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Featured Application: Robot-assisted surgery has simplified minimally invasive treatments by
providing surgeons with more enhanced skill, precision, and control of surgical instruments for
microscale operations than is possible with conventional methods. A use case is robot-assisted
percutaneous coronary intervention, which utilizes a robotic catheter system to remove lesions
in the coronary arteries. Typically, the RCS provides discrete, repetitive, and steady motion to
endovascular tools for tooltip translation from an insertion site to the blocked coronary arteries
while ensuring vessel damage avoidance. Therefore, this study aims to enhance master–slave
motion accuracy toward the realization of autonomous navigation during robot-assisted car-
diac interventions.

Abstract: Robotic catheter systems with master–slave designs are employed for teleoperated naviga-
tion of flexible endovascular tools for treating calcified lesions. Despite improved tool manipulation
techniques, patient safety and lowering operative risks remain top priorities. Therefore, minimizing
undesirable drifts and imprecise navigation of flexible tools during intravascular catheterization is
essential. In the current master–slave designs, finite displacement lag between position command
and actual navigation action at the slave device affects smooth catheterization. In this study, we
designed and developed a compact 2-DOF robotic catheter system and characterized the influence
of displacement step values, velocity, and motion gap on the position error at the slave device. For
uniform and varying motion commands from the master platform, the results indicate that the overall
position error increases with the distance traveled and the displacement step values, respectively.
Hence, we proposed using recurrent neural networks—long short-term memory and gated recur-
rent unit controllers to predict the slave robot’s position and appropriate compensation value per
translation step. An analysis of in-silico studies with CoppeliaSim showed that the neural-based
controllers can ensure uniform motion mapping between the master–slave devices. Furthermore,
we implemented the models within the RCS for a catheterization length of 120 mm. The result
demonstrates that the controllers suitably aid the slave robot’s stepwise displacement. Thus, the
neural-based controllers help match the translational motion and precise tool navigation by the slave
robotic device. Therefore, the neural-based controllers could contribute to alleviating patients’ safety
concerns during robotic interventions.

Keywords: robot-assisted catheterization; position error control; teleoperation; learning-based sys-
tems; deep learning
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1. Introduction

Vascular diseases, such as aneurysms and stenosis, adversely affect blood flow to vital
organs and other body tissues. This condition has been categorized as atherosclerosis when
it affects the coronary, carotid, or peripheral arteries [1]. As a systemic and inflammatory
vascular process, atherosclerosis causes plaque aggregation within the arterial lumen.
The presence of atherosclerotic lesions in the coronary arteries, referred to as coronary
artery disease (CAD), interrupts the flow of oxygen-rich blood to the heart muscle, thereby
eliciting symptoms such as numbness, angina, and myocardial infarction [2]. As a result,
CAD is a significant cause of global disease burden and accounts for over 80% of sudden
cardiac deaths [3]. Conventionally, interventionalists require large incisions into the chest
cavity for procedures such as graft bypass around clogged arteries to reroute blood flow to
the heart. However, percutaneous coronary intervention (PCI) has been widely adopted for
the diagnosis and treatment of CAD as it offers patients reduced perioperative morbidities
and faster recovery times [4–7].

In PCI procedures, intravascular catheterization is a vital step in which patients’ ves-
sels are cannulated with thin and flexible endovascular tools, viz. guidewire, catheter, and
rapid exchange devices. This routine procedure involves tool navigation from an entry port,
typically on the radial, femoral, or brachial vessels, to noticeable lesions in the coronary
arteries. Intravascular catheterization is performed with trained interventionalists applying
fine motor skills [7,8]. This includes axial operations such as translational (push/pull) and
rotational movements applied proximally, while the movement transmits distally to navi-
gate endovascular tools within the patient’s vasculature. However, precise manipulation of
endovascular tools in a dynamic cardiac environment such as a beating heart and fragile
vessels persists as a challenge in cath labs. Hence, interventionalists undergo extensive
training and evaluation sessions for safe tool manipulation during PCI. Unfortunately, this
limits the availability of operators with certified proficiency for manual catheterization
relative to the recent high global prevalence rate of vascular diseases such as CAD [8–11].

Robotic catheter systems (RCSs) have been introduced into cath labs to reduce PCI
operational risks such as radiation exposure hazards and orthopedic injuries to interven-
tionalists. Robotic-assisted PCI (R-PCI) is performed with the RCS having a unique master
and slave platform to ensure the surgeons’ safety while offering remote tool manipula-
tion [12]. Globally, CorPath® 200 and CorPath® GRX (Siemens Healthineers, Walpole, MA,
USA) are FDA-approved commercial products developed to facilitate precise navigation
of flexible endovascular tools with enhanced dexterity and a reduced learning curve for
R-PCIs [13,14]. In addition, CorPath® GRX offers higher functionalities such as guided
control and improved device exchanges. However, to achieve smooth motion during proce-
dures, the CorPath systems translate endovascular tools with a displacement step of 1 mm
or a maximum speed of 12 mm/s. Hence, its motion accuracy for higher displacement step
values is unsubstantiated [15]. Despite the evidence supporting the safety and feasibility of
RCSs for R-PCIs, they are currently available in only a few hospitals globally. Furthermore,
it is projected that RCSs with higher autonomy can aid better patient outcomes, and thus it
is deemed an area requiring further research for technological improvements [16,17].

RCS prototypes with master–slave position-tracking capabilities for safe and respon-
sive tool navigation at different displacement step values were developed in several studies.
For instance, Al-Ahmad et al. [18] proposed a catheter drive system with sleeve-based
grippers using pneumatic actuation. The clamping strategy ensures an equivalent force
distribution along the catheter while providing continuous motion. However, further
validation of the catheter driver is required. Similarly, in [19], the authors integrated the
master–slave components into a singular unit. The slave platform replicates an operator’s
action on the master handle via a linear actuator, while a clutch mechanism allows the de-
vice to reposition the master unit for continuous catheter motion. Nevertheless, single-unit
systems impede remote operation, which requires a distinct master and slave unit.

Furthermore, Cha et al. [20] developed a master–slave robotic platform with two
degrees of freedom (2-DOF) for catheter and guidewire continuous motion during R-
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PCI. However, the system utilized a user-defined scaling factor to achieve master–slave
position accuracy during procedures. Likewise, the researchers in ref. [21] evaluated the
design of a 2-DOF RCS system for teleoperated catheter navigation. The tool manipulator
relies on a linear drive mechanism and a slip ring framework to translate and rotate
the catheter within a vascular phantom by reproducing the operator’s axial and radial
motion at the master unit. Nonetheless, the system required a constant scaling factor for
master–slave position mapping. Motion scaling is a complementary motion control strategy
used in telerobotics. However, it holds better potential in teleoperated systems with high
network latency, such as the Da Vinci robot [22]. The endovascular RCS developed by
Sankaran et al. [23] endeavors to replicate the interventionalist’s natural dexterity, requiring
a minimal learning curve. The master unit has a quick-release mechanism with friction
wheels to advance or retract the catheter or guidewire. The RCS utilized an adaptive input
shaper and the proportional-integral-derivative (PID) controller for position control at the
master–slave ends. Overall, these existing studies utilized motion scaling or conventional
controllers to track the accuracy of master–slave positions during robot-assisted procedures.
Nevertheless, tuning conventional controllers could be simplistic and imprecise resulting in
a loss of performance. However, to enhance operational safety during robotic interventions,
some other studies have developed different approaches, such as position control [24–26],
motion scaling or compensation [20,21,27,28], and force feedback [29,30]. Nonetheless,
there is limited proof of their stability and robustness for position control tasks that involve
flexible endovascular tools. Furthermore, manufacturing constraints and miniature size
requirements complicate the integration of force sensors at the tool’s tip.

The choice of the slave robot’s drive mechanism and motion control strategy is an
essential criterion for safe tool navigation during R-PCI. As shown in Figure 1, the con-
ventional drive mechanisms include (1) ball screws, a belt drive, and roller screws and
(2) clamping and translation mechanisms, while magnetic actuation helps to manipulate a
robotic catheter’s tip. For instance, gripping or ball screw actuation provides the necessary
thrust for the catheter’s translational motion. However, these actuation designs subject
the endovascular tools and RCS to backlash and hysteresis, motion nonlinearities, and
uncertain disturbances. These are due to frictions, inertial forces, or temporal interruptions
when restoring the master’s device to its starting position during translation operations.
While backlash in endovascular tool motion has been addressed [27,31,32], nonlinearity in
RCSs is yet to receive any attention. The latter causes control complexities, such as motion
lags in slave robots during catheterization [27]. Hence, existing systems operate at lower
displacement step values.
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Modeling the slave robot’s motion dynamics to characterize uncertain disturbances,
e.g., hysteresis in the under-actuated RCS, is challenging and imprecise [34]. In addition,
this could be a vital underlying factor hindering robot autonomy in R-PCIs. In response
to the complexity of modeling surgical robots, data-driven approaches based on the black
box model have become increasingly popular. Omisore et al. [32] employed a nonlinear
autoregressive neural network to estimate the hysteresis effect on a uni-directional coronary



Appl. Sci. 2022, 12, 10936 4 of 20

catheter using its kinematic parameters. The researchers in ref. [35] utilized the long short-
term memory network (LSTM) to model the hysteresis of a uni-directional robotic catheter
and to predict its pose. Cursi et al. [36] used a feed-forward neural network to model the
kinematics of a tendon-driven surgical tool and to compensate for the motor’s backlash.
However, these approaches apply to steerable catheters or continuum robots [35,36]. In
R-PCI, the standard coronary catheter is a non-steerable flexible tool without links or joints.
Similarly, RCSs are mainly under-actuated, and physics-based modeling serves little benefit
for position control. Furthermore, the existing studies have not utilized a data-driven
approach to compensate for position error in such under-actuated RCSs.

This study aims to improve master–slave position tracking capabilities using a re-
current neural network, implemented and evaluated for real-time prediction and error
compensation in a slave robot during catheterization. We hypothesized that a learning-
based control system would help to optimize the slave robot’s precision and response
to motion commands received from the master platform. Thus, the catheter drive mech-
anism could navigate the flexible endovascular tools with higher precision and better
minimize position errors that may arise from unknown disturbances and nonlinearities
during catheterization. We characterized position errors using a set of actuation commands
in a self-developed RCS and trained two recurrent neural network models to learn master–
slave motion mapping and to predict the slave robot position for given input variables.
Therefore, we evaluated the feasibility and performance of the LSTM and gated recurrent
unit (GRU) based controllers. The main contributions of this study are:

(1) The design and development of a custom 2-DOF RCS for endovascular navigation
with specification analysis of its main components.

(2) The experimental characterization of the slave robot’s responses to uniform and
varying motion commands.

(3) An open-loop control model with validation of the neural-based controllers for po-
sition prediction and error compensation in the slave robot using in-silico and in-
RCS experiments.

The remainder of the paper follows an outline where we present the design of the
custom RCS in Section 2, while the characterization of the axial translational position error
and the backlash gap within the RCS is presented in Section 3. In addition, we present the
neural-based model proposed for the prediction of the slave robot position in Section 4.
Furthermore, we highlight the performance analysis of the models based on in-silico and
in-RCS analyses in Section 5. Finally, Section 6 highlights the discussion, conclusions, and
future work.

2. Design of the Robotic Catheter System

We present the functional design of the RCS and its main components in this sec-
tion. The teleoperated system comprises a master and slave platform for endovascular
tool remote manipulation during R-PCIs. The master–slave platform has dimensions of
45 cm × 19 cm × 13 cm in length, width, and height, and weighs 15.5 Kg and 26.0 Kg,
respectively. It is worth mentioning that the current prototype is an improvement on
our previous versions [12,26,27]. Furthermore, the designed mechanism ensures that the
interventionalist requires a minimal learning curve to operate the RCS for intraluminal
navigation. We present an outline of the detailed description of the master–slave plat-
form below.

2.1. Design of the Master Robotic Device

By encoding the operator’s natural hand movements, the master device (Figure 2)
communicates appropriate signals to the slave platform (typically at the patient’s bedside)
to perform the axial translation and radial movement of flexible tools during R-PCI. The
bi-axial DOF design consists of an incremental encoder, rotary collector, encoder module,
etc., as shown in Figure 2a,b. Incremental encoders provide excellent feedback regarding
speed and distance by generating pulses corresponding to their axial displacement across
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the electromagnetic handle. The signals are transmitted to the encoder module, where they
are aggregated, and the corresponding position command is sent to the slave robot platform.
This includes forward commands that drive the slave robot to advance an endovascular
tool and pull movements for tool retraction during procedures. Similarly, the encoder
(EKT58 series, JADE Optoelectronic Company, Wuxi, China) has a resolution of 5000 cycles
per revolution (CPR) and a measurement frequency of 100 KHz. It generates corresponding
pulses from clockwise or anticlockwise twists of the rotary collector by an operator, which
are converted into discrete angular values to enable precise rotational movement of an
endovascular tool by the slave robot.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 21 
 

 

Figure 2. The design and assembling of the master platform. (a) The master device's outer casing 

and exterior components, and (b) the inner view and main components of the master robotic device. 

2.2. Design of the Slave Robotic Device 

As shown in Figure 3a,b, the slave-side robotic device comprises a 2-DOF mechanism 

geared by stepper motors and a linear actuator. The slave platform implements the actual 

navigation of the endovascular tool based on input commands received from the master 

unit. 

For this custom setup, the slave platform utilizes a motorized linear actuator 

(EAS4RXE015, Oriental motor, Tokyo, Japan) with a width and height of 58.4 mm × 60 

mm, a stroke length of 150 mm (accuracy: ±0.02 mm), and a resolution of 5000 CPR, as 

shown in Figure 3a. The actuator employs a ball screw mechanism for its axial drive and 

is powered by a DC-input stepper motor (AZM24AK, Oriental motor, Tokyo, Japan), res-

olution: 1000 CPR, a motor driver (SR series, MOONS’, Shanghai, China), and a linear 

actuator driver (AZD-KD, Oriental motor, Tokyo, Japan), as shown in Figure 3b. In addi-

tion, two limit sensors placed 15 mm from both ends of the linear actuator prevent the 

sliding plate from going beyond the terminal ends of the axial stage. Thus, one-to-one 

position mapping exists between the master–slave devices, with an active stroke length of 

120 mm. The sliding plate houses the proximal force sensor, slip ring, and clamping mech-

anism. A rotary stepper motor attached to the sliding plate drives the belt and pulley sys-

tem for rotational movement of the endovascular tool as controlled by the master. 

In addition, as shown in Figure 3b, a miniature linear stepper motor (8k2105, SAMSR 

motor, Shenzhen Melike Technology Co., Ltd., Shenzhen, China) positioned above the 

clamping device turns a roller pair, controlling the opening and closing of the clamp via 

a lateral shift of the clamping controller at the master side. When opened, an operator 

manually steers the guidewire or catheter through the clamp, the guide sheath, and the 

grasping device to position the flexible tool at the entrance of a peripheral access port, 

from where the master–slave device operates the endovascular tool for intravascular the 

catheterization procedure. The clamp achieves a fixed grasp of the endovascular tool dur-

ing axial and rotary motion when held in a locked position via four smaller roller shafts, 

as shown in Figure 3b. The clamping force between the device and the tool, as measured 

by the proximal sensor (KD24s, ME-Meßsysteme GmbH, Hennigsdorf, Germany) with a 

Figure 2. The design and assembling of the master platform. (a) The master device’s outer casing
and exterior components, and (b) the inner view and main components of the master robotic device.

In addition, the master device allows for simultaneous translational and rotational
movements. Typically, this movement includes rotating on advance or retract operations
generated by turning the rotary collector after moving the encoder along the handle or
vice versa. This unique movement has been proven as a way interventionalists skillfully
navigate guidewire or catheters through complex paths within the heart coronaries [14].
Furthermore, the clamp controller coordinates the slave’s tool-grasping fixtures to maintain
a fixed pose of the flexible tool, thus preventing tool slippage and potential risks from
blood vessel puncture during procedures. The stroke length of the master device is 120 mm.
However, to achieve an infinite translational motion, the remote switch (Figure 2a) triggers
after a full stroke for either forward or backward drive of the cylindrical knob towards the
starting position without corresponding movement at the slave side. On the other hand,
when the remote switch turns off, a displacement of the cylindrical knob advances or retracts
the tool further at the slave side. Hence, the realization of an infinite motion for a given
intravascular procedure. The encoded motion information at the master side is transmitted
to the slave device via a wireless network using a transmission control protocol/internet
protocol (TCP/IP) address. Additionally, a 12-volt DC-powered rechargeable lithium-ion
battery, as shown in Figure 2b, is used to power the master device. At the same time, a
DC boost module ensures the realization of varying step-up and step-down voltage-to-
current during a given procedure, thus offering high efficiency across input and output
voltage ranges.



Appl. Sci. 2022, 12, 10936 6 of 20

2.2. Design of the Slave Robotic Device

As shown in Figure 3a,b, the slave-side robotic device comprises a 2-DOF mecha-
nism geared by stepper motors and a linear actuator. The slave platform implements the
actual navigation of the endovascular tool based on input commands received from the
master unit.
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For this custom setup, the slave platform utilizes a motorized linear actuator (EAS4RXE015,
Oriental motor, Tokyo, Japan) with a width and height of 58.4 mm× 60 mm, a stroke length
of 150 mm (accuracy: ±0.02 mm), and a resolution of 5000 CPR, as shown in Figure 3a.
The actuator employs a ball screw mechanism for its axial drive and is powered by a DC-
input stepper motor (AZM24AK, Oriental motor, Tokyo, Japan), resolution: 1000 CPR, a
motor driver (SR series, MOONS’, Shanghai, China), and a linear actuator driver (AZD-KD,
Oriental motor, Tokyo, Japan), as shown in Figure 3b. In addition, two limit sensors placed
15 mm from both ends of the linear actuator prevent the sliding plate from going beyond
the terminal ends of the axial stage. Thus, one-to-one position mapping exists between the
master–slave devices, with an active stroke length of 120 mm. The sliding plate houses
the proximal force sensor, slip ring, and clamping mechanism. A rotary stepper motor
attached to the sliding plate drives the belt and pulley system for rotational movement of
the endovascular tool as controlled by the master.

In addition, as shown in Figure 3b, a miniature linear stepper motor (8k2105, SAMSR
motor, Shenzhen Melike Technology Co., Ltd., Shenzhen, China) positioned above the
clamping device turns a roller pair, controlling the opening and closing of the clamp via
a lateral shift of the clamping controller at the master side. When opened, an operator
manually steers the guidewire or catheter through the clamp, the guide sheath, and the
grasping device to position the flexible tool at the entrance of a peripheral access port,
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from where the master–slave device operates the endovascular tool for intravascular the
catheterization procedure. The clamp achieves a fixed grasp of the endovascular tool during
axial and rotary motion when held in a locked position via four smaller roller shafts, as
shown in Figure 3b. The clamping force between the device and the tool, as measured by the
proximal sensor (KD24s, ME-Meßsysteme GmbH, Hennigsdorf, Germany) with a resolution
of 0.002 N and a range of 2 N, is fed back to the operator during procedures. Input-to-output
motion and imaging feedback during procedures could aid the development of state-based
navigation in RCSs using learning-based models [10,37].

Furthermore, as shown in Figure 3, the distally positioned stepper motor facilitates
adjustment of the guide sheath angle to optimize the tool’s navigation during catheteriza-
tion procedures. A DC 24V 10,000-mAh rechargeable lithium-ion battery powers the slave
device for a mean of 270 min, while a Raspberry PI 4 (Raspberry Pi Foundation, South
Cambridgeshire, UK) single-board computer with 8 GB RAM is used for data processing
and transfer between master and slave devices.

2.3. Communication Modality

The master–slave platform facilitates data exchange via an open-source communica-
tion protocol from Modbus (Schneider Automation Inc., Rueil-Malmaison, France) and a
wireless network protocol as shown in Figure 4. The RCS intercommunicates through the
Modbus remote terminal unit, based on the RS485 standard, with a controller area network
(CAN) and expansion board that allows transmitting/receiving data between Raspberry PI
and other devices via RS485/CAN functions. Typically, the slave robot executes a given
action and performs an error check before feedback of the completed action to the master
device for subsequent commands. An 8-bit analog-to-digital (A/D) and digital-analog
(D/A) converter chip, PCF8591 module (NXP Semiconductors, Eindhoven, Netherlands),
aids A/D–D/A sampling in Raspberry PI via an inter-integrated circuit communication
interface. Both linear and rotary data are intra-processed by the system module within
the master–slave Raspberry PI and transmitted to the corresponding motor drivers, which
actuate the linear or rotary motors for an axial or rotary drive of the catheter/guidewire.
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Figure 4. The master–slave robotic platform communication scheme.

The interventionalist relies on sensory feedback such as visual feedback and inter-
communication between the master–slave devices for precise tool navigation. The system
employs an onboard control system wherein the slave device receives control actions via
preprogrammed instructions in a Raspberry PI operating system and thus could perform
routine tool movements with discrete motion commands.
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3. Characterization of Position-Tracking Error in Robotic Catheter Systems

Smooth and safe tool manipulation requires developing a precise position-tracking
ability in the RCS presented above. Position tracking involves iterative geometric mapping
between the axial commands (viz. linear or angular displacement) issued via the master
device and the actual response from the slave device. This suitably helps to maintain steady
translation and rotation movements between the master and slave platforms for robot-
assisted catheterization. First, we characterized the RCS parts to establish the presence
of motion lag or backlash gaps between the master and slave platforms. Existing studies
hypothesized sources of motion lags in RCSs to be from actuated gears, belts, and pulley
configurations in linear systems and that become evident during axial translations [21,37].
Practically, this could cause nonlinear but observable marked differences between the
motion applied at the master device and the actual cannulation achieved with the slave
side. Although new technologies in linear drive systems seek to produce low-backlash
devices, none can eliminate the occurrence of position error when using the master–slave
setup for R-PCI.

To characterize this situation in our RCS, we performed several experiments to observe
the tracking errors between the master–slave platforms. This includes navigation trials
performed with varying conditions, i.e., by issuing different position values at the master
side and other trials under constant displacement. In all trials, higher-order motion data
were derived from the position and velocity outputs from the in-built encoders’ readings.

3.1. Experimental Observation of the Master–Slave Position and Velocity Based on an Operator
Hand Motion

To quantify the occurrence of position-tracking errors during axial translations with
our custom RCS, we segmented the master’s stroke into several discrete points to have the
RCS navigate a well-controlled path length each time. An operator was made to navigate
the master through 30, 45, 70, 100, and 120 mm lengths. Each navigation trial was performed
five times, and the average displacement data were recorded for the navigation length. In
this procedure, the operator randomly moved the cylindrical knob in the master device
from a starting position to each discrete point. This triggers the slave robot to translate
along the linear path. Ideally, the master–slave positions should align from the start to
the end of a given translational motion with an equal magnitude of distance traveled at
both ends. However, we observed that distinct position errors existed in the trials. From
the statistical analysis outlined in Table 1, the mean and standard deviation of the slave
device’s position error for each discrete point indicate that the tracking error increases
as the length of the path navigated increases. Similarly, based on the operator’s hand
motion, the average resultant errors (ARE) for 70 and 120 mm were 10.26 and 18.61 mm,
respectively, as shown in Figure 5A,C, while the percentage resultant error (ARE/distance)
varied from 14.6 to 19.9%.

Table 1. Average position error of the slave robotic device for given distances.

Distance (mm) Error (mm) Resultant Error (%)

30 3.84 ± 2.03 19.90
45 6.38 ± 2.30 14.83
70 7.43 ± 3.72 14.66

100 10.67 ± 4.30 15.11
120 13.14 ± 6.11 15.51

The mean velocity of the master–slave devices obtained when distances of 70 and
120 mm were navigated are shown in Figure 6A,B. The interval between the master–slave
velocities was greater in Figure 6A. Relating this to Figure 5A, it indicates that the motion
gap increases with the velocity gap in the master–slave platforms for varying translational
motion but not necessarily with the catheterization distance. Thus, this elucidates why
Figure 5A (70 mm) has a more significant motion gap than Figure 5C (120 mm). In addition,
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the magnitude of the interval between consecutive points during a catheterization stroke is
proportional to the motion gap experienced by the slave robot. Again, we have observed
that for a shorter distance (30–70 mm), a novice operator is more likely to move the master
knob faster (and at a higher velocity) than for a longer distance (100–120 mm). This could
be why fewer motion gaps occurred between the master and slave trajectories when longer
distances were moved. Nonetheless, we found that the magnitude of the resultant position
error increases with catheterization length.
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3.2. Experimental Observation of Master–Slave Position and Velocity under Uniform
Translational Motion

The motion lag study was also performed for position and velocity under uniform
translational motion. For this, uniform translational motion in steps of 1–10 mm was issued
to the slave robot to quantify the tracking error. In addition, each trial was performed five
times for each displacement step value to trigger navigation, while the robotic devices’
mean position and velocity output were recorded. In Figure 7A–C, we present the distance
traveled by both master and slave platforms when displacement values of 3, 5, and 10 mm
were, respectively, set. In Figure 7A, the slave device closely matched the displacement of
the master platform for a translation step of 3 mm. In contrast, the slave device response
was below the input command per step when actuated with a uniform displacement of
5 mm, as shown in Figure 7B. However, above 5 mm, a more visible gap exists such that it
extends to the proportion shown in Figure 7C when operated under a displacement step
value of 10 mm. Overall, the accruing error influences the resultant slave positions, as
shown in Figure 7B,C.
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Figure 7. Master–slave position trajectories based on uniform displacement values of (A) 3 mm,
(B) 5 mm, and (C) 10 mm.

In addition, the velocity trajectories of the master and slave platforms for 5 and 10 mm
are presented in Figure 8A,B, respectively. In Figure 8A, the variation of the slave robot’s
velocity was within the threshold of the motion gap observed in Figure 7B. This could infer
that the slave’s position tracking is smooth for small displacement step values (≤ 3 mm).
However, limiting an operator to this axial displacement range during catheterization
could increase the procedural duration and induce boredom in interventionalists, espe-
cially when navigating through vessels with a larger diameter. This includes endovascular
tool movement from within the radial vessels to the aorta. However, smaller displacement
step values are essential for safe tool movement beyond the aorta and within the coronary
arteries. Furthermore, this could allow the operator to choose between different displace-
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ment step values depending on the vessel diameter and the catheterization path while a
steady translational motion could be achieved.
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Figure 8. Master–slave velocity trajectories based on uniform displacement values of (A) 5 mm and
(B) 10 mm. Inset shows the enlarged view of the master-slave velocity trajectories for a uniform
displacement of 5 mm.

Figure 8B shows a noticeable difference when the slave robot actuates under a higher
velocity, such as applying >30 mm/s. Similarly, this correlates with the evident position-
tracking error in Figure 7C. Thus, it is remarked that a velocity of 16 mm/s (or below) at the
master side could suitably maintain a minimal position error during master–slave robotic
catheterization. Comparing Figures 5–8, our study suggests that both position and velocity
contribute to the hysteresis observed at the slave-side robotic device during catheterization.
In conclusion, Figures 5–8 indicate that the nonlinearities and uncertainties could be higher
and unbounded when applying variable displacement values. This typical scenario usually
happens during robot-assisted tool catheterization. We, therefore, proposed a neural-
based system for learning the dynamics of the master–slave setup to aptly determine and
compensate for position error occurrences in the RCS.

4. Recurrent Neural Network Modeling

In this section, we utilized variants of recurrent neural network models, such as the
LSTM and GRU networks, to learn typical motion dynamics when operating the master–
slave platform. The trained network varieties can estimate the slave robot’s displacement
from given input motion variables. The estimated value and an appropriate compensating
value are then transmitted to the slave robotic device to achieve uniform motion mapping
with the master platform. This data-driven approach requires experimental data to pre-
train recurrent neural networks. Thus, we conducted a series of controlled studies similar
to those described in Section 3, and describes the data processing procedures in this section.

4.1. Data Pre-Processing

As highlighted in Section 3, analysis of the position and velocity illustrates better
position tracking between the master and slave platforms when operated with constant
displacement values.

Thus, we carried out phantom studies for these displacement values to acquire the
experimental data for training the neural-based models. To ensure consistency in all data
tuples, we fixed the start and end points for all the navigation trials that we performed.
Motion commands from the master device emanate from custom code written in Python
and executed online via the Raspberry controller. The data acquired are first pre-processed
by removing empty and incomplete records that occasionally occur at the slave side.
With a total of 188 experimental runs conducted, we obtained 7500 data sequences with
exactly 1500 data sequences selected for each 1–5 mm discrete motion. Subsequently,
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each step’s master–slave motion data were divided randomly into training (70%) and test
(30%) datasets.

The displacement and velocity from the master side in addition to the ratio of velocity
between the master–slave devices are taken as input variables into the network to estimate
the slave robot positions. The training and test datasets for the master–slave positions are
shown in Figure 9. The slave robot’s response to discrete input commands is shown in
Figure 9b. This typifies the occurrence of random values (errors) increasing proportionally
with the magnitude of the translational motion. That is, between 1–5 mm, specifically, from
3 mm, there were increasing data points, where the output position of the slave robot were
below the input command, thus symbolizing a noisy data. This is a typical response of the
slave robot to higher displacement step values without position control or compensation.
Furthermore, this also indicates the cause of jerks and vibrations in the slave robot during
typical master-slave movements in the absence of position control methods.
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Figure 9. Training and test data split for (a) master position (as part of the input variable) and (b) the
slave position (target variable).

4.2. Recurrent Neural Network

The LSTM network consists of a stack of LSTM units, each equipped with a cell and
three gates—a forget gate, an input gate, and an output gate that regulate information
flow across the cells. An LSTM unit typically processes information in accordance with the
following equations [38]. Thus, the model output at time-step t is given by ht∀t=1,2,...,k as in
Equation (1). Where σ is the logistic function with a range of zero and one that determines
the ratio of information flow through each gate. The forget gate ( f (t)) controls what informa-
tion is retained from the previous cell state (C(t−1)), whereas the input gate (i(t)) combines
with the input-modulating gate (C(t)

i )—which uses a hyperbolic tangent activation (tanh)
function to update the cell state to (C(t)). In addition, the output gate (o(t)) sieves the
information within the new cell state (C(t)), using both the logistic and tanh functions
to regulate its output, and is transferred to the hidden state (h(t)). W∗ and b∗ represent
the weight and bias parameter matrix in each gate, respectively. Combining the gating
mechanisms enables the LSTM to extract relevant information from an input sequence.

f (t) = σ
(

Wf

[
h(t−1), x(t)

]
+ bf

)
i(t) = σ

(
Wi

[
h(t−1), x(t)

]
+ bi

)
C(t)

i = tan h
(

Wc

[
h(t−1), x(t)

]
+ bc

)
C(t) = f (t) ∗ C(t−1) + i(t)∗ C(t)

i

o(t) = σ
(

Wo

[
h(t−1), x(t)

]
+ bo

)
h(t) = o(t) ∗ tanh

(
C(t)

)
(1)
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In contrast, the stacked GRU units comprise a structure where each unit is equipped
with two gates—a reset gate

(
r(t)
)

and update gate
(

z(t)
)

. The update gate regulates
what information flows into the memory using logistic function within the interval (0, 1),
similar to LSTM. This controls the similarity between the previous state and the new state.
The reset gate determines what percentage of the previous state is retained and how to
compute the candidate hidden state ( h ˜(t)). An elementwise operation of the update gate
with the previous state (h(t−1)) and the candidate hidden state result in the final output of
the model h(t) is calculated as shown in the following equations below [39].

r(t) = σ
(

Wr

[
h(t−1), x(t)

]
+ br

)
z(t) = σ

(
Wz

[
h(t−1), x(t)

]
+ bz

)
h̃(t) = tan h

(
Wh

[
r(t) ∗ h(t−1), x(t)

]
+ bh

)
h(t) = z(t) ∗ h(t−1) +

(
1− z(t)

)
∗ h̃(t)

(2)

4.3. Model Training and Evaluation

The RNN models were implemented in Python using the Keras library and the Ten-
sorFlow platform. The LSTM model has an input layer (N × 3× 3), two hidden layers
with 32 units each, and a fully connected layer, which outputs a predicted value using the
rectified linear unit (ReLU) activation function, as shown in Figure 10a. The LSTM unit
can determine important features from an input sequence and keep such information in
its memory. To train the model, experimental data for different step values were stacked
together with feature scaling performed on the data. The model was trained with a batch
size of 32 for 90 epochs, while 20% of the training set was used for validation. The learning
rate was set to 1 × 10−4 with a time step of three and the Adam optimizer algorithm
employed. Similarly, the GRU model has an input layer, two hidden layers with 16 neurons
each, and a fully connected layer with the ReLU activation function, as shown in Figure 10b.
The learning rate and batch size were 1×10−4 and 24, while the model was trained for
20 epoch with the chosen Adam optimizer algorithm.
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Figure 10. A stacked 2-layer architecture for slave robot’s position prediction and compensation
using (a) LSTM model and (b) GRU model.

Furthermore, the description of the two quantitative metrics used to evaluate the
models’ performance is stated below, with their corresponding values given in Table 2.

Table 2. MAE and MSE for the LSTM and GRU models.

Model MAE (mm) MSE (mm2)

LSTM 0.0825 0.0958
GRU 0.0906 0.0964
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1. Mean Absolute Error: The mean absolute error indicates the average sum of the
absolute difference between the actual slave robot position (yi) and the predicted
position (xi), as given in Equation (3).

MAE =
1
N ∑N

i=1|yi − xi| (3)

1. Mean Square Error: The mean square error is the average of the squared error val-
ues between the model’s prediction and the slave robot response, represented by
Equation (4).

MSE =
1
N ∑N

i=1(yi − ŷ)2 (4)

Based on the error values (in Table 2), the RNN models have comparative performance.
The models’ training, validation, and prediction performances are shown in Figure 11a–d.
Figure 11 indicates that the validation loss for each model was less than 2% under each
category, while the models aptly predicted the intended slave displacement for each set-
value, i.e., 1–5 mm. The LSTM model has a longer training time compared with the GRU
model, which utilized the least number of neurons and epochs. Thus, we suggest that either
of the models could be deployed for position prediction and error compensation to eliminate
motion lag between the master–slave platform during robot-assisted tool navigation.
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5. Experimental Study and Results

We performed in-silico and hardware-based experiments to validate the performance
of the RNN-based models when deployed within the slave robot. In addition, we im-
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plemented an open-loop control using the models’ prediction for error compensation to
achieve identical master–slave position mapping for uniform and varying input commands.

5.1. In-Silico Modeling and Evaluation

The in-silico experiments performed in CoppeliaSim Edu (Coppelia Robotics Ltd.,
Zurich, Switzerland) involve the conversion of the slave robot’s 3D CAD model to a unified
robot description format (URDF), which is then assembled within the simulation scene,
as shown in Figure 12. We parameterized the static and dynamic properties of the robot
to mimic the translation mode of the slave robot. To facilitate the position control of the
device, a prismatic joint and the global positioning system (GPS) provided feedback about
the device’s position and orientation. To evaluate the RNN model’s performance, a uniform
displacement command (5 mm) is transmitted to the slave robot, while a random value
(rand_val) represented by Equation (5) generates the uncertainties resulting in stepwise
error. For each step, the RNN model predicts the slave robot’s response based on input
motion variables prior to the robot’s translation. Afterwards, the difference between
the model’s prediction and the actual robot displacement is added to the initial slave
robot’s movement with the final error computed per step. This ensures that the slave
robot reproduces exact position commands received from the master platform, thereby
eliminating accruing errors within the slave robot along its traveling distance.

rand_val = σ × np. random.normal(0, 1) (5)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 21 
 

rand_val =  σ × np. random. normal(0, 1) (5) 

  

Figure 12. The slave device assembly and translational motion simulation in CoppeliaSim. 

5.2. In-Silico Results and Evaluation 

The in-silico analyses of the GRU and LSTM-based models are presented in Figure 

13. In Figure 13a, a comparison of the slave robot’s original and final response for a trav-

eling distance of 150 mm with a scalar value (σ) of 1.0 mm is shown. Although the original 

error rose to 40% (2.0 mm) of the input command for some steps, the minimum and max-

imum final errors were 0.001 mm and 0.1 mm (2% of the input command) per step. The 

figure shows that the GRU-based controller could predict the expected slave robot re-

sponse and then utilize this to regress the initial position error. Similarly, in Figure 13b, 

we present the performance of the LSTM model when the slave robot actuates under a 

uniform motion for a distance of 150 mm with a scalar value of 1.5 mm. The model pre-

dicted values indicate that the LSTM-based controller makes a good prediction of the slave 

robot response for a typical displacement of 5.0 mm, with a resultant final error of 1.25 

mm. Compared with Table 1, the neural-based models ensure higher precision and accu-

racy of master–slave position-tracking capability. Overall, the models are suitable for po-

sition prediction and error compensation within RCSs. 

  

Figure 13. The original position error of the slave robotic device is shown in the lower panel com-

pared with (a) GRU-based and (b) LSTM-based predictions for a distance of 150 mm with a transla-

tional step of 5 mm. 

5.3. In-RCS Results and Evaluation 

To validate the real-time usability of the learning-based models in the RCS, we uti-

lized the Jetson AGX Orin Development Kit (NVIDIA, Santa Clara, CA, USA) for the slave 

robot operation, and evaluated the model’s performance under uniform and varying in-

Figure 12. The slave device assembly and translational motion simulation in CoppeliaSim.

5.2. In-Silico Results and Evaluation

The in-silico analyses of the GRU and LSTM-based models are presented in Figure 13.
In Figure 13a, a comparison of the slave robot’s original and final response for a traveling
distance of 150 mm with a scalar value (σ) of 1.0 mm is shown. Although the original error
rose to 40% (2.0 mm) of the input command for some steps, the minimum and maximum
final errors were 0.001 mm and 0.1 mm (2% of the input command) per step. The figure
shows that the GRU-based controller could predict the expected slave robot response and
then utilize this to regress the initial position error. Similarly, in Figure 13b, we present the
performance of the LSTM model when the slave robot actuates under a uniform motion for
a distance of 150 mm with a scalar value of 1.5 mm. The model predicted values indicate
that the LSTM-based controller makes a good prediction of the slave robot response for a
typical displacement of 5.0 mm, with a resultant final error of 1.25 mm. Compared with
Table 1, the neural-based models ensure higher precision and accuracy of master–slave
position-tracking capability. Overall, the models are suitable for position prediction and
error compensation within RCSs.
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Figure 13. The original position error of the slave robotic device is shown in the lower panel compared
with (a) GRU-based and (b) LSTM-based predictions for a distance of 150 mm with a translational
step of 5 mm.

5.3. In-RCS Results and Evaluation

To validate the real-time usability of the learning-based models in the RCS, we utilized
the Jetson AGX Orin Development Kit (NVIDIA, Santa Clara, CA, USA) for the slave
robot operation, and evaluated the model’s performance under uniform and varying input
commands using the control block diagram presented in Figure 14. For a typical master’s
displacement (Mp), velocity (Mv), and the velocity ratio (Vr), the RNN model makes an
appropriate prediction (RNNp) and performs an error check. In addition, the slave robot
receives a compensated displacement value (that incorporates the difference between the
model’s prediction and the input command). Afterwards, the slave robot actuates for the
given step and the difference between the master and slave position (Sp) is computed as the
final error (motion lag) for that step. In Figure 15, we present the experimental setup for the
evaluation of the above control approach within the RCS using the neural-based controllers.
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The average performance of the GRU model for varying displacement commands
(3–5 mm) and a traveling distance of 120 mm by the slave robot is presented in Figure 16.
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The choice of 3–5 mm aligns with the experimental observation of an increasing motion gap
between the master and slave robot under uniform translational motion as presented in
Figure 7A,B. The figure shows the positive impact of the real-time compensating values for
input displacement such as 5 mm, thus maintaining the slave robot’s smooth translational
motion with a minimum and maximum error of 0.014 and 0.04 mm, respectively, as
shown in Figure 16. This infers the neural-based model’s suitability for prediction and
compensation tasks within the slave robot during catheterization and the realization of an
equivalent master–slave position trajectory for displacement steps above 1 mm.
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6. Discussion

This study further supports our approach to real-time detection and elimination
of the slave robot’s position errors during catheterization. We demonstrated that the
control approach has the potential to create steady master–slave motion and contribute
to procedural safety during R-PCI procedures. In addition, a comparative analysis of
existing control approaches for master–slave position tracking shows that the neural-based
controllers have a much lower maximum error compared with MLP-PID, ADRC, and
FSMC for in-RCS experiments, as indicated in Table 3. Although, RL-PID has the best
performance, the control method was only verified with simulation experiments. Overall,
we have presented a data-driven control approach for master–slave position tracking, which
leverages on neural network capability for robust features learning and representation from
training examples, thus yielding a higher precision, accuracy, and lower percentage error.

Table 3. Performance evaluation of the proposed method with existing studies.

Authors Control Method Experiment Type Max. Error (mm)

Ma et al. [24] MLP-PID Simulation/in-RCS 1.50
Omisore et al. [10] RL-PID Simulation 0.003

Zhou et al. [40] ADRC RCS 0.87
Wang et al. [28] FSMC Simulation 0.65

This study LSTM/GRU Simulation/in-RCS 0.04
Note MLP-PID—multi-layer perceptron-based PID controller; RL-PID—reinforcement learning-based PID con-
troller; ADRC—active disturbance rejection control; FSMC—fuzzy sliding mode controller.

Although single-board computers facilitate easy mobility of the robotic device, we
experienced hardware limitations deploying RNN models within Raspberry PI for real-time
error predictions. This study suggests the need for more powerful single-board computers.
The recent launch of Jetson AGX Orin seems timely; however, large-scale validation is
still needed. In addition, machine-learning methods using intelligent agents such as
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reinforcement learning would be operable within the RCS for state-based navigation or
task-specific autonomous control. Furthermore, adding reliable proximal and distal force
navigation data would enable learning the master–slave robot kinematics as well as tool
dynamics within the vasculature, which could lead to the development of a robust model
with the potential realization of closed-loop control during R-PCI. At present, acquiring
operator-based motion data is time-consuming and laborious. This is because fewer
displacement steps are covered within a full stroke under varying motion (Figure 7A–C)
compared with uniform translational motion (Figure 9a–c). However, such data contain a
higher degree of nonlinearities, thus are closer to real-world characterization of the slave
robot’s position error. While intraluminal navigation safety is at the top of patients’ safety
concerns during minimally invasive procedures, recent investigations show potential for
task-specific autonomy for tool navigation during R-PCIs.

In this study, we described the development of a custom-built master–slave RCS to
navigate endovascular tools. We further analyzed the causative factors for position errors at
the slave side of the robotic system using the displacement values at both master and slave
sides, their velocity, and backlash gaps. Thus, we proposed and validated using learning-
based control models for online error compensation in the RCS. The RNN models were
trained with master–slave forward motion profiles recorded from the RCS. Furthermore,
this study focused on the characterization and control of translational motion in the RCS.
However, a hybrid of translational and rotary motion is essential for semi-autonomous
navigation. To achieve this, high-resolution rotary encoders would be essential. Therefore,
further studies will seek to incorporate high-resolution rotary encoders and consolidate the
characterization and control of rotary motion. This would provide for the development
of a robust learning-based controller for translational and rotary motion during R-PCI.
In conclusion, this study has shown the feasibility and self-adaptability of neural-based
controllers with verification for RCSs towards achieving smooth translational motion
during minimally invasive treatment of CAD.
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