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Abstract: Deep learning has been applied in various fields for its effective and accurate feature
learning capabilities in recent years. Currently, information extracted from remote sensing images
with the learning methods has become the most relevant research area for its developed precision.
In terms of developing segmentation precision and reducing calculation power consumption, the
improved deep learning methods have received more attention, and the improvement of semantic
segmentation architectures has been a popular solution. This research presents a learning method
named D-DenseNet with a new structure for road extraction. The methods for the improvement are
divided into two stages: (1) alternate the consecutive dilated convolutions number in the structure
of the network (2) the stem block is arranged as the initial block. So, dilated convolution can obtain
more global context information through the whole network. Further, the D-DenseNet restructures
D-LinkNet by taking DenseNet as its backbone instead of ResNet, which can expand the receptive
field and accept more feature information. The D-DenseNet is effective because of its 119 M model
size and 57.96% IoU on the processing test data and 99.3 M modes size and 66.26% on the public
dataset, which achieved the research objective for reducing model size and developing segmentation
precision—IoU. The experiment indicates that the D-Dense block and the stem block are effective for
developing road extraction, and the appropriate number of convolution layers is also essential for
model evaluation.

Keywords: semantic segmentation; low-level road; information extraction; deep learning

1. Introduction

Recently, deep learning technology has been popular for its significant effects on the
image field, such as image classification [1], information extraction [2], prediction [3] and
semantic segmentation [4]. Convolutional neural networks (CNNs) are accepted as the
most effective method for image processing, and adaptations of convolutional networks
have been used to solve semantic segmentation problems. Image classification is a relatively
easy task in computer vision, because it only needs to classify one image that contains one
target object into the given set of categories, while prediction is difficult, because it needs
to focus on pixel-level and contextual reasoning [5]. Many application areas adopted these
CNNs, since they have better accuracy and efficiency. Convolutional kernel size is closely
related to the receptive field, a key parameter for semantic segmentation accuracy. In terms
of the kernel size problem, dilated convolution was proposed for expanding the receptive
field [6], which is suitable for dense prediction without a reduction in resolution, coverage
and parameters. D-LinkNet [7] is a popular method, and its backbone is based on LinkNet
with ResNet [8], which can match the image processing requirements without losing the
image pixel contents. Further, many networks were proposed based on D-LinkNet that can
obtain better accuracy for information extraction from various kinds of images, and deeper
CNNs are more effective for some special image tasks.
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Generally, more attention has been given to the structure of CNNs, and layers are
added for network efficiency. Farabet et al. proposed a Laplacian pyramid for transforming
the input images [9]. Pinheiro et al. presented a coarse-to-fine method to process multi-
scale inputting images [10]. Further, an encoder–decoder structure was popular for its
effectiveness, and many networks preferred to adopt such multi-scale context process-
ing [11–13]. In addition, some networks for semantic segmentation showed effectiveness
with a similar structure to that of the encoder–decoder structure [14]. The structure of
CNNs has been adjusted in various methods and has become an effective way to improve
the corresponding networks.

Many networks were improved by adjusting various enlarging rates of various kernel
sizes. In addition, different structures of images can be plugged into the mode [15]. Conse-
quently, an improved method was proposed by adjusting the kernel size with multiscale
context aggregation to develop the road extraction precision [16].

Low-level road extraction from satellite images presents many difficult tasks for
mapping complex scenes in the remote sensing field. For instance, roads are always narrow
and only occupy a tiny part of the whole image, so capturing this global feature is a difficult
job. Further, different kinds of roads have different surface features, such as diverse roads,
expressways, urban roads, mountain roads, and country roads. In addition, road areas
are covered with trees, cars and shadows in satellite images. The above factors make
automated extraction of roads from satellite images a difficult task. Many researchers had
applied deep learning method to information extraction with the remote sensing images,
and proposed effective results [17–19]. Further, classification has been given more attention
in the deep learning field [20,21]. Obviously, road extraction can be taken as a classification
problem, and each pixel is distinguished as in or out of a road [7]. In this research, an
improved network has been proposed combining dilated convolution layers and previous
layers in a building block, and D-LinkNet and the D-Dense block are also introduced in
networks for low-level road extraction. Meanwhile, the advantage of dilated convolution
and the D-Dense block can come with challenges. Further, the presented network has been
tested through controlled experiments with the research dataset and the public dataset.
The experiments show that the improved networks with the D-Dense block can develop
pixel-level accuracy for semantic segmentation, and model size and IoU are better than that
of other models after comparison.

2. Methods

From Section 1, network construction for semantic segmentations involves four basic
parts—the encoder, the decoder, the center part and the skip connection. First, the encoder
inputs images and extracts feature by stacking convolutional and pooling layers. Second,
the decoder restores the detailed features and expands feature maps with deconvolutional
layers. Third, the center part can be taken as a model for expanding the receptive field,
creating ensembles of features and obtaining simultaneous information. Finally, the skip
connection is responsible for reusing the feature maps to recover information from the
decoder path. The key factor in terms of accuracy is the design of the encoder path and the
decoder path. So, in Section 2, it is necessary to introduce the design of CNNs.

2.1. Review of CNNs

The whole convolutional network can be constructed by stacking many layers, such as
the convolutional layer, batch normalization (BN) [22], rectified linear units (ReLUs) [23],
pooling [24], and dropout [25]. Set xl as the output of the lth layer. For CNNs, xl is taken
as a non-linear transformation, Hl , to the output of the former layer, xl−1 [26]

xl = Hl(xl−1) (1)

where Hl is an integrated function including BN, ReLUs, pooling, dropout, or convolution
(Conv). The degradation problem of CNNs would become more serious if the network
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depth is deeper because of a vanishing gradient, which has been documented by normalized
initialization [27–29] and intermediate normalization layers [22].

In terms of the above problems and training suitable deeper networks, many re-
searchers introduced various structure networks, such as highway networks [30], stochastic
depth [31], and FractalNets [32]. The advantage of these networks is to solve the problem
by using a shortcut connection between the input and the output without more non-linear
transformations. The authors of [33] introduce a residual block (Figure 1) and plug a skip
connection to summarize the input and the output. xl can be expressed as:

xl = Hl(xl−1) + xl−1 (2)

where Hl is the repetition (2 or 3 times) of a block combined with BN, followed by ReLUs
and a Conv. With the shortcut connection, the gradient can flow from the deep layer to the
shallow layer in the backpropagation, which can avoid a vanishing gradient. So, a network
with more than one thousand layers with residual blocks can achieve the convergence aim.
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Figure 1. The structure of the residual block [33].

In terms of promoting the flow of information and gradients through the whole
network, DenseNets [34] introduces a new connection pattern among layers (Figure 2). The
dense block connects each layer in feed-forward fashion instead of the residual block. The
feature maps of all preceding layers can be taken as inputs, and the inputs are put into the
subsequent layers by concatenation. Different from ResNets, the network combined all
feature maps by concatenation instead of summation, to avoid impeding information flow.
Consequently, the lth layer obtains the outputs of the total preceding layers, x0, . . . , xl−1,
which are taken as inputs, and the output xl can be expressed as:

xl = Hl([x0, x1, · · · , xl−1]) (3)

where [x0, x1, · · · , xl−1] indicates the concatenation of the feature maps in layers 0, . . . , l− 1.
So, Hl is a composite function with BN, followed by ReLUs and a Conv. Because of its
dense connectivity, DenseNets can exploit the network potential through feature reuse.
Then, the output dimension for each layer, l, has k feature maps, and k refers to the growth
rate parameter, which can be set to a small value (e.g., k = 12) [26].
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Figure 2. The structure of the dense block.

Figure 2 shows that an input, x0, may be the input image at the initial position of the
network or the end of the last layer, and an output feature map, x1, with k channels is computed
by applying the transformation function, H1(x0). Further, x1 is stacked to the previous feature
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map, x0, by concatenation (i.e., [x1, x0]) and taken as input to the next layer. The similar
operation is repeated n times and presents a dense block with n× k feature maps (Figure 3).

The concatenation operation can bring more inputs, because 1× 1 convolution has
been introduced in the network as a bottleneck layer before each 3× 3 convolution for
decreasing the number of input feature maps [20,29], which can develop computational
efficiency. So, the dense block adopts a bottleneck design and produces 4k feature maps,
and Hl can be referred to as BN-ReLU-Conv(1× 1)-BN-ReLU-Conv(3× 3).
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2.2. The Construction of the D-Dense Block

Three consecutive dilated convolution layers are plugged after the original dense
block, and each layer has its expanding rate (2, 4 and 8) (Figure 4). Each dilated convolution
is set as BN-ReLU-Conv (1 × 1)-BN-ReLU-D_Conv. The computing process iterates n plus
3 times, then the D-Dense block generates feature maps by using channels (n + 3) × k.
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Each D-layer structure is shown in Figure 5. Here, r represents the expanding rate of
dilated convolution.
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2.3. The Structure of the Stem Block

The encoder path can be listed as follows: first, an initial block operates; second,
convolution performs on the input image with a kernel and 2 strides with max pooling.
Further, the output channels are set as 64, and the stem block is arranged instead of the
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initial block [35–38]. The stem block is set as three convolution layers (3 × 3) and one mean
pooling layer (2 × 2). There are 2 strides in the first convolution layer compared with
only 1 of others. Meanwhile, the output channels for each convolution layers are set as
64. The authors of [38] have demonstrated that the initial block would lose information
after two operations of consecutive down-sample, which is unable to recover the marginal
feature in the decoder phase. Since the stem block is good at detecting objects, even small
objects, the stem block is arranged as the initial position through the encoder phase. The
differences between initial and stem blocks are shown in Figure 6.
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2.4. Architecture of Semantic Segmentation Network

Here, the improved CNN with D-Dense block construction is named D-DenseNet
(Figure 7). We introduce D-Block, the center part of D-LinkNet, into our improved network.
Further, the proposed network uses a DenseNet backbone and took stem as the initial block.
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The symbol
[

k× k, s
m, n

]
in Figure 7 indicates that convolution kernel size is k× k, stride

is s, the input channel is m and the output channel is n. The Conv in Figure 7 indicates
BN-ReLU—Conv except the final convolution layer. In addition, Deconv is BN-ReLU-
Transposed-Conv.

D-Block contains four steps (Figure 8): the dilated convolution of 2 cascade modes
and 2 parallel modes. Meanwhile, different dilated convolutions have different expanding
rates. Further, each path presents different receptive fields, and the multi-scale context
information can be obtained.
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3. Experiments

The research experiments are performed on the processing dataset and the public
Massachusetts Road Dataset [39], respectively. The deep learning framework selects Ten-
sorFlow as the platform to train and test the relative networks. In addition, two sets of
NVIDIA GTX 2080 Ti GPU are bridged to guarantee computing power.

3.1. Datasets

The method is evaluated with the processing team dataset from the WorldView-4
satellite, including 6736 training images with a spatial resolution of 0.31 m and 1012
similar test images. After data augmentation including color jittering, horizontal flip
and vertical flip, the image is processed as 1024 × 1024. Finally, this research obtains
47,152 training images.

Further, we train and test the D-DenseNet on the Massachusetts Road Dataset [39]
with 1108 training images, 14 validation images and 49 test images. Since the image size is
1500× 1500, we cut the images into 1024 × 1024 because of memory limitations. The area
in an image is labeled as the foreground for roads and the background for other. Then, the
data are processed for the experiment.

3.2. Hybrid Loss Function

In previous research, only cross-entropy loss was applied for training models, which
is defined as:

Lce = −
1
N ∑N

i=0

(
y log y′ + (1− y) log

(
1− y′

))
(4)

Here, N means categories. y and y′ indicate the label and prediction vectors, respec-
tively. The hybrid loss function can be defined as:

Loss = L2loss + ∑N
i=1 BECloss(Pi, GTi) + lamda×∑N

i=1|Pi − GTi| (5)

Here, L2loss represents L2 regularization loss in the improved network.
∑N

i=1 BECloss(Pi, GTi) indicates binary cross-entropy loss with N training images. P repre-
sents the prediction result, while GT is the label image. In addition, ∑N

i=1|Pi − GTi| shows
the difference between prediction and label images on the pixel level. lamd indicates the
weight (set to approximately 0.7) in terms of total loss.
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3.3. Implementation Details

The method from [40] is selected as our optimizer. During the training period, the
learning rate is set as 0.0001, which would be decreased 10 times after the loss value,
decreasing slowly. In addition, the batch size in the training phase is set as 2.

4. Results and Discussion
4.1. Results on the Processing Datesets

The processing dataset is divided into simple, general and complex scenes, following the
position of the image contents. The three-level samples are shown in Figures 9–11, respectively.

The road areas are highlighted in the simple scenes, and only a tiny part of the
road areas is covered by shadows. The road areas around the building groups and some
parts of the road areas are covered by buildings, trees and shadows in the general scenes.
Greenhouses and buildings have similar features to the road, which will affect road area
extraction. Large parts of the road are sheltered by trees and shadows in the complex
scenes, which increases the difficulty of road extraction. The objective of these experiments
is to obtain the model size and IoU of each network with different layers. Then, we can
determine whether the proposed network is effective for precision (IoU) and computing
power consumption (model size).
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All networks selected in this research have effective performance for road extraction in
the simple scenes. The road areas are extracted precisely and almost closed to the labels. We
selected four networks to extract roads from satellite images. In the experiment, the number
of layers for D-LinkNet is 101, while, for other networks, the number of layers is set as 24. In
the simple scenes, the difference is not obvious. For Figure 10, all networks did not recognize
the highlighted greenhouses or highlighted buildings as road areas. However, there are
several road interruptions because of the shelters, especially in the third-row images. Only
D-LinkNet (101) can extract the road areas covered by trees. In contrast to the fourth-column
results and the fifth-column results in Figure 11, we find that the effect of the stem block is
better prediction than that of the initial block. In addition, long distance road areas can also
connect according to the context, while D-DenseNet (k = 24) + stem block is the best.
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In terms of the improvement of road extraction accuracy for the improved network,
various networks with D-Block are shown in Figure 7. The model size and IoU score of
different networks are shown in Table 1. D-LinkNet (k = m) indicates that the selected
network is constucted with a residual block and an encoder path has m convolutional layers,
DenseNet (k = m) indicates that the network was constructed with the dense block and
the growth_rate is m, and D-DenseNet (k = m) indicates that the network was constructed
with the D-Dense block and the growth_rate is m. These networks built on the dense block
have a smaller model size and a higher IoU score than those with a residual block. Further,
the networks with a stem block have a smaller model size and a higher IoU score than that
of the networks with an initial block. A smaller model scale can make the computation
more efficient. The results show that D-DenseNet shows better performance with a similar
model size.
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Table 1. Results on our test set of different models.

Model’s Description Model Size (MB) IoU (%)

D-LinkNet (50) + Initial Block + D-Block 792 51.370

D-LinkNet (101) + Initial Block + D-Block 980 52.360

DenseNet (k = 24) + Initial Block + D-Block 82.6 55.420

DenseNet (k = 32) + Initial Block + D-Block 139 53.390

DenseNet (k = 24) + Stem Block + D-Block 81.7 55.580

DenseNet (k = 32) + Stem Block + D-Block 137 54.610

D-DenseNet (k = 24) + Stem Block + D-Block 119 57.960

D-DenseNet (k = 32) + Stem Block + D-Block 152 57.650

4.2. Results Using the Public Dataset

To further verify the effectiveness of the proposed improved network, the Mas-
sachusetts Roads Dataset was also applied for network evaluation. The test images are
divided into two levels—general and complex scenes—following the position of the image
contents. The sample results of the two-level images are shown in Figures 12 and 13.
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For the complicated scenes (Figure 13), the road area includes various-level roads and
flyover roads, which would seriously affect the results from each network model. However,
D-DenseNet (k = 24) + stem block + D-Block shows better performance for extraction
including for the shadow-covered road.

After the experiments of model training and test, D-LinkNet, DenseNet and D-
DenseNet model size and IoU index were collected (Table 2). We found that the model size
of the network (the Dense-block and the D-Dense block) is much smaller than of those with
the initial block. Further, a lower size obtains higher IoU scores. In addition, the improved
D-DenseNet (k = 24) with D-Block has higher IoU scores than other networks, as shown
in Table 2.

Table 2. Results using the public dataset for selected models.

Model’s Description Model Size (MB) IoU (%)

D-LinkNet (101) + initial block + D-Block 1.070 63.10

DenseNet (k = 24) + stem block + D-Block 82.4 64.38

DenseNet (k = 32) + stem block + D-Block 111 63.02

D-DenseNet (k = 24) + stem block + D-Block 99.3 66.28

D-DenseNet (k = 32) + stem block + D-Block 169 65.25

5. Conclusions

Deep learning has been applied in various fields, and road extraction was devel-
oped with convolutional neural networks. This research proposes improved networks,
D-DenseNets, for reducing model size and increasing IoU scores. For the structure of
the improved networks, a D-Dense block module was proposed according to the dense
connection structure. In addition, D-DenseNet was constructed for semantic segmentation
by using D-LinkNet as the center part with a D-Dense block. Meanwhile, D-DenseNet also
introduced a stem block instead of an initial block for obtaining more detailed information.
The two datasets were used to build and evaluate. Low-level road extraction from the team
dataset of the WorldView-4 satellite showed that D-DenseNet (k = 24) + stem block has the
highest IoU score and a smaller size compared with the selected models. Further, the results
from public datasets showed that D-DenseNet not only the best IoU scores and a smaller
size, but better performance for extraction in complicated scenes. The two experiment
results show that the proposed D-DenseNet based on the D-Dense block shows better
performance than the original D-LinkNet and DenseNet in terms of IoU scores and model
size. So, the improved network can be applied for low-level road extraction.

In terms of model size and IoU scores, the function of each part of the network is
the next research area, and each hyperparameter in the training phase should be carefully
considered. Meanwhile, some postprocessing methods should be introduced to improve
the quality of output images, which are still necessary for further processing to improve
the presentation quality of low-level road extraction.
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