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Abstract: This work describes an approach for the Digital Transformation (DT) of a manufacturing
SME in the mold production industry. The phases for changing from manual and non-adding value
labor-intensive practices to digital and smart manufacturing configurations are described. Initially,
the needs of the SME are presented in terms of improving the planning and monitoring capabilities.
Following the requirements analysis, a set of digital functionalities are proposed and mapped to
the specific needs. The digital solution presented includes technologies such as the Internet of
Things, data management, intelligent production planning and web technologies. The industrial pilot
case has showed how the use of open-source off-the-shelf technology, integrated with the facility’s
legacy systems can reduce daily production management tasks and ease the burden of planning and
monitoring. The engineers and management team of the SME have acquired first-hand experience
on the benefits digitalization of process can bring to the organization that is valuable for proceeding
with the DT of the organization.

Keywords: digital manufacturing; digital transformation; industry 4.0; monitoring of manufacturing
systems

1. Introduction

Planning and monitoring of manufacturing systems to achieve desired performance
targets in terms of cost, quality, time and flexibility, is of paramount importance and
has received significant attention from researchers [1]. Under this perspective, industrial
processes could greatly benefit from the integration of Industry 4.0 digital solutions [2].
Industry 4.0 transition and the underlying Digital Transformation (DT) are believed to
provide manufacturing SMEs with valuable advantages vital to their future competitiveness
and survival, such as manufacturing productivity, reduced operating costs, improved
product quality and product innovation [3]. Research results show that SMEs do not
exploit all the resources for implementing Industry 4.0 and often limit themselves to the
adoption of Cloud Computing and the Internet of Things (IoT). SMEs find it difficult to
implement Industry 4.0 technologies due to a lack of economies of scale and their position
in the value chain. Many SMEs are mid-tier suppliers, they usually have limited impact
on the value chain and benefit from the digitalization of end products or implementation
of ‘manufacturing as a service concept. Hence the benefits of Industry 4.0 tend to accrue
to OEMs [4]. SMEs seem to have adopted Industry 4.0 concepts only for monitoring
industrial processes and there is still an absence of real applications in the field of production
planning [5]. Significant advantages in the domains of ubiquitous connectivity, intelligent
machines, IoT, adaptive user interfaces and intelligent user support have been achieved
in recent years. Smart factory technology envisages factories that are adaptive and able
to quickly react to changes either coming from internal factors (e.g., machine failure) or
external factors (e.g., an urgent high-priority customer order). Modern Cyber-Physical
Production Systems (CPPS) rely on the collaboration between production equipment and
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parts to be produced. Parts, sub-assemblies and products will be produced by loosely
defined production schedules that can be efficiently adjusted to the dynamic changes
in the shop floor. In many cases, the production schedule needs to be adapted due to
unpredictable situations such as machine break-downs, unplanned production orders,
missing materials, human errors and so forth [6].

This work proposes an Industry 4.0 solution for DT and investigates the digital
transformation of an SME that manufactures molds to ease the burden of planning and
monitoring. In chapter 2 the literature review is presented with a focus on Industry 4.0
and Digital Transformation technologies. Chapter 3 describes a system for digitalizing
production planning and monitoring. Chapter 4 presents the SME’s DT pilot case and
discusses the expected benefits as well as lessons learnt. Finally, chapter 5 concludes with a
discussion of the key findings and the way ahead.

2. Literature Review

The digital transformation in manufacturing mandates a transition of manufacturing
business models from “bolts” to “bits”, as mentioned in [7], where a framework for measur-
ing the digital transformation of manufacturing industries is presented. In particular, the
application of cyber-physical features in production systems holds the promise of enabling
a smarter production paradigm with higher productivity, efficiency, and self-managing
production processes allowing for innovative control and increased levels of automation,
as highlighted in [8,9]. Technologies such as cloud services and resource virtualization
are considered important drivers [10] along with low-code development platforms [11].
Such a digital transition requires as well standardized implementation protocols and more
important a realistic view of return on investment as highlighted in [12].

Recently, the COVID-19 pandemic has influenced dramatically the daily operations of
manufacturing firms [13] mandating them to drastically increase their efforts in their digital
transformation. Five industrial case studies showcasing the use of advanced information
and operational technologies in manufacturing are presented in [14], demonstrating the
increased automated support because of increased automation levels. Although the pan-
demic has intensified the need for manufacturers to incorporate Industry4.0 technologies,
the barriers to this happening are still present.

However, the capability of a firm to pursue and accomplish its digital transformation
is dependent on its capabilities and dynamic management profile. The authors in [15]
propose a systematic model for SMEs to better understand their capabilities and digital
maturity and identify their competence elements. In a similar approach, a framework for
the digital transformation of SMEs is provided [16]. The framework is also suggested for
benchmarking the capabilities relevant to the digital transformation of SMEs.

Considering that manufacturing companies including SMEs need digital solutions
to demonstrate increasing levels of resiliency in today’s market demands as well as dis-
turbances, such as the COVID-19 pandemic, novel solutions for production planning are
of major importance to improve their flexibility and adaptability. A literature review on
production scheduling in Industry 4.0 is presented in [17] including the review of 53 papers.
A conceptual framework for smart production planning and control in Industry 4.0 is
discussed in [18], including scheduling, job sequencing, controlling and data manage-
ment. A model for integrated planning and scheduling of engineer-to-order products is
presented in [19] using a mixed-integer programming formulation. The results indicate
a large computing time is required for large sized-instances. Also, a mixed integer linear
programming extended with a Lagrange relation method is used [20] for energy-efficient
scheduling under time-of-use pricing. The integration of industrial IoT with operational
technologies to support the dynamic scheduling and rescheduling operations in a personal-
ized production environment is proposed in [21]. Such approaches can enable data-driven
decision-making and control facilitating the adoption of proactive strategies for a resilient
and sustainable production system [22]. Regarding the knowledge that IoT data can reveal,
and that traditional scheduling methods ignore, [23] propose a cyber-physical architecture
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for dynamic scheduling using reinforcement learning techniques. Also in that direction,
a context-aware scheduling and control architecture is proposed by [24] and [25]. A man-
ufacturing ontology is adopted to formalize raw data into structured information while
rule-based control approaches are being followed in both. A Markov decision-making
process for scheduling in semiconductor fabrication is employed in [26], while a control
algorithm based on Kalman filters is discussed in [27] for non-stationary batch service pro-
duction, with promising results. In [28] they quantify the production recovery of SMEs in
the post COVID-19 era according to their openness to Industry 4.0 technologies, indicating
the importance of adaptive production planning and control in the management of the
disruptive effect generated by the COVID-19 pandemic.

It becomes clear that the resiliency of a manufacturing company when it comes to
production planning and scheduling is highly dependent on data acquisition and their
conversion to meaningful information. This work discusses a unified approach for enabling
the digital transformation of manufacturing companies, focusing on SMEs, regarding the
aspects of production planning and monitoring.

3. Method Description

This chapter presents the proposed solution for the system for Digital Transformation
(DT) of the mold production processes. As depicted in Figure 1, the proposed solution
consists of two main parts: the backend and the front end.

Figure 1. System architecture.

The “Data Acquisition” component of the proposed solution is an IoT stack supported
by FIWARE components. The main components integrated into the solution are the ORION
Context Broker to manage the application context and the IDAS IoT Agent (JSON-MQTT)
to mediate between an MQTT-enabled sensor and the context broker. The architecture of
the Data Acquisition solution is depicted in Figure 2. The main components are:

• The MQTT adapter (implementation of the MQTT client protocol) transforms non-
MQTT devices into MQTT-enabled devices. It transforms data from arbitrary formats
(XML, JSON, binary signals) into MQTT messages. The body of such messages follows
a JSON format, and its model is dictated by the IDAS IoT Agent.

• MQTT Broker is an essential component for transferring data fast, efficient and reliable
from shopfloor (connected IoT devices) towards an arbitrary number of client devices.

• An IDAS IoT Agent configured to serve as a proxy between the MQTT protocol
(supported by the mosquito MQTT broker) and the NGSI protocol (supported by the
ORION context broker).
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• ORION Context broker supporting the NGSI standard.
• The context listener component is a client of Context Broker which uses the NGSI

protocol to access context-related information and provide them towards the main
backed application through its dedicated ESB.

Figure 2. Data Acquisition Architecture based on FIWARE components.

In the backend system, the major layer is the business layer (represented in blue in
Figure 2) which consists of the following services/components:

• Enterprise Service Bus (ESB): The communication channel for data transfer from the
“Data Acquisition” (see Figure 1) system towards the “Business Layer”. (implemented
using Apache’s Camel and Active MQ)

• MES/ERP Interface: A generic Interface to communicate with MES/ERP systems. The
solution provides an API for production schedule creation and management. The API
is implemented through a set of Rest Services exchanging JSON formatted data.

• Data Services: This component provides the API for accessing the data managed by the
backend system. Again, these services/API are implemented as Rest services (JSON)
and are utilized to develop the “apps” in the Frontend layer.

• Notification & Alerts Service: This module provides the Frontend layer with simple and
complex events generated by the CEP component. The CEP component is precond to
fire complex events from the IoT data that each third-party application (in our case the
Front-End apps) can be registered to receive and act upon.

• Complex Event Processing (CEP): This component is connected to the ESB to retrieve
events from sensors and combined with historical information from the “Data Access
Layer” generates alerts and notifications. The generated events are preconfigured
through a rule-based system and upon their creation are propagated to the registered
services through the HTTP protocol as JSON messages.

• Data Analytics: This component is a group of services that produce high-level informa-
tion from the low-level shop floor and production data like business KPIs.

The other two layers, namely the “Data Access Layer” and “Persistence Layer” their
roles are to make sure that data are securely stored and efficiently retrieved from the
physical storage (RDBMS system).

The front end consists of the following apps:

• Shopfloor Operator Support App: This app (see Figure 3) is used to guide an Operator
to perform a “task”. Upon reaching a workstation, he scans his badge, and a list of
“products” and corresponding “machines” are presented to select and start/finish a
process. This application utilizes the assignments monitoring functionalities of the
backend system along with the work order configuration to get a list of assignments
and present the end user with the status of a product allowing them to advance it
(further process the product). Functionalities include:

a. Production plan monitoring
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b. Location of products on the shopfloor (user interface only, it utilizes backend
system functionality of sensor monitoring)

c. User Interface for Operator Support (personalized production plan per operator)
d. Alerts from the shop floor. Mainly information about machine breakdowns

derived from installed sensors.

Figure 3. Operator Support App allows user to “Finish” the current process.

• Production Schedule App: This application (see Figure 4) creates a production schedule
that is fed to the backend system services for monitoring. It provides capabilities for
facility configuration, bill of processes configuration and finally workload definition.
The core of the scheduling application has been based on advanced search [29] which
has been utilized also in other cases (e.g., [30]). The output is a set of work orders to
be released to the shop floor.

Figure 4. Production Schedule App.
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• Shopfloor Status App: This application (see Figure 5) provides the management person-
nel with a view of the shopfloor activities. It provides information about where each
product is located on the shop floor, what task each machine/resource is currently
running and finally metadata for the product, like what processes each product has
already finished (from the Bill Of Processes) and what would be the expected time of
the product to be available to be shipped to the customer.

Figure 5. Shopfloor status app–Orders monitoring view.

4. Industrial Pilot Case
4.1. Industrial Pilot Case Description

A mold is used for shaping materials into parts or products, and the mold production
industry is essential for the mass production of various products such as plastic ones.
Most mold manufacturing companies are SME companies (e.g., [1]), and therefore, it
is important to investigate methods to improve the digital maturity of such companies.
In molds’ production, the core business activities can be classified into three business
sectors: 1. Design and manufacturing of Injection Molds, 2. Design and manufacturing
of Cutting and Forming Dies and 3. Manufacturing of High Precision Parts. All products
and subcomponents are processed in the same resources and part flow covers most of
the machining centers, depending on the particularities of each case. Common ground
for all three of the above-mentioned business sectors is the demanding and complex
manufacturing processes and the high precision required. The first two sectors, best fit
the Engineer to Order business models, as the final products are unique, first-time-right
complex assemblies, which vary greatly in terms of functionality, lead times and cost.
Design, engineering and manufacturing start as soon as the customer demand comes in.
While, the third sector, best fits the Make to Order business model, since the parts produced
in single or very low-volume quantities, are engineered by the customer, and a detailed
CAD drawing is provided. The industrial pilot case will focus on the third sector, Make
to Order of High Precision Parts since it will allow for initial validation of the digital
manufacturing solutions to be introduced as the significantly shorter lead times, and the
more ordinary distribution of demand throughout the year, make it feasible to test and
demonstrate the functionalities of the proposed digital manufacturing solutions in real
conditions, via executing actual manufacturing orders. In addition, the company experts
are convinced that the results of the testing and validation can be transferred to the other
two business sectors. The basic differences are: (a) molds and dies are assemblies, but
a high precision part can be considered a component of such an assembly in terms of
manufacturing processes complexity and handling, and (b) mold and dies require design
and engineering before being introduced in the shop-floor as manufacturing orders, while
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for high precision parts, CAD drawings and engineering information are already available,
which makes the pilot case easier to implement and allow for early validation results.

The overall manufacturing operations are sub-optimal, and identified weaknesses,
described in this chapter, are also considered points of improvement, that can yield great
benefits if addressed efficiently.

• Planning & scheduling: There is no planning or scheduling taking place other than the
rough manual prioritization of the jobs in progress. Senior engineers and management
have a deep understanding of each project and the efforts required to complete it and
give instructions to the shopfloor personnel. Once a job is close to completion, or
finished on a specific resource or department, a decision is made about which job is
going to be processed next. Usually, to stay efficient and avoid resources staying idle,
waiting for instructions, departments are assigned to be occupied with the same project,
and engineers undertake projects personally so that they can manage them efficiently.
All instructions to the shop floor, and work assignments, are orally provided, and the
only information available is the order confirmation date and required delivery time.

• Monitoring & control: Since there is no schedule or production plan, following a project
during its execution can be very demanding. There is no overview of which job is being
processed in which machine since this information is dispersed among the operators
and responsible engineers and requires person-to-person communication. Possible
delays are identified only when it is already too late to respond. The timesheet-based
system of documenting efforts spent on each project is considered of low quality and
provides insight only after the completion of a task.

• Uninformed decision making: Given the lack of scheduling and monitoring of the manu-
facturing operations, a lot of personal and team efforts are required, to maintain the
system functioning. Priority conflicts are daily resolved informally on a personal level
or with short meetings of every stakeholder involved, and adaptations are being made
constantly. The impact of those adaptations is impossible to consider in detail and to
meet deadlines, a lot of extra working hours are required, leading to extra costs, which
again cannot be quantified. The same applies to each new order coming to the shop
floor since delivery times have already been agreed upon with little consideration of
the available capacity of the current period.

Overall, the lack of systematic support for planning and monitoring activities hampers
knowledge reuse and continuous improvement activities. Experience gained over the years
remains as tacit knowledge in minds of the engineers, while valuable information—such
as actual processing times—is not gathered, and thus cannot be used to plan an identical
(rarely) or very similar job in the future. Lack of data also makes improvements in the
manufacturing processes hard to implement and follow, since there is no hard evidence to
compare and assess.

Table 1 summarizes the main challenges faced by mold production industry and their
impact on the business side.

Following the analysis of the industrial needs, some Key Performance Indicators (KPIs)
have been defined (see Table 2) for measuring the success of the DT project. Then KPIs
are mapped to the new functionality to be provided. Table 2 below summarizes the main
functionalities provided by the proposed solution and how they contribute to the expected
benefit. This has helped in prioritizing the developments of the DT project and was also
used during the validation phase to assess the impact of the solution.

4.2. Validation and Lessons Learnt

The solution presented in chapter 3 has been validated in the industrial pilot case. As
presented in Figure 6 the digital solution has been deployed on the shop floor as follows:

• Two client workstations (PCs) to monitor the process execution by retrieving informa-
tion from the operators of the machines close to each of the workstations. A touch
screen was installed in each client workstation to allow for interaction with the opera-
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tors. A standard web browser (Google Chrome) was used for providing access to the
functionality of the apps.

• One Zigbee-enabled sensor for collecting energy consumption data from one produc-
tion machine.

• A server for local, on-site installation of the proposed solution. The backend part of
the solution was installed on the server side.

Table 1. Summary of main challenges and their impact on the business process.

# Challenge Business Impact

1 Planning, scheduling
and rescheduling

• Sub-optimal resource utilization.
• Extra working hours.
• Non-added value activities for engineers.
• Delays in projects’ delivery time

2 Shop-floor operator
support

• Human errors lead to quality problems and delays.

3 Monitoring and control

• Increased cost for documenting efforts.
• Delays in projects’ delivery time.
• Low-quality documentation of effort and time spent on

each project.
• Non-added value activities for engineers

4 Uninformed decision
making

• A lot of extra working hours are required, leading to extra
costs as the decisions are not based on data.

• New orders coming to the shop floor, since delivery times
have already been agreed upon with little consideration of
the available capacity of the current period.

Table 2. The expected contribution of digital tools to the company’s KPIs.

Functionality

KPIs

Increase
Resource

Utilization

Decrease Extra
Working Hours

Spent on
Schedul-

ing/Rescheduling

Decrease
Non-Added

Value
Activities for

Engineers

Reduced
Delays in
Projects’

Delivery Time

Reduce
Human Errors

that Lead to
Quality

Problems and
Delays

Reduce the
Cost of Doc-

umenting
Efforts

Improve the
Quality of the

Documentation
of Effort and

Time Spent on
Each Project

Production
Plan-

ning/Scheduling
High High High Average - - -

Support of the
employees

working on the
shop floor

Low - - - High - -

Location of
products on

the shop floor
- - High Average Average High High

Location of
operators on

the shop floor
- - High Average Average High High

Production
plan

monitoring
Average - High Average Low High High
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Figure 6. Solution deployment on the shop-floor.

All HW components, namely: server, client PCs and gateway were connected to the
same LAN through Ethernet cabling. In Figure 7 the deployment of the solution in an
operational shop-floor environment is presented.

Figure 7. Installation of HW/SW on the shopfloor during the experiments.

Both estimated measurements during the experiments and as well as experts’ judg-
ment have verified that the solution can bring a considerable impact on several business
processes (production scheduling, shop-floor operators’ activities/tasks and monitoring of
the production process). The validation tests have verified that the proposed DT approach
for supporting the operators on the shop floor and especially the interaction of the operator
with the product/part as well as the interaction with the shopfloor’s production plan is
technically feasible and the required modification in the established business process is ac-
ceptable. The required modifications, which introduce additional verification steps taken by
the operator through the solution, have been received by the operators and engineers with-
out major concerns. Finally, the expected impacts of the solution to the mold-shop that have
been identified in the early phases of the digital transformation project, such as increased
resource utilization, decrease extra working hours spent on scheduling/rescheduling, de-
crease non-added value activities for engineers, reduce delays in projects’ delivery time,
percentage of total time spent on documenting efforts and time spent on a project and
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percentage of erroneous data records have been verified through the experiments. An
exception was the human-errors reduction that had initially been overestimated, however
during the experiments it was evident that the solution marginally contributes to quality
improvements and that is mainly achieved by increasing the awareness of the shop-floor
operators on the sequence of the production steps. Table 3 below summarizes the expected
benefits for mold producers by applying the proposed DT solution.

Table 3. Business Performance Indicators (BPIs).

Business
Process

(BP)

Business
Objectives

(BO)

Business
Process

Indicator (BPI)

BPI
“As Is” Value

BPI
Target “To Be”

Value

BPI
Actual Value

Measured
Comments

Production
scheduling

Increase
resource

utilization

Percentage of
resource

utilization

80% resource
utilization

95% resource
utilization

(+20% increase)

90% resource
utilization
measured

Increase in
resource

utilization due
to efficient,
knowledge-

based,
automated

scheduling and
rescheduling.

Production
scheduling

Decrease extra
working hours

spent on
schedul-

ing/rescheduling.

Percentage of
time spent on

schedul-
ing/planning

30% of working
time is spent on
scheduling and
planning tasks

6% of working
time is expected
to be spent on

scheduling
planning tasks

(−80%
decrease)

0.8 h per 10-h
shift, which is
8% of the total
time spent on

schedul-
ing/rescheduling

Reduction of
extra working
hours spent on

schedul-
ing/rescheduling

due to
automated

scheduling and
rescheduling.

Production
scheduling

Monitoring of
the production

process

Decrease
non-added

value activities
for engineers

Percentage of
time spent on

non-added
value activities
for engineers to

document
production
monitoring
information

30% of
engineers’ time

spent on
documenting
production
monitoring
information

3% of engineers’
time is expected
to be spent on
documenting
production
monitoring
information

(−90%)

0.5 h per 10-h
shift→5% of

time spent for
documenting
production
monitoring

information by
the engineers

Reduction of
time spent in
documenting

efforts.

Production
scheduling

Monitoring of
the production

process
Shop-floor
operator

activities/tasks

Reduce delays
in projects’

delivery time

Percentage of
projects that

meet the
delivery dates

but with
additional

effort
(overtimes)

12.5% of the
projects meet
the delivery
dates with
additional

effort

8.75% of the
projects will

meet the
delivery dates

with additional
effort (−30%

decrease)

10% of the
orders/ projects

are “delayed”
in the sense that

additional
effort

(overtime) was
utilized.

Reduction in
projects failing
to meet delivery
times because
of improved

scheduling and
awareness of
the current
status (e.g.,

identify
machine delays

when they
occur)
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Table 3. Cont.

Business
Process

(BP)

Business
Objectives

(BO)

Business
Process

Indicator (BPI)

BPI
“As Is” Value

BPI
Target “To Be”

Value

BPI
Actual Value

Measured
Comments

Shop-floor
operator

activities/tasks

Reduce human
errors that lead

to quality
problems and

delays.

Percentage of
quality issues
due to human

error to the total
quality errors

70% of
human-related

errors to the
total number of
quality issues

60% of
human-related

errors to the
total number of
quality issues
are expected

(−10%
decrease)

2 parts out of 32
parts have a

forgotten step
by the human,

which
corresponds to
the 66.6% of the

total quality
issues

measured.

Reduction in
human-related

production
errors because
operators will

be operators be
provided

information
about their

workplan on
the shop-floor

Monitoring of
the production

process

Reduce the cost
of documenting

efforts.

Percentage of
total time spent

on
documenting

efforts

5% of total time
spent on

documenting
efforts

1% of total time
spent on

documenting
efforts is

expected (−80%
decrease)

6 min per
person, that is
1% of the total
time spent on
documenting

efforts

Reduction to
time spent on

non-added
value activities
for engineers to

document
production
monitoring
information

due to
automated
monitoring

functionality

Monitoring of
the production

process

Improve the
quality of the

documentation
of effort and

time spent on
each project.

Percentage of
erroneous data

records

10% of data
records from

monitoring the
production

process have
errors

1% of data
records from
monitoring
production
process are
expected to
have errors

(−90%
decrease)

1 erroneous
record per 10
days has been

measured
which is less

than 1%

Data is
automatically
recorded and
not manually

inserted.

From a technical and software systems perspective, it was clear to the development
team that the open-source components used (ORION and IDAS IoTAgent) are mature
solutions with straightforward integration steps within the backend system of the system.
Moreover, the execution performance of the FIWARE tools was also within the expectation
with no major issues identified in aspects like response times or stability.

On a technical scale, the solution demonstrates how a traditional manufacturing
system can be transformed into a CPS system by integrating IoT technology with smart
capabilities such as dynamic scheduling. In Table 4 key findings from the qualitative
analysis from the technical point of view are presented.
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Table 4. Experiment with qualitative analysis from a technical point of view.

Major Obstacles • No major obstacle has been identified.

Key Learning

• From a technical and software development perspective, it
was clear to the development team that the FIWARE
components used (ORION and IDAS IoTAgent) are mature
solutions with straightforward integration steps.

• Moreover, the execution performance of the FIWARE tools
was also within the expectation with no major issues
identified in aspects like response times or stability.

Best Practices

• Active engagement of the shop-floor personnel and
engineering department in the design process of the user
interfaces from the early phases plays a crucial role in the
user acceptance.

• Incremental deployment of the solution relieves
managerial/engineering personnel of the frustration of
changing business processes radically and communicating
the radical change to the shop-floor personnel.

• 1st installation we introduced the shopfloor screens to
operators allowing them to choose the task/part and
machine/process at will, without the restriction of following
a specific production schedule.

• 2nd installation we introduced the rules to be followed and
the application feedback which would guide the operators
in choosing the “planned” task/part for a predetermined
process/machine.

5. Conclusions

This work demonstrates a feasible way for manufacturing SMEs to adopt digital
manufacturing technologies that can bring benefits to their processes. Addressing real
industrial cases helps understand the real-world implications and thus provides practical
approaches to resolve them. The proposed technologies facilitate the digitization and
use of production and operational resource data within a mold production environment.
The DT project has brought improvements in capturing the production activity, both by
the operators and the machines, offering the capability to the production manager for
up-to-date information on the work-in-progress on the factory floor as well as the capability
to schedule and re-schedule the production to address disturbances in the environment.
Moreover, at the technical level, the DT project has shown that open-source solutions
used from the FIWARE community are mature ones which can be successfully integrated
into production environments. At an organizational level, the active engagement of the
shop-floor personnel and engineering department from the early phases plays a crucial
role in user acceptance. Moreover, incremental deployment of the solution relieves the
frustration of changing business processes from the management personnel as it allows for
smooth communication of the changes to the shop-floor personnel.

As the next steps in the DT project are under discussion, it is envisaged to enrich the
functionality of the existing apps. The Production Schedule app should be enriched with
functionality that will allow users to perform “quick” plans based on input scenarios for
estimating capacity and capabilities of the production to manage it. The Shopfloor Status
app will be enriched with additional views i.e., per department and WorkCentre as well
as with visual indication of production status (i.e., ahead green light, behind orange light,
overdue red light).
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