
Citation: Zhang, X.; Zhou, W.; Li, H.;

Zhang, Y. Data-Driven Damage

Classification Using Guided Waves in

Pipe Structures. Appl. Sci. 2022, 12,

10874. https://doi.org/10.3390/

app122110874

Academic Editors: Hossein Bisheh,

Nan Wu and Yen-Fang Su

Received: 24 September 2022

Accepted: 24 October 2022

Published: 26 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Data-Driven Damage Classification Using Guided Waves in
Pipe Structures
Xin Zhang 1,2, Wensong Zhou 2,3,* , Hui Li 2,3 and Yuxiang Zhang 4

1 Northwest Institute of Nuclear Technology, Xi’an 710024, China
2 Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and

Information Technology, Harbin Institute of Technology, Harbin 150090, China
3 Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology,

Harbin 150090, China
4 Xi’an Research Institute of Hi-Tech, Xi’an 710025, China
* Correspondence: zhouwensong@hit.edu.cn

Abstract: Damage types are important for structural condition assessment, however, for convention-
ally guided wave-based inspections, the characteristics extracted from the guided wave packets are
usually used to detect, locate and quantify the damages, but not classify them. In this work, the
data-driven method is proposed to classify the common damages in the pipe utilizing the guided
wave signals obtained from numerous damage detection tests. The fundamental torsional mode
T(0,1) is selected to conduct the guided wave-based damage detection to reduce the complexity of
signal processing for its almost non-dispersive property. A total of 520 groups of experimental data
under different degrees of damage were obtained to verify the proposed method. Finally, with help
of a deep neural network (DNN) algorithm, all response data from the damages in the pipes were all
clearly classified with quite high probability.

Keywords: pipe; guided wave; torsional mode; damage classification; MLP

1. Introduction

Pipelines play an increasingly important role in modern industries for the supply and
distribution of required materials, such as natural gas, crude oil, steam, and hot water. They
usually have a long operating life of more than 50 years, meanwhile, they are easy to suffer
from aging defects and a wide variety of damages, which might result in terrible accidents.
Therefore, damage detection for pipelines has become increasingly necessary. The damages
in pipes usually include corrosion, seam weld cracks, stress rupture, material flaws, large
deformation, and externally induced damage by a third party, etc. Usually, different damages
lead to different influences and results, therefore, they are treated very differently.

Current pipe inspection methods include traditional ground-penetrating radar for buried
pipelines [1,2], new but not proven pipeline robotics [3], etc. In comparison, strain measure-
ment [4,5] and guided wave-based methods are more commonly used [6–10]. However, the
former requires installing sensors for the entire length of the pipe in advance, which is not
feasible in many practical situations. The latter has been proven to be effective and promising
for damage detection in pipes over a long distance, even if the pipeline is buried. It can cover
a large range of pipes from only a single inspection point. Moreover, guided wave-based
methods recognize damages through the reflection or the transmission wave signals, which
contain more information about the type, location, and degree of damage. They are extracted
by a variety of signal processing methods, such as fast Fourier transform, continuous wavelet
transform [11], singular value decomposition [12], principal component analysis [13], and
machine learning [14,15]. For these traditional damage detection methods, structural damage
is usually assumed to be the ideal shape, but no further differentiation is made. Therefore,
damage classification is necessary for structural assessment.
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In general, the damage type is related to its shape, which can be reconstructed through
the interaction of guided wave with damages. Kim and Park [16] presented a quantitative
study of the interaction of the T(0,1) torsional mode with axial and oblique defects in a
pipe employing reflection signals from the defects and the mode decomposition technique.
Muller et al. [17] used a circular network of piezoelectric disc transducers collect guided
wave signals and reconstructed damage images with the total focusing method. The
results indicate that crack- and hole-type of damages can be differentiated using geometric
circularity and eccentricity shape factors. Da et al. [18] presented an analytical approach
to reconstruct axisymmetric defects in pipelines using the torsional guided wave T(0, 1).
This approach employed the reflection coefficients of the guided wave T(0, 1) scattered
by different sizes of axisymmetric defects, and performed the reconstruction of defects by
the inverse Fourier transform. Zimmermann et al. [19] used the guided wave tomography
technique to map the corrosion thickness by transmitting guided waves. Zima [20] realized
the size and shape estimation by only three sensors through the reconstruction of the
shape of the reflected wavefront. Wu et al. [21] developed a damage shape recognition
algorithm, which can capture the damage shape by describing the coordinates of the
reflection point from the transducers to the damage edge. The above studies indicate that
damage differentiation mainly depends on a complicated transducer array or reconstruction
algorithm, which are difficult to carry out in the practical inspections.

A data-driven approach, by contrast, can overcome the difficulties of the complicated
mathematical-physical model involved in wave propagations [22]. Borate et al. [23] pro-
posed a data-driven approach to conduct damage detection using guided wave responses.
The high-fidelity finite element method was used to establish a comprehensive database,
and a neural network-based surrogate model was developed to relate the damage status
with key features from these responses. The results indicate that the proposed approach
could lead to an efficient damage detection. The data-driven model was also useful to pre-
dict waveform instead of the analytical model [22]. Moreover, data-driven methods based
on deep neural networks (DNNs) show great ability for damage classification, because of
the powerful data computing and analysis capability reported in recent research. Therefore,
DNN is employed in this work for damage classification using guided wave signals.

In the following part, the mode selection, excitation, and reception of ultrasonic guided
wave (UGW) in the pipe are introduced first. Additionally, the damage types in a pipe and
their interactions with UGW are then analyzed. In Section 4, the experimental procedures
are all illustrated in detail. Then, the multilayer neural network is built to perform damage
classification, in which the effects of the number of hidden layers, the activation function
and the noise level are all analyzed, followed by discussions and conclusions.

2. Mode Selection, Excitation, and Reception of UGW in Pipe

In pipe structures, there are three kinds of modes along the axial direction, which
are, respectively, the longitudinal modes L(0, n), the torsional modes T(0, n), and the
flexural modes F(m, n), where m and n are integers greater than zero, and represent the
circumferential order and the radial order. The longitudinal modes that simultaneously
contain the axial and radial displacements can be analogous to the Lamb wave in the plate,
and correspondingly, the torsional modes only containing the circumferential displacement
are similar to the SH wave in plate-like structures.

Figure 1 shows the group velocity dispersion curves of an aluminum pipe with an
outside diameter of 102 mm and a thickness of 1.5 mm. It can be seen that, multiple
modes exist at any frequency point, and at least two modes exist in a low frequency range.
As the frequency increases, more modes arise. In Figure 1, there are only the first three
modes displayed. It can be seen that the difference in the velocity of modes in the same
group becomes smaller as the frequency increases, thus resulting in difficult separation for
different modes in a high-frequency range.
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Figure 1. Group velocity dispersion curves of an aluminum pipe with an outside diameter of 102 mm.

From Figure 1, it is easily concluded that all the modes are more or less dispersive
in any frequency range except the basic torsional mode T(0,1), which is quite appropriate
for damage detection in the pipe because of the small waveform distortion. Moreover, the
guided wave of the torsional mode only including shear strain εθz and εrθ cannot propagate
in fluid, which greatly reduces the energy dissipation to the internal medium. When
the torsional mode is generated in pipe circumference uniformly, all the damage can be
detected and, concurrently, the other flexural modes will be restrained to avoid overlapping
between different modes.

Two methods, pitch-catch and pulse-echo, which take advantage of reflected and
transmitted waves, respectively, are usually used to inspect structural status. For the
former, the transmitted signals contain multiple unknown damage information and arrive
simultaneously, therefore, it is difficult to determine the specific damage location. In this
paper, the pulse-echo method is employed consequently. Moreover, the reflected signals
from damage can be considered as an indicator to quantify the damage.

3. Damage Types in a Pipe and Their Interactions with UGW

Commonly, there exist a variety of damage types for a pipe after long service, which
are, respectively, corrosion, dent, groove, hole, deposition, etc. Corrosion is the most
common damage type resulting from interactions with the media inside and outside the
pipe. There are several types such as pitting corrosion, uniform corrosion, corrosion under
cover, sediment corrosion, etc. The dent is formed often because of third-party action
such as the impact from excavators, weight extrusion, earthquakes, loose soil, etc. The
groove is caused due to the development of minor damages left during the construction
and manufacturing process or destruction by artificial factors. The hole is usually formed
by severe corrosion and leads to media leakage. The deposition usually results in the
thickening of the pipe wall, so it will not make a large difference to the waveform of the
guided wave signal. Once the first four types of damages are present, there will be a
significant safety problem. Therefore, in view of the above characteristics, the first four
types of damages are investigated in this paper to realize damage classification.

When the guided wave interacts with damage, reflection, transmission, and diffraction
signals are generated together, but in this work, only the reflected signals are analyzed. As
mentioned previously, each type of damage has its unique characteristic for classification.
Signals reflected from corrosion are usually longer in the time domain than signals from
other conditions, because the pipe corrosion often takes up some length and area, leading
to the reflected echoes overlapping each other. The third-party damage-like impact often
forms a dent, where reflected signals contain more peaks than the original excitation signal,
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even if the detection signal is non-dispersive. The received wave packets are followed by
some small wave peaks, which is mainly due to mode conversion in the front and rear
edges of the impact position. The response signals from the groove and hole are usually
regular and single, the amplitude of which is proportional to the damage size. Moreover,
signals reflected from the pipe end are different from others not only in amplitude and
frequency components, but also in the signal waveform.

Although these signal characteristics are different, as described, it is difficult to accu-
rately classify the damage type using signal processing and quantitative analysis methods
under real complex conditions. Taking advantage of a multi-layered perceptron, the more
deep-seated characteristics can be automatically excavated, and the underlying sophisti-
cated signal features can be easily learned to perform pattern recognition.

4. Experimental Investigations
4.1. Test Specimens and Setup

The specimens used in the experiment were a batch of thin aluminum pipes with
dimensions of 102 mm × 1.5 mm (outside diameter × wall thickness). The damage was
manufactured in a properly middle position along the axial direction. The guided wave
transducer was a single magnetostrictive one. With the help of the signal generation and
reception equipment (MsSRv5, SwRI, San Antonio, TX, US), the transducer can be used to
excite and receive the guided wave signals with the time-sharing mode, thus realizing the
pulse-echo mode, as shown in Figure 2.

Figure 2. Damage detection setup based on a guided wave using a magnetostrictive sensor.

The excitation signal f (t), defined as Equation (1), and its frequency spectrum are
shown in Figure 3, in which it can be easily seen that the excitation is a sinusoidal tone-
burst modulated by the Hanning window to restrain many side lobes at the center frequency
of 128 kHz. If the signal frequency is high, the energy attenuation is excessively severe
to detect for a long distance, and on the contrary, if the signal frequency is low, it is not
sensitive to minor damage. In real application, the excitation signal was controlled by two
channels to propagate mainly toward only one direction along the axial direction of the
pipe, which can be explained by Equations (2) and (3):

f (t) = a[H(t)− H(t− n/ fc)][1− cos(2π fct/n)] sin(2π fct) (1)

where a is the amplitude coefficient and equal to 100 here; H(·) denotes the Heaviside step
function; n is the cycle; and fc denotes the center frequency of the exciting signal.
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Figure 3. Excitation signal and its frequency spectrum: (a) excitation signal in time domain; and
(b) frequency spectrum.

Suppose that two channels of transducers were fixed at a pipe, as shown in Figure 4,
then signals in the left and right transducers can be expressed as s1 and s2, respectively.{

s1 = A1 sin(ωt + ϕ)
s2 = A2 sin(ωt + ϕ + ∆ϕ)

, (2)

where ω = 2πf is the circular frequency; and ∆ϕ is the phase difference, which needed to be
designed. In order to produce destructive interference in a certain direction, the amplitude
must meet the condition of A1 = A2 = A. The signal propagating towards the right sright and
left sleft are as follows:{

sright = s1 + s′2 = A sin(ωt + ϕ) + A sin(ωt + 2π d
λ + ϕ + ∆ϕ)

sleft = s′1 + s2 = A sin(ωt + 2π d
λ + ϕ) + A sin(ωt + ϕ + ∆ϕ)

(3)

where d is the distance of two transducers, and λ is the wavelength of the guided wave at
the frequency f. If only the guided wave propagating towards the right is needed, Equation
(4) can be obtained by solving Equation (3):{

d = [−2(k1 + k2) + 1] λ
4

∆ϕ = [2(k2 − k1) + 1]π
2

(4)

where k1 and k2 are both integers. For the simplest condition, d = λ/4, the phase difference
∆ϕ should be π/2.

Figure 4. Sketch map of two channels of transducers in the pipe, where A and B stand for the different
pipe ends.
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4.2. Dataset Preparation of Guided Wave Signals

A total of 520 guided wave signals were obtained following the above process. All
signals can be divided into five categories, as listed in Table 1. They were associated
with five cases of no damage, corrosion, dent led by impact, groove and pipe end, respec-
tively. To reduce the effect of measurement noise, the received signals were averaged over
50 repetitions of the experiment within 1 min.

Table 1. Damage types and number of signals.

Signal Type Number Typical Picture

No damage 70

Corrosion 70

Dent led by impact 100

Groove 80

Pipe end 200

Note: The yellow circle in the typical picture of groove stands for the groove position.

Ten signals for each type were plotted in Figure 5, in which the available signals were
intercepted as 100 µs length from their original test signals at the sampling frequency of
1 MHz. For every damage type, the signals were obtained from different sizes of damage
and different lengths of pipes to simulate as many damage states as possible. Furthermore,
they were measured at different times of day, which means that the experiments were con-
ducted under different environmental conditions. This increased the robustness of damage
classification. Moreover, the signals were normalized within the full range; therefore, the
amplitudes of intercepted signals were very different in Figure 5.

It can be seen from the time-domain signals of guided waves that the wave packets
have very complicated characteristics under different damage types and degrees. The rea-
son is the multiple mode conversions and interaction between guided waves and different
damages, which increase the difficulty of signal interpretation. By using a single signal fea-
ture, it is difficult to distinguish the signals under different working conditions. Therefore,
this paper uses the neural network to further process the signal. For conventional signal
analysis, some features are usually extracted for further analysis, such as the amplitude
and location of the peak in the time domain, the time-of-flight, the peak frequency, the
average frequency, and other statistic features. While for the neural network, the input
dataset is the original signals without processing, and the time-consuming is not seriously
affected during network training and testing.
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Figure 5. Typical reflected signals of the five types of damage: (a) echoes of no-damage; (b) echoes of
corrosion; (c) echoes of dent; (d) echoes of groove; and (e) echoes of pipe end.

5. Training and Validation of the Neural Network

For data-driven damage classification, a multi-layer ANN framework was established.
The neural network consisted of input, hidden, and output layers. In this section, the effect
of the number of hidden layers was investigated first. Then, the activation function effect
between tanh and ReLU was analyzed. Lastly, strong noise was considered to verify the
robustness of MLP for damage classification.

5.1. The Number Effect of Hidden Layers

The sizes of the input, hidden, and output layers were set to 100, 20, and 5, respectively.
The softmax function was selected as the classifier in the output layer, which is expressed
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in Equation (5). The activation function in the hidden layers is an all hyperbolic tangent
sigmoid function tansig, i.e., tanh, which solved the zero-centered output problem in the
sigmoid function. The expression and geometry image of tanh can be seen in Equation (6)
and Figure 6, respectively. To investigate the effect of the hidden layers number, neural
networks containing one and two hidden layers (called multi-layered perceptron, as shown
in Figure 7) were built, respectively. The results are shown in Table 2.

ŷi =
eai

∑n
l=1 eal

, i ∈ [1, n] (5)

where ai denotes the value before the softmax classifier in the neural network, n = 5 means
the category number, and ŷi is the prediction probability belonging to the category i, in
which the functional relation ∑n

i=1 ŷi = 1 must be met.

tanh(x) =
ex − e−x

ex + e−x tanh(x) =
ex − e−x

ex + e−x (6)

Figure 6. Hyperbolic tangent function tanh.

Figure 7. The neural network framework of MLP containing two hidden layers.

Table 2. Comparison of the number effect of hidden layers.

Hidden Layer Numbers Iterations Epochs Test Accuracy

1 20 88.5%
2 13 93.6%

From Table 2, it can be seen that the number of hidden layers severely affects the
recognition accuracy, and a neural network with two hidden layers is more effective for
processing guided-wave signals obtained from the pipe.
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5.2. Activation Function Effect between Tanh and ReLU

Two frequency-used functions tanh and ReLU were compared in this work. The ReLU
function shown in Equation (7) was simple, but it is an important achievement in recent years.

ReLU(x) = max(0, x) =
{

xifx > 0
0ifx ≤ 0

(7)

where max(·) refers to the larger value between two figures.
The neural networks framework plotted in Figure 8 were established with Python.

The loss function was usually set as the cross entropy as Equation (8). The regularization
term is always brought in to avoid overfitting, so correspondingly, the final loss function
is expressed in Equation (9), which can reflect the difference between the real label and
the prediction label. When the final loss function L′(yi, ŷi) is equal to zero, this means that
the prediction label is completely identical to the real label. In addition, the batch gradient
descent back propagation method is adopted to update the MLP parameters, considering
that the sample set is not very large.

L(yi, ŷi) = −∑n
i=1 yi log(ŷi) (8)

L′(yi, ŷi) = L(yi, ŷi) +
λ

2N ∑N
j=1 w2

j (9)

where yi represents the real labels, and in this paper, the labels yi = [1, 0, 0, 0, 0], [0, 1, 0, 0,
0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], and [0, 0, 0, 0, 1] correspond to the experimental conditions of
no damage, corrosion, dent, groove, and pipe end; λ is the regularization coefficient; and N
is the number of all the parameters wj.

Figure 8. The multilayer feed-forward neural network framework.

In order to accurately identify the signal type, an MLP with two hidden layers contain-
ing 32 neurons in each layer was employed. The final loss function L′(yi, ŷi) of the training
set was set to be below 5 × 10−3; the learning rate was 3 × 10−3; and the regularization
coefficient λ in Equation (9) was set as 1 × 10−5. After training with 420 samples randomly
selected in the gross 520 signal samples, the test result of what remained was obtained. The
corresponding training processes for the training set are shown in Figure 9, from which it
can be seen that the training process of the network containing two ReLU hidden layers
converged faster. The L’ of the neural network with tanh hidden layers dropped to 4.91
× 10−3 at 1244 epochs, and that with ReLU hidden layers dropped to 3.27 × 10−3 at 885
epochs. The training and test confusion matrices of these two kinds of multi-layer neural
network are shown in Figures 10 and 11, respectively. It is easy to obtain the conclusion
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that the ReLU activation function is more effective for the pattern recognition of guided
wave signals.

Figure 9. Training processes of the multi-layer neural network with different activation functions:
(a) tanh; (b) ReLU.

Figure 10. Training and test confusion matrices of neural network with tanh hidden layers:
(a) training confusion matrix; and (b) test confusion matrix.

5.3. Noise Effect

For investigating the validity of the proposed method in the presence of noise, Gaus-
sian noise was added to the guided wave signals with two different levels, SNR = 30 and
20 dB, respectively.

Then, signals were trained and tested by the multi-layer neural network with ReLU
hidden layers, which shows good results of almost 100% during the training process for
420 signals with both 20 dB and 30 dB SNR noises, but the test results of 100 samples, i.e.,
the recognition accuracy is, respectively, 88% for signals with 30 dB SNR noise and 82%
for signals with 20 dB SNR noise. These results were unable to meet the requirement in
the structural health monitoring (SHM) field, so it can be concluded that it is necessary for
guided waves to be filtered before pattern recognition. The test results of the signals with
30 dB and 20 dB SNR noise are displayed in Figure 12, which also shows that confusion
is easily made among the labels 1, 2, and 3—that is to say, the signals from no damage,
extensive corrosion, and dent led by impact.
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Figure 11. Training and test confusion matrices of neural network with ReLU hidden layers:
(a) training confusion matrix; (b) test confusion matrix.

Figure 12. Test results under the effect of noise: (a) SNR = 30 dB; and (b) SNR = 20 dB.

6. Conclusions

Due to the complicated mathematical-physical model involved in wave propagations
and interaction between guided wave and damages, it is difficult to identify the damage
type through the conventional guided wave signal processing methods. In order to solve
this problem, we proposed a data-driven method for the damage classification of pipeline
structures using reflected guided wave signals. This method can distinguish damage types
through the time-domain guided wave signals. The ability of the guided wave method is
improved for SHM. The specific conclusions are as follows:

(1) For guided wave signal processing, the ANN framework with two hidden layers
has higher classification efficiency and accuracy than the framework with only one layer.
The results show that the number of hidden layers seriously affects the recognition accuracy.
The neural network with two hidden layers can converge only after 13 iterations, reaching
94.6% classification accuracy. It is more effective for processing guided wave signals
obtained from pipes.

(2) Using ReLU as the hidden layer activation function has a better classification effect.
The recognition effects of two activation functions, tanh and ReLU, were compared on a
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training set containing 420 sample data and a test set containing 100 sample data. The
training process of the network with two ReLU hidden layers converges faster and is more
accurate for damage type recognition.

(3) By adding Gaussian noise with the SNR of 30 dB and 20 dB to the original signals,
the robustness to noise of the proposed method was investigated. The corresponding
recognition accuracy was 88% and 82%, respectively. Therefore, guided wave signals with
low SNR may lead to misjudgment, and filtering is necessary for the damage classification.
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