswa.2017.02.017
http://doi.org/10.1016/j.eswa.2022.117650
http://doi.org/10.1016/j.ipm.2022.102929
http://doi.org/10.3390/app12189176
http://doi.org/10.1016/j.knosys.2021.107069

Appl. Sci. 2022, 12, 10995 14 of 14

18. Tomczak, J.M.; Zięba, M. Classification restricted Boltzmann machine for comprehensible credit scoring model. Expert Syst. Appl.
2015, 42, 1789–1796. [CrossRef]

19. Yu, L.; Yang, Z.; Tang, L. A novel multistage deep belief network based extreme learning machine ensemble learning paradigm
for credit risk assessment. Flex. Serv. Manuf. J. 2015, 28, 576–592. [CrossRef]

20. Zhang, Z.; Wang, Z. Research on Credit Scoring Based on Transformer-CatBoost Network Structure. In Proceedings of the 2022
IEEE 12th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 15–17
July 2022; pp. 75–79.

21. Hidasi, B.; Quadrana, M.; Karatzoglou, A.; Tikk, D. Parallel Recurrent Neural Network Architectures for Feature-rich Session-
based Recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19
September 2016; pp. 241–248. [CrossRef]

22. Lang, T.; Rettenmeier, M. Understanding consumer behavior with recurrent neural networks. In Proceedings of the Workshop on
Machine Learning Methods for Recommender Systems, Houston, TX, USA, 27–29 April 2017.

23. Hochreiter, S.; Schmidhuber, J.U.R. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
24. Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 2019,

337, 325–338. [CrossRef]
25. Guo, D.; Zhou, W.; Li, H.; Wang, M. Hierarchical lstm for sign language translation. Proc. AAAI Conf. Artif. Intell. 2018, 32,

6845–6852. [CrossRef]
26. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.U.; Polosukhin, I. Attention is all you need.

In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017; p. 30.
27. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
28. Zhang, X.; Gao, T. Multi-head attention model for aspect level sentiment analysis. J. Intell. Fuzzy Syst. 2020, 38, 89–96. [CrossRef]
29. Jing, H.; Yang, C. Chinese text sentiment analysis based on transformer model. In Proceedings of the 2022 3rd International

Conference on Electronic Communication and Artificial Intelligence (IWECAI), Zhuhai, China, 14–16 January 2022; pp. 185–189.
30. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
31. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
32. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 6 July 2015; pp. 448–456.

http://doi.org/10.1016/j.eswa.2014.10.016
http://doi.org/10.1007/s10696-015-9226-2
http://doi.org/10.1145/2959100.2959167
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1016/j.neucom.2019.01.078
http://doi.org/10.1609/aaai.v32i1.12235
http://doi.org/10.3233/JIFS-179383

	Introduction
	Related Work
	Theory and Method
	LSTM
	Transformer
	Feature Embedded Transformer
	Input Data and Data Coding
	Transformer Encoding Layer
	Concatenate Layer and Output Layer

	Evaluation Metrics

	Experimental Results
	Experimental Set
	Performance Analysis
	Parameter Analysis

	Conclusions
	References

