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Abstract: Grover’s search algorithm accelerates the key search on the symmetric key cipher and
the pre-image attack on the hash function. To conduct Grover’s search algorithm, the target cipher
algorithm should be efficiently implemented in a quantum circuit. Currently, small quantum comput-
ers are difficult to operate with large quantum circuits due to limited performance. Therefore, if a
large quantum computer that can operate Grover’s algorithm appears, it is expected that a cipher
attack will be possible. In this paper, we propose a parallel structure quantum circuit for the Korean
hash function standard (i.e., LSH). The proposed quantum circuit designed a parallel operation
structure for the message expansion (i.e., MsgExp) function and the mix function, which are the
internal structures of the LSH hash function. This approach shows an efficient result for quantum
circuit implementation in terms of quantum resources by reducing the depth of the quantum circuit
by about 96% through the trade-off of appropriate quantum resources compared to previous work.
This result can be a reference for the implementation of a parallel quantum circuit in the future and is
expected to advance the attack timing of the search algorithm for Grover’s LSH hash function.

Keywords: quantum computing; LSH hash function; Grover’s algorithm; quantum circuit

1. Introduction

Quantum computers can solve specific problems much faster than classic comput-
ers. Shor’s algorithm [1] and Grover’s algorithm [2], known as quantum algorithms, can
threaten the current cryptosystem. Shor’s algorithm poses a threat to the security of Rivest–
Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC), which are public-key
cryptography. The integer factorization and discrete logarithm problems used in the safety
of RSA and ECC are difficult problems on classical computers. However, using Shor’s
algorithm, this problem can be solved in polynomial time. Grover’s algorithm accelerates
the speed of finding specific data in unsorted data. Thus, Grover’s algorithm poses a threat
by accelerating brute-force attacks to find the key to symmetric cryptography. If O(n)
queries have to be performed for a brute-force attack in a classic computer, a quantum
computer can be performed in O(

√
n) queries. To prevent such quantum algorithm at-

tacks, the Institute of Standards and Technology (NIST) is working on standardization of
post-quantum cryptography. Recently, research has been conducted actively to optimize
symmetric key cryptography [3–17] and hash functions [18,19] as quantum circuits.

Current quantum computers are difficult to operate due to performance limitations
such as the number of available qubits and errors. The depth of a quantum circuit is
connected to the time step (i.e., time complexity) required for quantum operations executed
in quantum hardware [20–25]. Therefore, much research has proposed the implementation
of a quantum circuit that reduces the number and error (i.e., depth) of qubits in the
implementation of the quantum circuit.

With this research motivation, we propose a parallel-structured quantum circuit
for the LSH [26] hash function, a Korean national standard hash function designed in
Korea. We implemented a parallel structure using the parallel adder [27] for the message
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expansion function(MsgExp) and the mix function, which are internal functions of the LSH
hash function. The proposed parallel quantum circuit is designed to reduce circuit depth
through efficient trade-offs between quantum resources. We improved the sequential LSH
quantum circuit in previous work [19], greatly reducing the depth of the quantum circuit.
The sequential LSH quantum circuit of the previous work showed about 210,000 depth
based on LSH-256-n (i.e., n = 224 or 256) and about 420,000 depth based on LSH-512-m
(i.e., m = 224, 256, 384, or 512). On the other hand, the depth of the proposed parallel
quantum circuit is 6879 based on LSH-256-n. The proposed work reduced the depth by
about 96.73% compared to the previous work. As a result of resource estimation, the CNOT
and X gates increased, but the Toffoli gates, which are more expensive than the CNOT and
X gates, decreased. Therefore, we argue that this is an efficient trade-off. The structure
of this paper is as follows: Section 2, background knowledge about LSH hash function,
quantum computing, and Grover’s algorithm is explained. Section 3 describes the proposed
LSH quantum circuit, and Section 4 evaluates the quantum resources estimation result.

2. Background
2.1. LSH Hash Function

LSH is Korean national standard (KSM X 3262) hash function designed in Korea and
approved by the Korean Cryptographic Module Verification Program (KCMVP). LSH
operates in units of words (w = 32, 64) and has an n-bit output value. For this, we denote it
as LSH-8w-n.(family: LSH-256-224, LSH-256-256, LSH-512-224, LSH-512-256, LSH-512-384,
and LSH-512-512). The LSH hash function consists of initialization, compression, and final,
as shown in Figure 1.

Figure 1. Overview of LSH hash function.

In the initialization, the input message is padded in word (w) units and divided into
word-sized message blocks. For message m, “1” is appended to the end of m and padded
with “0” to make it 32wt-bits in length (t = d(|m| + 1)/32we). The padded message
mp = m0||m1|| · · · ||m32wt−1 can be represented as a 4wt byte array ma = (m[0], · · · ,
m[4wt− 1]). The 4wt byte array ma is converted to M = (M[0], · · · , M[32t− 1]) of the 32t
word array through Equation (1)

M[s]← m[ws/8 + (w/8− 1)]|| · · · ||m[ws/8 + 1]||m[ws/8], (0 ≤ s ≤ (32t− 1)) (1)

The word array converted through Equation (1) is divided into t message blocks
M(0), M(0), · · ·mt−1 according to Equation (2).

M(i) ← (M[32i], M[32i + 1], · · · , M[32i + 31]), (0 ≤ i ≤ (t− 1)) (2)

Concatenated variable (CV) is initialized with an initialization vector (IV). The initial-
ization vectors (IV) for LSH-256-224 and LSH-512-224 are shown in Tables 1 and 2. The data
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format is hexadecimal. LSH-256 uses 512-bit IV and LSH-512 uses 1024-bit IV to initialize
CV, respectively.

Table 1. Initialization vector (IV) for LSH-256-224 in hexadecimal.

IV[0] IV[1] IV[2] IV[3]

068608D3 62D8F7A7 D76652AB 4C600A43

IV[4] IV[5] IV[6] IV[7]

BDC40AA8 1ECA0B68 DA1A89BE 3147D354

IV[8] IV[9] IV[10] IV[11]

707EB4F9 F65B3862 6B0B2ABE 56B8EC0A

IV[12] IV[13] IV[14] IV[15]

CF237286 EE0D1727 33636595 8BB8D05F

Table 2. Initialization vector (IV) for LSH-512-224 in hexadecimal.

IV[0] IV[1] IV[2] IV[3]

0C401E9FE8813A55 4A5F446268FD3D35 FF13E452334F612A F8227661037E354A

IV[4] IV[5] IV[6] IV[7]

A5F223723C9CA29D 95D965A11AED3979 01E23835B9AB02CC 52D49CBAD5B30616

IV[8] IV[9] IV[10] IV[11]

9E5C2027773F4ED3 66A5C8801925B701 22BBC85B4C6779D9 C13171A42C559C23

IV[12] IV[13] IV[14] IV[15]

31E2B67D25BE3813 D522C4DEED8E4D83 A79F5509B43FBAFE E00D2CD88B4B6C6A

In the compression function (CF), the connection variable (CV) is updated using the
expanded message and the initial connection variable (CV). The t message blocks gen-
erated in the initialization step are used sequentially as input to the CF: W16 ×W32 →
W16. The compression function proceeds in four steps. (1) Message expansion (Msg-
Exp): W32 →W16(Ns+1), (2) Message addition (MsgAdd): W16 ×W16 →W16, (3) Message
mix (Mix): W32 →W16, (4) Word permutation (WordPerm): W16 →W16. Figure 2 shows
the process of the compression function.

Figure 2. Compression Function (CF) of LSH.

First, the message block M(i) entered in the compression function is expanded via
MsgExp into (Ns + 1) 16-word arrays M(i)

j (0 ≤ j ≤ Ns). If w = 32 then Ns = 26, if w = 64

then Ns = 28. Set the initial value of T(T = T[0], . . . , T[15]) with CV(i) and T is updated
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using the message in the Step function. The step function step : W16 ×W16 → W16 in the
compression function that processes the message works as follows:

Stepj := WordPerm ◦Mixj ◦MsgAdd, (0 ≤ j ≤ (Ns − 1))

The message expansion function (MsgExp) generates (Ns + 1) word arrays M(i)
j

(0 ≤ j ≤ Ns) from the i-th message block M(i) = (M(i)[0], · · · , M(i)[31]), which is
the input of the compression function. The message generation method is as in Equation (4).
In the MsgAdd function, an XOR operation is performed on the same index of two 16-word
arrays X and Y: MsgAdd(X, Y) := (X[0]⊕ Y[0], · · · , X[15]⊕ Y[15]). The mix function
updates T with two word pairs T[l], T[l + 8](0 ≤ l ≤ 7) for T = (T[0], · · · , T[15]). The
operation of the Mix function is as follows:

X ← X�Y; X ← X≪αj ; X ← X⊕ SCj[l];

Y ← X�Y; Y ← Y≪β j ; X ← X�Y; Y ← Y≪γl

The bit rotation amount used in the mix function is shown in Table 3. The bit rotation
amount varies depending on the word(w), even/odd steps.

Table 3. Bit rotation amount in Mixj,l .

w j α βj γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7

32
Even 29 1

0 8 16 24 24 16 8 0
Odd 5 17

64
Even 23 59

0 16 32 48 8 24 40 56
Odd 7 3

The final function (FINn : W16 → 0, 1n) generates the final hash value using
CV(t) = CV(t)[0],· · · , CV(t)[15] updated from compression. For the 8-word array
H = H[0],· · · ,H[7] and the w-byte array hb = hb[0], · · · , hb[w-1], the completion func-
tion FINn performs Equation (3) to output the final hash value.

H[i] = CV(t)[i]⊕ CV(t)[i + 8], (0 ≤ i ≤ 7),
hb[s] = H[(8s/w)≫(8s mod w)[7 : 0], (0 ≤ s ≤ (w− 1)),
h = (hb[0] | | . . . | | hb[w− 1])[0:n−1]

(3)

2.2. Quantum Computing

Quantum computers use the quantum mechanical properties of qubits: superposition
and entanglement to perform computations. A classic computer uses bits that have one
of the states 0 and 1, but a quantum computer uses qubits that can have both 0 and 1 at
the same time. Since qubits have both 0 and 1 probabilistically, 2n values can be expressed
with n-qubits and calculated at once.

Figure 3 shows the X, CNOT, Toffoli, and SWAP gate among the quantum gates that
control qubits.

The X gate performs like the NOT gate of a digital logic gate. A single qubit is used
as an input and the state of the input qubit is inversed. The CNOT gate has an entangled
state in which one qubit affects another. The two input qubits are divided into control
qubit and target qubit, respectively. When the state of one control qubit is one, the state of
the target qubit is inversed. In the Tofffoli gate, the state of two qubits affects the state of
one qubit. That is, three qubits operate in an entangled state. The three input qubits are
divided into two control qubits and one target qubit. When the state of both control qubits
is one, the state of the target qubit is inversed. The SWAP gate changes the position of
two qubits. Therefore, it does not use quantum resource cost. Current small-scale quantum
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computers have small usable quantum resources and small operable quantum circuits, so it
is important to implement efficient quantum circuits.

Figure 3. Quantum gates: X gate, CNOT gate, Toffoli gate, and SWAP gate.

2.3. Grover’s Algorithm

Grover’s algorithm [2] is a quantum algorithm that searches a space with n elements to
find the input data that generate the output of a particular function. Searching n unsorted
databases on a classic computer would require n searches. In quantum computers, Grover’s
search algorithm can find specific data through

√
n searches. So the time complexity is

reduced from O(n) to O(
√

n). As a result, Grover’s algorithm threatens symmetric key
cryptography because it reduces the time required for brute-force attacks.

Grover’s algorithm works with the Oracle and Diffusion operator, and the order is
as follows. First, Hadamard gates are all applied to the qubits of the data we want to find.
Second, the Oracle function f (x) returns 1 when x is the answer, and it revers the phase
of qubits representing the answer. Third, the diffusion operator increases the probability
of an answer by amplifying the amplitude of the correct answer qubits reversed through
the oracle. Through repetition of the oracle and diffusion process, the probability of the
answer exceeds the threshold, and as a result, x that exceeds the threshold becomes the
correct answer. Figure 4 shows the overall structure of Grover’s algorithm when x = 11 is
the correct answer. The two input qubits have a superposition state through the Hadamard
gate, and the state of the correct answer qubit is reversed in Oracle. The state of the reversed
qubits in the oracle is amplified by the Diffusion operator.

Figure 4. Grover’s algorithm (answer x = 11).

The brute-force attack on block ciphers with Grover’s algorithm is as follows. This is a
known-plaintext attack (KPA) that can be performed when the plaintext-ciphertext pair
of the block cipher is known. The n-bit key used in the cipher is targeted to a brute-force
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attack. The operation of Grover’s algorithm requires a quantum circuit for the target
cipher, and the quantum circuit operates inside Oracle. The quantum circuit in Oracle
performs encryption with plaintext and n-bit key as inputs. The plaintext is set to a known
plaintext using the X gate, and the Hadamard gate is applied to the n-bit key to making
a superposition state. Oracle uses superposition keys for encryption so it can have the
ciphertext for all keys in a single query. At the end of Oracle, set a known ciphertext to find
the key state that generates the same ciphertext as the known ciphertext. In Oracle, the
sign of the correct key is inverted, and the diffusion operator increases the probability of
measuring the correct key. It is known that the correct key can be found in about bπ

4

√
2nc

iterations of the Grover algorithm.
A pre-image attack on a hash function using Grover’s algorithm is similar to the case

of the block cipher. The hash function performs a Hadamard gate on the message, followed
by Oracle and the Diffusion operator. In Oracle, since the hash function is operated using
the superposition message, it is possible to have a hash value for all plaintexts with a single
query. At the end of Oracle, a known hash value is set to find a message that outputs a
known hash value. In Oracle, the sign of the correct message is inverted, and the diffusion
operator increases the probability of measuring the message. It is known that the correct
message can be found in about bπ

4

√
2nc iterations of the Grover algorithm.

3. Proposed Method
3.1. LSH Quantum Circuit

This section describes the parallel quantum circuit for LSH. In this paper, the parallel
operation is designed for the independently operable part of the LSH hash function. This
is designed to reduce the quantum circuit depth of LSH through an efficient quantum
resource trade-off. We implemented the message expansion(MsgExp) function and the
message mix(Mix) function in parallel. As a result, the parallel quantum circuit shows about
a 96% reduction in the depth of the quantum circuit compared to the previous work [19].
In message expansion(MsgExp) and message mix(Mix), which are internal functions of the
LSH hash function, each message is independently calculated in units of words. Therefore,
since they do not affect each other’s results, it shows that the depth of the circuit can be
greatly reduced by processing the operation of each message word in parallel. That is,
both functions can significantly reduce the depth of the quantum circuit by processing
the operation of each message word in parallel. We design the parallel operation in the
LSH using the parallel adder proposed by [27]. In a previous work, Song et al. [19] used
a sequential adder [27] in the LSH quantum circuit. The quantum adder is performed by
reusing 1-ancilla qubits. However, since the ancilla qubits used in the quantum adder are
reused, sequential operations must be performed even if parallel operations are possible.
The sequential adder uses (2n − 2) Toffoli gates, 4n CNOT gates, and (6n − 2) depth;
(n: bit length). Figure 5 shows the sequential addition operation in MsgExp. In this
adder, the message block pairs Mj, Mj−1 are calculated sequentially. Since 16 additions are
performed one by one, the quantum circuit has a depth of 16 × (6n−2). The sequential
adder of the LSH quantum circuit is inefficient in terms of quantum circuit depth because
it greatly increases the depth. As a result, the sequential quantum circuit of the previous
work was implemented at a depth of hundreds of thousands (#LSH-256-n : about 210,050;
#LSH-512-m : about 421,850).

We propose a method to utilize the adder in [27] as an efficient parallel quantum adder
in LSH. We design a parallel addition structure that uses an optimal quantum adder for the
LSH quantum circuit and has an efficient trade-off between quantum resources. The parallel
quantum adder uses (2n− 3) Toffoli gates, (5n− 7) CNOT gates, and (2n− 6) X gates, and
has a depth of (2n + 3). Figure 6 shows the parallel addition operation in MsgExp. In this
adder, the message block pairs Mj, Mj−1 are calculated in parallel. Since 16 additions are
performed at once, the depth of the quantum circuit is only (2n+ 3). The parallel adder
increases the number of CNOT and X gates. However, it reduces the number of Toffoli gates,
which is a more expensive resource than CNOT, X gates, and significantly reduces the depth
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of the quantum circuit. Consequently, we saw this as a very efficient trade-off. We describe
quantum circuits based on LSH-256-n. In fact, we show the result of reducing the total depth
by about 96% compared to the previous work by implementing the parallel structure. The
trade-off results for quantum resources are described in detail in Section 4.

Figure 5. Sequential addition in MsgExp function. (Depth: 16 × (6n−2)).

Figure 6. Parallel addition in MsgExp function. (Depth: only 2n+3).
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3.2. Parallel Quantum Circuit for LSH

In LSH, the addition is used for message expansion (MsgExp) and message mix
(Mix), and it has a characteristic that can be processed as a parallel adder. Each addition
operation unit in MsgExp and the mix does not affect the results of each other. Due to
this characteristic, the depth of the circuit can be significantly reduced using the parallel
adder. In LSH-256-n, 32 bits are processed in units of 1 word. In the LSH-256-n quantum
circuit, 1024 qubits are used in the padded plaintext M, 512 qubits for the connection
variable (CV), and 16 carry qubits are used in the parallel adder. In LSH-512-m, 64 bits
are processed in units of 1 word. In the LSH-512-m quantum circuit, 2048 qubits for the
padded plaintext M, 1024 qubits for the connection variable (CV), and 15 carry qubits are
used in the parallel adder. The overall operation process of LSH-256-n and LSH-512-m
is the same, but the output of each operation bit unit, step constant, and the final hash
value is different. Source codes of the proposed parallel structure LSH quantum circuit
are available in https://github.com/kyungzzu/Grover-on-SM3-and-LSH (accessed on 18
September 2022).

Figure 7. LSH quantum circuit for MsgExp and step function.

Figure 2 shows the progress of the MsgExp function and step function of the original
LSH hash function. That is, after expanding all messages through the MsgExp function, the
expanded message is used in the step function. This method is very inefficient in terms of
quantum resources because it requires qubits to store the entire expanded message. Therefore,
in the quantum circuit, the MsgExp function and step functions are iteratively performed, as
shown in Figure 7 to reduce the temporary qubits used for message expansion. For example,
by the message expansion equation M(i)

j [l]← M(i)
j−1[l]�M(i)

j−2[τ(l)] in Equation (4), the third
message block M2 is expanded by the addition operation of M1 and M0. τ(l) is the value
substituted by the permutation in Table 4. If the MsgExp and step functions are performed in
units of one message block when the M2 message block is used, M0 and M1 have already been
used, so the result of the expansion of M2 can be calculated in M0. In LSH-256-n, a 1024 bit
message is divided into Mi

k−1, Mi
k−2(0 ≤ i ≤ 15) of 1 word(1 word = 32 bit) each to perform

the step function. In LSH-512-m, a 2048-bit message is divided into Mi
k−1, Mi

k−2(0 ≤ i ≤ 15)
of 1 word(1 word = 64 bits) each to perform step function.

In summary, the proposed technique does not allocate qubits to store the updated M.
Instead, it saves qubits by generating new values for M used in the previous round. The
connection variable T[i], T[i + 8], (0 ≤ i ≤ 7) updates the value by performing the MsgExp,
Mix, and WordPerm functions, and finally obtains a hash value through the Final function
with the updated value. MsgExp generates 16 word message block M(i)

j (0 ≤ j ≤ Ns) for

message block M(i) = M(i)[0], . . . , M(i)[31] (32 bits) by using Equation (4). The adder used
to generate the next message is performed after bit permutation, where the bit permutation
τ(l) is shown in Table 4.

https://github.com/kyungzzu/Grover-on-SM3-and-LSH
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M(i)
0 ← M(i)[0], M(i)[1], · · · , M(i)[15] ,

M(i)
1 ← M(i)[16], M(i)[17], · · · , M(i)[31] ,

M(i)
j [l]← M(i)

j−1[l]�M(i)
j−2[τ(l)] , (0 ≤ l ≤ 15)

(4)

Table 4. Permutation table for the LSH expansion function.

l 0 1 2 3 4 5 6 7

τ(l) 3 2 0 1 7 4 5 6

l 8 9 10 11 12 13 14 15

τ(l) 11 10 8 9 15 12 13 14

In MsgExp, the addition operations of message block pairs (i.e., Mj−1, Mj−2, 2≤ j ≤ Ns)
are all independent, so the adders can be designed in parallel. Algorithm 1 shows the
computation for parallel addition in MsgExp. This adder uses 16 ancilla qubits c to store
carry values per message pair. Since the adder uses ancilla qubits cj individually, it can
perform parallel additions on pairs of input messages. As a result, the Algorithm 1 is run
concurrently for the number of message pairs.

Algorithm 1 Parallel quantum adder of LSH.

Input: Mk and Mk−1 pair, ancilla ck (1≤ k ≤ 16)

1: for i = 0 to 29 do
2: Mk−1[i + 1]← CNOT(Mk[i + 1], Mk−1[i + 1])

3: end for
4: ck ← CNOT(Mk[1], ck)

5: ck ← Toffoli(Mk[0], Mk−1[0], ck)

6: Mk[1]← CNOT(Mk[2], Mk[1])

7: Mk[1]← Toffoli(ck, Mk−1[1], Mk[1])

8: Mk[2]← CNOT(Mk[3], Mk[2])

9: for i = 0 to 26 do
10: Mk[i + 2]← Toffoli(Mk[i + 1], Mk−1[i + 2], Mk[i+2])

11: Mk[i + 3]← CNOT(Mk[i + 4], Mk[i + 3])

12: end for
13: Mk[29]← Toffoli(Mk[28], Mk−1[29], Mk[29])

14: Mk−1[31]← CNOT(Mk[30], Mk−1[31])

15: Mk−1[31]← CNOT(Mk[31], Mk−1[31])

16: Mk−1[31]← Toffoli(Mk[29], Mk−1[30], Mk−1[31])

17: for i = 0 to 28 do
18: X(Mk−1[i + 1])

19: end for
20: Mk−1[1]← CNOT(ck, Mk−1[1])

21: for i=0 to 28 do
22: Mk−1[i + 2]← CNOT(Mk[i + 1], Mk−1[i + 2])

23: end for
24: Mk[29]← Toffoli(Mk[28], Mk−1[29], Mk[29])
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Algorithm 1 Cont.

25: for i=0 to 26 do

26: Mk[28-i]← Toffoli(Mk[27-i], Mk−1[28-i], Mk[28-i])

27: Mk[29-i]← CNOT(Mk[30-i], Mk[29-i])

28: X(Mk−1[29-i])

29: end for

30: Mk[1]← Toffoli(ck, Mk−1[1], Mk[1])

31: Mk[2]← CNOT(Mk[3], Mk[2])

32: X(Mk−1[2])

33: ck ← Toffoli(Mk[0], Mk−1[0], ck)

34: Mk[1]← CNOT(Mk[2], Mk[1])

35: X(Mk−1[1]

36: ck ← CNOT(Mk[1], ck)

37: for i = 0 to 30 do
38: Mk−1[i]← CNOT(Mk[i], Mk−1[i])

39: end for

In Mix, adders operate in parallel for T[i] and T[i + 8] (0 ≤ i ≤ 7) pairs, respectively.
The result of the addition operation is stored in T[i]. Since addition operations of T[i] and
T[i + 8] do not affect each other, the parallel operation is possible. The adder used in Mix is
the same as Algorithm 1, and message block pairs (i.e., Mj−1, Mj−2, 2 ≤ j ≤ Ns) are changed
to T[i], T[i + 8] (0 ≤ i ≤ 7) pairs at the input. Algorithm 2 shows the quantum circuit
implementation of the Mix function. One Mix function is performed with two word pairs
T[i], T[i + 8], (0 ≤ i ≤ 7) and a total of eight Mix functions are operated per round. In the
Mix function quantum circuit, the a_rotation, b_rotation, and c_rotation functions of lines 2,
line 5, and line 7 perform index rotation. The rotation value is determined according to the
number of words (32-bit or 64-bit) and the j value of the step function Stepj. Since only the
swap gate is used in the rotation operation, additional quantum resources are not used.

Algorithm 2 Quantum circuit of the Mix function.

Input: T[i], T[i + 8], SC[i], (0 ≤ i ≤ 7)
1: T[i + 8]← Parallel_adder(T[i], T[i + 8])
2: a_rotation(T[i])
3:

4: Applying X gate to T[i] according to SC[i]
5: T[i + 8]← Parallel_adder(T[i], T[i + 8])
6: b_rotation(T[i + 8])
7: T[i]← Parallel_adder(T[i + 8], T[i])
8: c_rotation(T[i + 8])

4. Evaluation

The proposed LSH quantum circuit was evaluated using a quantum emulator (i.e., IBM
ProjectQ). Among various compilers provided by IBM, the ProjectQ quantum compiler
can estimate the resources of implemented quantum circuits. It measures the number
of Toffoli gates, CNOT gates, X gates, and qubits used in a quantum circuit. One of the
important elements of a quantum circuit is making it work with minimal resources and
depth. Currently, the number of qubits available in quantum computer technology is
limited, and it is efficient to reduce the quantum resource cost. The depth of a quantum
circuit is related to the time complexity required for quantum operations performed on
quantum hardware [20–25]. Therefore, many studies are being conducted to reduce the
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depth associated with errors on a noisy quantum computer. With this research motivation,
we have worked to reduce the number of quantum gates and qubits for the implemen-
tation of quantum circuits. Further, we devised a reduction of the depth of the quantum
circuit with an efficient trade-off between quantum resources. We designed a parallel LSH
structure using an optimal quantum adder for the LSH quantum circuit. As a result, the
parallel quantum circuit significantly reduces depth with an efficient trade-off in terms of
quantum resources. The adder in the previous work [19] performed addition sequentially
to reduce the ancilla qubits used. However, since LSH can be operated in parallel, such
sequential operation is inefficient because it greatly increases the depth of the LSH quantum
circuit. Table 5 shows the quantum resources of our previous work [19], and Table 6 shows
the quantum resources of the parallel LSH proposed in this paper. Compared with the
previous work, the proposed circuit uses an additional 15-qubit and uses more CNOT gates
and X gates, but uses fewer Toffoli gates. However, the Toffoli gate is a more expensive
resource than the X gate and CNOT gate. Due to this trade-off of quantum resources, the
circuit depth is greatly reduced. As a result, we argue for an efficient quantum circuit
implementation with a slight quantum resource trade-off. The depth of the proposed LSH
quantum circuit was reduced by about 96% compared to previous work.

Table 7 shows the resources required to perform a Grover attack on LSH using the
proposed quantum circuit. To get the correct result for the attack, the Grover’s algorithm
bπ

4

√
2nc times. LSH-256/512-n with n-bit hash length repeats the Grover’s algorithm

bπ
4

√
2nc times. Therefore, the quantum resource required for Grover’s algorithm attack is

calculated as (2 × Table 6 × bπ
4

√
2nc). The operation of the current small-scale quantum

computer is unclear for the proposed LSH quantum circuit. According to the quantum com-
puter development roadmap announced by IBM, it aims to develop more than 1000 qubits
by 2023 and 1K-1M qubits after 2024. We predict that an attack on the LSH hash function
will be possible after 2024 when the available resources of a large-scale quantum computer
reach the resources required for Grover’s algorithm.

Table 5. Quantum resource estimation results for the sequential LSH quantum circuit proposed
in [19].

Algorithm Qubits Toffoli Gates CNOT Gates X Gates Depth

LSH-256-224 1537 63,488 145,152 1536 210,051

LSH-256-256 1537 63,488 145,152 3492 210,049

LSH-512-224 3073 139,104 312,832 7663 421,851

LSH-512-256 3073 139,104 312,832 7696 421,851

LSH-512-384 3073 139,104 312,832 7668 421,850

LSH-512-512 3073 139,104 312,832 7680 421,852

Table 6. Quantum resource estimation results for our LSH parallel quantum circuit.

Algorithm Qubits Toffoli Gates CNOT Gates X Gates Depth

LSH-256-224 1552 62,464 170,752 59,392 6879

LSH-256-256 1552 62,464 170,752 59,392 6879

LSH-512-224 3088 138,000 375,760 134,688 14,517

LSH-512-256 3088 138,000 375,760 134,688 14,517

LSH-512-384 3088 138,000 375,760 134,688 14,517

LSH-512-512 3088 138,000 375,760 134,688 14,517
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Table 7. Quantum resource estimation result required for Grover’s algorithm of parallel LSH quan-
tum circuit.

Algorithm Toffoli Gates CNOT Gates X Gates Depth

LSH-256-224 1.91× 2128 1.3× 2130 1.81× 2128 1.68× 2125

LSH-256-256 1.91× 2144 1.3× 2146 1.81× 2144 1.68× 2141

LSH-512-224 1.05× 2130 1.43× 2131 1.02× 2130 1.77× 2126

LSH-512-256 1.05× 2146 1.43× 2147 1.02× 2146 1.77× 2142

LSH-512-384 1.05× 2210 1.43× 2211 1.02× 2210 1.77× 2206

LSH-512-512 1.05× 2274 1.43× 2275 1.02× 2274 1.77× 2270

5. Conclusions

In this paper, we proposed a parallel LSH quantum circuit that improved the previous
sequential LSH quantum circuit [19]. We compare the results of the quantum resource
estimation for the parallel quantum circuit of LSH with previous work and show the result
of reducing the depth of the quantum circuit by about 96% through an efficient trade-off
of quantum resources. Quantum resources required for a quantum preimage attack using
Grover’s search algorithm are determined according to the quantum circuit of the target
hash function. Therefore, the results of this paper are expected to advance the timing of
Grover’s search algorithm attack on the LSH hash function in the future.
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