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Abstract: We numerically investigate mixed convective heat and mass transport in incompressible
nanofluid flow through an exponentially stretching sheet with temperature-dependent viscosity.
The fluid flow equations are transformed to a system of non-linear ordinary differential equations
using appropriate similarity transformations and solved numerically by using the multi-domain
bivariate spectral quasi-linearization technique. The fast convergence of the method is shown by
demonstrating that the error is exponentially small for a finite number of iterations. The significance
and impact of different fluid parameters are presented and explained. For engineering relevance, the
entropy generation number has been calculated for different fluid parameter values.

Keywords: entropy generation; variable viscosity; multi-domain bivariate spectral quasi-linearization
methods; nanofluids

1. Introduction

Nanofluids are advanced heat transfer fluids with applications in a large variety
of industrial processes. Over the last few years, the advancements in nanofluids have
generated considerable research interest on account of their novel features that make them
conceivably beneficial in a number of industrial processes, such as in glass blowing, cancer
therapy, plastic and polymer extrusion, micro-forming, and air conditioning.

The potential benefits and challenges of using nanofluids with controlled particle
characteristics for various heat transfer applications have been investigated by many re-
searchers. In particular, the ion-slip effects on MHD flow, which find applications in nuclear
power reactors, power generation, and in several areas of astrophysics and geophysics,
have been studied by [1,2]. The MHD free-forced convective nanofluid fluid flow over a
permeable medium was studied by Nadeem et al. [3]. The Casson nanofluid flow with
entropy generation was investigated by Haq et al. [4]. Considering mixed convection
on fluid flow is very significant for industrial applications, as free or forced convection
may not be enough independently to disperse adequate thermal energy. Rehman et al. [5]
examined the mixed convection in a water-based nanofluid in an MHD stagnation point
flow. In physical flows, a magnetic field may have a significant impact on the flow of
nanofluids. Fluid flow in electrical and magnetic fields may be used, for example, to control
the cooling rate. Such an implementation has been analyzed by Makinde et al. [6].

A source of heat (or sink) in a flowing fluid is increasingly becoming important to
researchers. These are important in manufacturing processes and other applications, which
include nuclear waste disposal, storage of food, and exothermic processes in reactors.
The effect of activation energy and an exponentially fluctuating temperature-dependent
source in MHD heat transfer was investigated in [7–10].
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A review of previous research shows that, when estimating the performance of ther-
mal systems, heat irreversibility is unavoidable and remains at the core of these processes.
The second law of thermodynamics is used in quantifying irreversibility in optimal thermal
system design. The generation of entropy is a criterion for the non-optimal operation of a
thermal system. Rashidi et al. [11] studied the generation of entropy in the flow of a convec-
tive nanofluid through a vertically expanding surface. Their research found that when the
Brinkman number increased, so did the level of chaos in the system. Almakki et al. [12,13]
presented the formulation for entropy generation in forced convection flow of radiative
viscous nanofluids. Hosseinzadeh et al. [14] calculated the entropy optimization for a
magnetized flow of a nanofluid with heat radiation. Aziz et al. [15] studied the volumetric
entropy production in a non-Newtonian fluid passing a stretched surface with linear ther-
mal radiation. More current relevant research addressing the optimization of entropy in the
direction of a stretched surface with varied flow parameters may be found in Pal et al. [16]
and the references therein.

The aim of the current study was to investigate entropy generation and the effect
of the Bejan number on 2-dimensional MHD viscoelastic incompressible nanofluid flow
through an exponentially expanding sheet. The influences of dominant factors such as
fluid buoyancy, viscous dissipation, heat absorption, and heat generation were studied by
Maleki et al. [17]. The flow over an impermeable surface in the presence of thermal radiation
and viscous dissipation was analyzed by Sharma et al. [18]. There are currently many
demands for heating and cooling processes using fluids containing metallic nanoparticles.
To control the rate of heat transfer in the vicinity of the expanded lamina, both entropy
and Bejan number play a key role. The governing partial differential equations (PDES) are
converted to non-linear ordinary differential equations (ODES) and solved numerically
using the multi-domain bivariate spectral quasi linearization technique (MD-BSQLM).
Using the MD-BSQLM approach, the linearized equations are solved numerically.

2. Problem Formulation

We investigated laminar free-forced convective mass-heat transportation along an
exponentially stretching surface in viscous incompressible fluid in a magnetic field. We
assumed that u → U∞ = axm is the stretching velocity, where m is the stretching rate,
Tw is the temperature at the surface, and T∞ is the ambient temperature, where Tw > T∞.
The magnetic field is aligned in y-direction to influence the velocity of the fluid, as shown
in Figure 1.

Figure 1. The flow schematic diagram.
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The steady, incompressible fluid flow equations for a viscous nanofluid flow under
these assumptions can be obtained as follows; see [19,20]:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=
1

ρ∞

∂

∂u

(
µ

∂u
∂y

)
+

σB2
0

ρ∞

(
U∞ − u

)
+ gβT

(
T − T∞

)
+ gβC

(
C− C∞

)
, (2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

Q0

ρ∞cp

(
T − T∞

)
+

16σ∗T3
∞

3k∗ρ∞cp

∂2T
∂y2 +

ν∞

cp

(
∂u
∂y

)2

+
σB2

0
ρ∞cp

u2 +

τ

[
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
]

, (3)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 − R0

(
C− C∞

)
, (4)

where u and v are the velocity components in x and y-directions, respectively; ρ∞, U∞, T∞,
ν∞, and C∞ represent the density, velocity, temperature, kinematic viscosity, and concen-
tration of the fluid in free stream, respectively; B0 is the external magnetic field applied in
y-direction; g is the acceleration; βC and βT are the concentration and thermal expansions,
respectively; α represents the thermal diffusion; Q0 represents the heat generation rate; k∗

is the mean absorption coefficient; cp is the specific heat of nanoparticles; σ∗ represents the
Stefan Boltzmann constant; σ and τ are the electrical conductivity and ratio of nanoparticle
heat capacity, respectively; DB is the Brownian mention; T and C are the temperature and
concentration distributions of the fluid, respectively; R0 is a chemical reaction parameter;
DT represents the thermophoretic diffusion coefficient.

The auxiliary conditions are

u = 0, vs. = 0, T = T∞, C = C∞ at y = 0,

u→ U∞ = axm, T → T∞, C → C∞ at y→ ∞. (5)

Equations (1)–(4) may be simplified using the variables [19]

ψ =

(
xU∞ν∞

)1/2

f (η, ξ), η = y
(

U∞

xν∞

)1/2

, ξ =
σB2

0
ρ∞U∞

x,

µ = µ0e−β1θ(η,ξ), θ(η, ξ) =
T − T∞

Tw − T∞
, h(η, ξ) =

C− C∞

Cw − C∞
. (6)

Using these transformations, continuity is satisfied and Equations (2)–(4) are reduced
to the following equations, where the velocity, temperature, and concentration fields are
denoted by f ′(η, ξ), θ(η, ξ), and h(η, ξ), respectively:

f ′′′ − β1 f ′′θ′ +
1
2

eβ1θ f f ′′ + eβ1θ

[
ξ

(
1− f ′

)
+ GrTθ + GrCh

]
= ξeβ1θ

[
f ′

∂ f ′

∂ξ
− f ′′

∂ f
∂ξ

]
, (7)

1 + Nr
Pr

θ′′ +
1
2

f θ′ + λξθ + Ec
[

f ′′
2
+ ξ f ′

2
]
+ Nbh′θ′ + Ntθ′

2
= ξ

[
f ′

∂θ

∂ξ
− θ′

∂ f
∂ξ

]
, (8)

h′′ + Le
1
2

f h′ +
Nt
Nb

θ′′ − LeR1h = Leξ

[
f ′

∂h
∂ξ
− h′

∂ f
∂ξ

]
. (9)
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In Equations (7)–(9), the parameters are given by

GrT =
gβT(Tw − T∞)x/ν2

∞
U2

∞ν2
∞

, GrC =
gβC(Cw − C∞)x/ν2

∞
U2

∞ν2
∞

, Nr =
16σ∗T3

∞
3k∗k f

,

Pr =
ν∞

τ
, λ =

Q0

σB2
0cp

, Ec =
U∞

(Tw − T∞)cp
,

Nb =
τ(Cw − C∞)DB

ν∞
, Le =

ν∞

DB
, Nt =

τ(Tw − T∞)DT
T∞ν∞

, R1 =
R0x
U∞

,

where GrT and GrC are the Grashof numbers for temperature and concentration, respec-
tively; Nr is the thermal radiation parameter; Nt is the thermophoresis parameter; Pr
and Ec are the Prandtl and Eckert numbers; λ is the heat generation (dimensionless); Nb
represents the Brownian motion parameter; and R1 is the chemical reaction parameter.

The transformed boundary conditions are

f (0, ξ) = 0, f ′(0, ξ) = 0, θ(0, ξ) = 1, h(0, ξ) = 1,

f ′(∞, ξ) = 1, θ(∞, ξ) = 0, h(∞, ξ) = 0, (10)

where the prime denotes the derivative with respect to η.
The important physical parameters for this flow with heat and mass transfer situations

are the local skin-friction coefficient, the local Nusselt number, and the local Sherwood
number, which can be defined as:

C fx = 2Re−1/2
x f ′′(ξ, 0), Nux = −Re1/2

x (1 + Nr)θ′(ξ, 0), Shx = −Re1/2
x h′(ξ, 0), (11)

where Rex is the local Reynolds number in x-direction.

3. Entropy Generation Analysis

The principal contributors to irreversibilities in the fluid include the heat transfer
through thermal radiation, viscous dissipation, magnetic field, and mass transfer, respec-
tively.

The volumetric rate of the entropy generation rate is written as (see [21,22])

S′′′gen =
1

T2
∞

[
k f +

16σ∗T3
∞

3k∗

](
∂T
∂y

)2

︸ ︷︷ ︸
heat transfer

+
µ

T∞

(
∂u
∂y

)2

︸ ︷︷ ︸
viscous dissipation

+
σB2

0
T∞

u2︸ ︷︷ ︸
magnetic field

+

RD
C∞

[(
∂C
∂x

)2

+

(
∂C
∂y

)2
]
+

RD
T∞

[(
∂T
∂x

)(
∂C
∂x

)
+

(
∂T
∂y

)(
∂C
∂y

)]
︸ ︷︷ ︸

mass transfer

. (12)

We define S′′′0 as the dimensionless entropy generation rate—see [12,23]—such that

S′′′0 =
k f

(
Tw − T∞

)2

T2
∞x2 . (13)
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The rate of entropy generation can be expressed as

NG(η, ξ) =
S′′′gen

S′′′0
= Re

(
1 + Nr

)
θ′

2
+

ReBr
Ω

ξ f ′
2
+ Σ

( χ

Ω

)2
[(

Re +
η2

4

)
h′

2 − ηξh′
∂h
∂ξ

+

ξ2
(

∂h
∂ξ

)2
]
+ Σ

χ

Ω

[(
Re +

η2

4

)
θ′h′ + ξ2 ∂θ

∂ξ

∂h
∂ξ
− ηξ

2

(
θ′

∂h
∂ξ

+ h′
∂θ

∂ξ

)]
+

ReBr
Ω

e−β1θ f ′′
2
. (14)

The parameters appearing in Equation (14) are defined as

Re =
U∞(x)x

ν∞
, Br =

µ∞U2
∞

k f ∆T
, Ω =

∆T
T∞

=
Tw − T∞

T∞
,

Σ =
C∞RD

k f
, χ =

Cw − C∞

C∞
, (15)

where Re is the local Reynolds number, Br is the Brinkman number, Ω is the temperature
difference, Σ is the dimensionless parameter, χ and R are the diffusion parameter and
universal gas constant, respectively, and D is the mass diffusion.

4. Method of Solution
4.1. Multi-Domain Bivariate Spectral Quasi-Linearization Method (MD-BSQLM)

The non-linear dimensionless ordinary differential equations were solved numerically
to a high level of accuracy using the MD-BSQLM [24]. In [25,26], the method was used
to solve equations describing the mixed convection flow of the power law and Casson
nanofluids. We use the method to solve the nonlinear system of differential Equations (7)–
(9), where we apply the multi-domain approach in the ξ-direction only. To use the multi-
domain concept, let ξ ∈ Λ, where Λ = [0, T], and consider the subdivisions

Λm = [ξm−1, ξm], m = 1, 2, · · · , p with 0 = ξ0 < ξ1 < ξ2 < · · · < ξp = T. (16)

If the solutions to Equations (7)–(9) are denoted by f (m)(ξ(m), η), θ(m)(ξ(m), η) and
h(m)(ξ(m), η), respectively, then in the first interval [ξ0, ξ1], the solutions

f (1)(ξ, η), θ(1)(ξ, η), h(1)(ξ, η), (17)

are obtained subject to the “initial” conditions

f (1)(0, η), θ(1)(0, η), h(1)(0, η). (18)

In each interval [ξm−1, ξm], (m ≥ 2), the continuity conditions

f (m)(ξm−1, η) = f (m−1)(ξm−1, η),
θ(m)(ξm−1, η) = θ(m−1)(ξm−1, η),
h(m)(ξm−1, η) = h(m−1)(ξm−1, η), (19)

hold. This process is repeated to generate a sequence of solutions

f (m)(ξ, η), θ(m)(ξ, η), h(m)(ξ, η). (20)

In the next step, we linearize the nonlinear system of Equations (7)–(9).
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4.2. Linearization

The non-linear terms in Equations (7)–(9) are converted into a recursive sequence with
linear components; see [27–29].

Applying the QLM technique to Equations (7)–(9) gives the following:

f ′′′(m)
e+1 + a1,e f ′′(m)

e+1 + a2,e f ′(m)
e+1 + a3,e f (m)

e+1 + a4,e
∂ f ′(m)

e+1
∂ξ

+ a5,e
∂ f (m)

e+1
∂ξ

+ a6,eθ
′(m)
e+1 + a7,eθ

(m)
e+1 + a8,eh(m)

e+1 = R1,e,

b0,eθ
′′(m)
e+1 + b1,eθ

′(m)
e+1 + b2,eθ

(m)
e+1 + b3,e

∂θ
(m)
e+1

∂ξ
+ b4,e f ′′(m)

e+1 + b5,e f ′(m)
e+1 + b6,e f (m)

e+1 + b7,e
∂ f (m)

e+1
∂ξ

+ b8,eh′(m)
e+1 = R2,e,

h′′(m)
e+1 + c1,eh′(m)

e+1 + c2,eh(m)
e+1 + c3,e

∂h(m)
e+1

∂ξ
+ c4,e f ′(m)

e+1 + c5,e f (m)
e+1 + c6,e

∂ f (m)
e+1

∂ξ
+ c7,eθ

′′(m)
e+1 = R3,e, (21)

where the variable coefficients ai,e, bi,e, ci,e and di,e(i = 1, 2, 3, . . .) are presumed to be known
from previous calculations and are given by

a1,e = −β1θ′e +
1
2

eβ1θe fe + ξeβ1θe
∂ fe

∂ξ
, a2,e = −ξeβ1θe

(
1 +

∂ f ′e
∂ξ

)
, a3,e =

1
2

eβ1θe f ′′e , a4,e = −ξeβ1θe f ′e ,

a5,e = ξeβ1θe f ′′e , a6,e = −β1 f ′′e , a7,e = β1eβ1θe

[
1
2

fe f ′′e + ξ(1− f ′) + GrTθe + GrChe − f ′e
∂ f ′e
∂ξ

+ f ′′e
∂ fe

∂ξ
+

GrT
β1

]
,

a8,e = eβ1θe GrC,

b0,e =
1 + Nr

Pr
, b1,e =

1
2

f (m)
e + Nbh′(m)

e + 2Ntθ
′(m)
e + ξ

∂ f (m)
e

∂ξ
, b2,e = λξ, b3,e = −ξ f ′(m)

e , b4,e = 2Ec f ′′(m)
e ,

b5,e = 2ξEc f ′(m)
e − ξ

∂θ
(m)
e

∂ξ
, b6,e =

1
2

θ
′(m)
e , b7,e = ξθ

′(m)
e , b8,e = Nbθ

′(m)
e ,

c1,e =
1
2

Le f (m)
e + Leξ

∂ f (m)
e

∂ξ
, c2,e = −LeR1, c3,e = −Leξ f ′(m)

e ,

c4,e = −Leξ
∂h(m)

e
∂ξ

, c5,e =
1
2

Leh′(m)
e , c6,e = Leξh′(m)

e , c7,e =
Nt

Nb
.

Here, the right-hand side terms Ri,e(i = 1, 2, 3) in Equation (21) are given below:

R1,e = f ′′′(m)
e + a1,e f ′′(m)

e + a2,e f ′(m)
e + a3,e f (m)

e + a4,e
∂ f ′(m)

e
∂ξ

+ a5,e
∂ f (m)

e
∂ξ

+ a6,eθ
′(m)
e + a7,eθ

(m)
e + a8,eh(m)

e − Ff ,

R2,e = b0,eθ
′′(m)
e + b1,eθ

′(m)
e + b2,eθ

(m)
e + b3,e

∂θ
(m)
e

∂ξ
+ b4,e f ′′(m)

e + b5,e f ′(m)
e + b6,e f (m)

e + b7,e
∂ f (m)

e
∂ξ

+ b8,eh′(m)
e − Fθ ,

R3,e = h′′(m)
e + c1,eh′(m)

e + c2,eh(m)
e + c3,e

∂h(m)
e

∂ξ
+ c4,e f ′(m)

e + c5,e f (m)
e + c6,e

∂ f (m)
e

∂ξ
+ c7,eθ

′′(m)
e − Fh, (22)

and the functions Ff , Fθ , and Fh are as defined in Equations (7)–(9).

4.3. Collocation

The interval ξ ∈ Λm ≡ [ξm−1, ξm] is transformed to s ∈ [−1, 1] using the linear
transformation

ξ =
1
2
(ξm − ξm−1)s +

1
2
(ξm + ξm−1),

and η ∈ [0, ∞] is transformed to x ∈ [−1, 1] using

η =
1
2

L(x + 1)
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where L is a number large enough to represent the condition at infinity. For collocation, we
use the Gauss–Lobatto collocation points defined as

xi = cos
(

πi
Nx

)
, sj = cos

(
π j
Ns

)
, i = 0, 1, . . . , Nx, j = 0, 1, . . . , Ns.

The Chebyshev differentiation matrix is as defined in [30], with respect to ζ. The gen-
eral form can be expressed as

∂n f (m)

∂xn

∣∣∣∣∣
(sj ,xi)

= DnF(m)
i ,

∂ f (m)

∂s

∣∣∣∣∣
(sj ,xi)

=
Ns

∑
q=0

d(m)
iq F(m)

q ,

∂nθ(m)

∂xn

∣∣∣∣∣
(sj ,xi)

= DnT(m)
i ,

∂θ(m)

∂s

∣∣∣∣∣
(sj ,xi)

=
Ns

∑
q=0

d(m)
iq T(m)

q ,

∂nh(m)

∂xn

∣∣∣∣∣
(sj ,xi)

= DnH(m)
i ,

∂h(m)

∂s

∣∣∣∣∣
(sj ,xi)

=
Ns

∑
q=0

d(m)
iq H(m)

q , i = 0, 1, . . . , Nx, (23)

where

Fi = [ f (sj, x0), f (sj, x1), . . . , f (sj, xNx)]
T , Ti = [θ(sj, x0), θ(sj, x1), . . . , θ(sj, xNx)]

T ,

Hi = [h(sj, x0), h(sj, x1), . . . , h(sj, xNx)]
T , d =

2d
ζm − ζm−1

, D =
2D
C

.

By applying Equations (21)–(23), we obtain(
D3 + a1,eD2 + a2,eD + a3,e I + a4,ed(m)

ii (D) + a5,ed(m)
ii I

)
F(m)

i,e+1

+

a4,e

Ns−1

∑
q=0
q 6=i

d(m)
iq (D) + a5,e

Ns−1

∑
q=0
q 6=i

d(m)
iq I

F(m)
q,e+1 +

(
a6,eD + a7,e I

)
T(m)

i,e+1

+a8,e H(m)
i,e+1 = RR1,e,

(
b0,eD2 + b1,eD + b2,e I + b3,ed(m)

ii

)
T(m)

i,e+1 +

b3,e

Ns−1

∑
q=0
q 6=i

d(m)
iq I

T(m)
q,e+1

+
(

b4,eD2 + b5,eD + b6,e I + b7,ed(m)
ii I

)
F(m)

i,e+1 +

b7,e

Ns−1

∑
q=0
q 6=i

d(m)
iq I

F(m)
q,e+1

+b8,eDP(m)
i,e+1 = RR2,e,

(
D2 + c1,eD + c2,e I + c3,ed(m)

ii

)
H(m)

i,e+1 +

c3,e

Ns−1

∑
q=0
q 6=i

d(m)
iq I

H(m)
q,e+1

+
(

c4,eD + c5,e I + c6,ed(m)
ii I

)
F(m)

i,e+1 +

c6,e

Ns−1

∑
q=0
q 6=i

d(m)
iq I

F(m)
q,e+1

+c7,eD2T(m)
i,e+1 = RR3,e, (24)
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where the bold variable coefficients represent diagonal matrices

RR1,e = R1,e −
(

a4,ed(m)
iNs (D) + a5,ed(m)

iNs I
)

F(m)
Ns ,e,

RR2,e = R2,e − b3,ed(m)
iNs T(m)

Ns ,r − b7,ed(m)
iNs F(m)

Ns ,e, and

RR3,e = R3,e − c3,ed(m)
iNs H(m)

Ns ,r − c6,ed(m)
iNs F(m)

Ns ,e, (25)

and I is an (Nx + 1)× (Nx + 1) identity matrix. The equation is then expressed in matrix
form as  A11i,j A12i,j A13i,j

A21i,j A22i,j A23i,j
A31i,j A32i,j A33i,j


 F(m)

i
T(m)

i
P(m)

i

 =


RR(m)

1,e

RR(m)
2,e

RR(m)
3,e

 (26)

where

A11i,i = D3 + a1,eD2 + a2,eD + a3,e I + a4,ed(m)
ii (D) + a5,ed(m)

ii I, A11i,j = a4,ed(m)
ij (D) + a5,ed(m)

ij I
A12i,i = a6,eD + a7,e I, A13i,i = a8,e I, A12i,j = A13i,j = A23i,j = A32i,j = 0

A21i,i = b4,eD2 + b5,eD + b6,e I + b7,ed(m)
ii I, A21i,j = b7,ed(m)

ij I

A22i,i = b0,eD2 + b1,eD + b2,e I + b3,ed(m)
ii I A22i,j = b3,ed(m)

ij I, A23i,i = b8,eD,

A31i,i = c4,eD + c5,e I + c6,ed(m)
ii I, A31i,j = c6,ed(m)

ij I A32i,i = c7,eD2,

A33i,i = D2 + c1,eD + c2,e I + c3,ed(m)
ii I A33i,j = c3,ed(m)

ij I, (27)

Here, Ars(i, i) is the diagonal of each matrix Ars(i, j), where r = s = 1, 2, 3.

5. Convergence Analysis

The convergence of the MD-BSQLM is discussed in this section. The convergence
rate is determined using the infinity norm of the error given by:

|| Qs+1||∞ = max
0≤ε≤Nx

|Qs+1 −Qs| for Q = ( f , θ, h). (28)

The differences between the approximate values of the functions at the current and
previous iterations are depicted in Figures 2 and 3. The convergence of the method is
achieved by the sixth iteration for both the functions and their derivatives. The graphs
show that the MD-BSQLM converges rapidly with a high degree of accuracy. The method
may be extended to solve other types of highly non-linear differential equations.
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Figure 2. Error in (a) f (η, ξ) (b) θ(η, ξ), and (c) h(η, ξ) for different values of ξ.
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Figure 3. Error in (a) f ′(η, ξ) (b) θ′(η, ξ), and (c) h′(η, ξ) for different values of ξ.
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6. Results and Discussion

In this section, we present tabulated results and graphical representations of different
features of the fluid flow and heat and mass transfer under the effects of several parameters.
The quantities of engineering interest, such as skin fraction and Nusselt and Sherwood
numbers are computed and presented in Table 1. The fluid flow equations were solved
numerically using the multi-domain bivariate spectral quasi-linearization method for the
chosen parameter values.

Table 1. Skin friction, and heat and mass transfer coefficients for β1 = 0.5, GrT = GrC = 0.5,
λ = −0.09, Ec = 0.05, Le = 0.4, and R1 = 0.3.

ξ Nt Nb Nr Pr C fx Nux Shx

5 3.0874257 −1.5088474 0.4653439
10 0.001 0.001 0.5 6.8 4.3131008 −1.9976737 0.9329592
15 5.2604334 −2.3949035 1.3198495
20 6.0620646 −2.7411796 1.6592534

0.001 5.187825 2.154772 −0.008580
10 0.3 0.001 0.5 6.8 5.488176 1.989699 −3.770309

0.5 5.656798 1.881303 −5.678613
0.7 5.803213 1.776072 −7.140323

0.001 6.003369 2.503334 −0.068861
15 0.001 0.1 0.5 6.8 5.992718 2.466485 −0.033776

0.15 5.988566 2.520528 −0.027644
0.2 5.970386 3.233199 −0.013723

0.001 5.198892 2.432598 −0.011509
10 0.001 0.001 0.1 6.8 5.196294 2.362772 −0.010779

0.2 5.193907 2.301212 −0.010132
0.3 5.191718 2.246864 −0.009559

A comparison with previously computed results is depicted in Table 2. These results
are comparable to those of Chamkha et al. [19] and Yih [31], which show that this method
is robust and gives accurate results.

Table 2. Comparison of the values of −θ′(0, 0) for different values of Pr.

Pr Chamkha et al. [19] Yih [31] Present Results
Finite-Difference Method Keller Box Method MD-BSQLM

0.1 0.142003 0.140034 0.1400343
1.0 0.332173 0.332057 0.3320571
10.0 0.728310 0.728141 0.7281412

100.0 1.572180 1.571831 1.5718323
1000.0 3.388090 3.387083 3.3870854

10, 000.0 7.300800 7.297402 7.2974001

Figure 4a,c show increases in velocity and concentration with higher values of the
variable viscosity parameter (β1). This is true from the Poiseuille law, as the pressure and
viscosity within the flow region increase, leading to the observed increase in both flow rate
and concentration. The fluid temperature reduces, as most of the thermal energy is lost
through convection and conduction to the walls of the sheet, as depicted in Figure 4b.
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Figure 4. (a) Velocity; (b) temperature, and (c) concentration profiles for different values of the
viscosity parameter.

Table 1 gives the computed skin friction and heat and mass transfer coefficients for
different values of the selected parameters. It is noted that the coefficient of skin friction
increases for higher values of the non-dimensional number (ξ), thermal radiation (Nr),
and thermophoresis parameters (Nt). The dynamic pressure on the surface of the sheet
is increased due to the force generated by an increased temperature gradient. The heat
transfer coefficient was observed to decrease with higher values of Nr and Nt and increase
with ξ. The exponentially stretching sheet of the vibrating sheet emits thermal energy
through conduction of the fluid particles, which causes the Nusselt number to decrease.
The Sherwood number increases with higher values of ξ and Nt and decreases with
an increase in the Brownian motion (Nb) or any thermophoresis parameter. The force
generated by the increased temperature gradient in the fluid causes an increase in mass
energy transfer through convection at the vibrating sheets, resulting in a higher mass
transfer coefficient. Similar results were obtained by [32,33].

Higher emitted thermal radiation increases the boundary layer temperature, as clearly
depicted in Figure 5a. Heat energy in the form of electromagnetic radiation is emitted
by the vibrating sheets and transferred to the fluid, causing the temperature to increase.
The concentration profiles decrease with higher values of Nr, as displayed in Figure 5b.



Appl. Sci. 2022, 12, 10809 12 of 15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ
(η
,
ξ
)

Ec = 0.05, λ = - 0.09
Ec = 0, λ = 0

Nr = 0, 2, 4, 6

(a)

0 1 2 3 4 5 6
η

0

0.2

0.4

0.6

0.8

1

h
(η
,
ξ
)

Nr = 0, 2, 4, 6

Ec = 0.05, λ = - 0.09
Ec = 0, λ = 0

(b)

Figure 5. The impacts of thermal radiation on (a) temperature and (b) concentration profiles.

The Soret effect is observed in Figure 6a–c. Higher values of the thermophoresis
parameter lead to increases in all three flow profiles. This can be explained by the fact
that the exponentially stretching sheet causes an upward shift in the temperature gradient.
The movement of fluid particles in the hot region and high energy levels displace the fluid
particles in the cold region, making the three flow variables increase. Similar results were
obtained by [34].
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Figure 6. Impacts of the thermophoresis parameter on (a) velocity, (b) temperature, and (c) concen-
tration profiles.

The impacts of the local Reynolds (Re) and Brinkman numbers (Br) on entropy gener-
ation are displayed in Figure 7a,b, respectively. Entropy generation increases with higher
values of the Reynolds number. The force due to the momentum of the fluid flow causes
the inertial forces to increase, and as a result, the irreversibility associated with the flow
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increases. A similar trend can be observed for the Brinkman number. With higher values of
Br, more thermal energy is produced by viscous dissipation than thermal energy produced
by molecular dissipation. This will thus mean slower heat conduction, and the temperature
rises, causing more entropy generation.

The influences of the temperature difference parameter (Ω) and the temperature
Grashof number (GrT) on entropy generation are depicted in Figure 8a,b, respectively.
Entropy generation can be observed to reduce with higher values of Ω; the opposite can
be observed with increasing values of GrT . The rate of entropy generation increases as a
result of increased buoyancy force due to spatial variation in the density of the fluid caused
by the temperature difference.
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Figure 7. The influences of (a) the local Reynolds and (b) Brinkman numbers on the entropy genera-
tion profiles.
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Figure 8. The influences of (a) the temperature difference parameter, and (b) temperature Grashof
number on the entropy generation profiles.

7. Conclusions

In this study, the physical influences of certain parameters on nanofluid flow and
heat-mass transfer past an exponentially stretching sheet, and entropy generation, have
been analyzed. From this study, we may conclude as follows:

1. The MD-BSQLM converges rapidly with a high degree of accuracy. The accuracy may
be enhanced by increasing the number of collocation points.

2. Increases in thermophoresis and thermal radiation parameters lead to increases in
both the skin friction and mass transfer coefficients.

3. An increase in thermophoresis, Brownian motion, or thermal radiation parameters
leads to a decrease in the rate of heat transfer.

4. The entropy generation rate can be minimized through the temperature difference
parameter and temperature Grashof number.
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