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Abstract: In this paper, the scattered surface waves created by a surface crack in a homogeneous,
isotropic, viscoelastic half space within a plane strain condition was studied. The amplitude of the
scattered surface wave in the far field was determined by using the reciprocity theory and a virtual
surface wave. It was shown that the amplitude of the scattered surface wave was related to the
crack-opening displacement and the crack length. In the special case of low frequency and low
viscosity, the tractions due to the incident surface wave applying on the crack surface can be regarded
as uniform, and a finite element method (FEM) based on rubber material was performed to verify
the theoretical results. It was shown that the numerical results were consistent with the theoretical
solutions, which proves the reliability of the theoretical analysis. The reciprocity theorem avoids
complex integral transformation and reveals the relationship between the scattered surface wave and
the size of the surface crack, which is promising in the characterization of surface cracks.

Keywords: surface crack; scattered surface wave; reciprocity theorem; crack length and depth

1. Introduction

Rubber is a common engineering material, which plays a very important role in
engineering construction and industrial production. Rubber material has many excellent
properties; it can withstand a very large load without damage and can be completely
recovered after the load disappears, so it is widely used in rubber bearings, buffers, bearings
and other components [1]. However, when there are surface cracks on rubber, cracks under
the action of fatigue load will endanger the integrity of the workpiece and may cause
serious accidents [2,3]. Therefore, the detection of cracks is particularly important.

Ultrasonic nondestructive testing (NDT) has been extensively used in the detection
of cracks because of the advantages of low cost, convenient operation and high detection
accuracy. Ultrasounds consist of bulk waves (longitudinal wave, shear wave) and surface
waves. Since the energy of the surface waves only distributes near the free surface, they are
very sensitive to surface cracks. Therefore, many studies [4–6] have been devoted to the
detection of surface cracks by using scattered surface waves.

For theoretical studies, with the development of computer technology, the finite ele-
ment method (FEM) [7], boundary element method (BEM) [8,9] and several other advanced
numerical methods [10,11] are widely used to study the scattering of surface waves caused
by surface cracks. However, the common shortcoming of these numerical methods is that
they cannot obtain accurate analytical solutions.

In order to obtain explicit expressions of ultrasonic waves, a better way is to formalize
the relationship between crack and scattered waves based on wave mechanics. Bövik
and Boström [12] solved the scattering elastic wave field of the subsurface strip crack by
using the surface integral equation and the semi-infinite space Green’s function tensor,
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and calculated the far-field scattering wave field after the incident wave field emitted
by the ultrasonic probe acted on the crack. Kang et al. [13] solved a new and validated
model using a Gauss–Legendre quadrature, which provides an effective method for solving
parametric relationships of wave scattering. This method avoids the acquisition of a large
number of experimental data through theoretical deduction and has a reliable accuracy.
Pecorari et al. [14] investigated the nonlinear scattering ultrasonic waves from surface-
breaking cracks that were partially closed. It was found that when the vertical shear wave
was incident on the surface crack at an angle slightly higher than the critical angle of the
longitudinal wave, the nonlinear responses of the crack were maximum, and the second
harmonic generation efficiency was the highest when the incident angle was close to the
critical angle of the longitudinal wave. Nevertheless, these studies all needed to carry on
the complicated separation variable and the integral transformation.

To simplify the calculation, a reciprocity theorem for the classical linear elastic con-
dition has been proposed by Betti [15]. Then, Rayleigh [16] gave a more general theorem
for the case of the elastodynamic problem. Although the reciprocity theorem has been
proposed and studied for more than a century, it has not been widely used to actually solve
elastodynamic problems. In recent years, Achenbach [17] proposed a simpler method based
on the principle of the reciprocity theorem to actual calculate the wave fields. Kino [18]
studied the scattering ultrasound from small flaws using the reciprocity theorem in Born
approximation. Nevertheless, the flaws are not surface cracks. Phan et al. [19,20] used the
reciprocity theorem to determine the solution of the surface waves generated by surface
force sources under elastodynamic conditions, and they obtained a scattered surface wave
by a surface cavity. Then, they used the reciprocity theorem to study the scattered wave
fields of multiple surface cavities [21]. For surface crack, Achenbach [22] used the reci-
procity theorem to determine the radiating surface wave by a surface-breaking crack, which
was under uniform tensile stress composed of a constant and a superimposed cyclic tensile
stress. However, for nondestructive detection using surface waves, there are normal stress
and shear stress on the crack surface caused by incident surface waves due to the properties
of surface wave [23]. Pecorari [24] used crack-opening displacement and reciprocity theory
to explore the scattered Rayleigh wave by a surface-breaking crack, of which the faces were
partially contacted. The work was modeled based on the quasi-static approximation and
two different contact conditions were studied, whereas these studies were carried out on
homogeneous, isotropic, linear elastic materials.

For studies of materials that are not linearly elastic, Mardanshahi et al. [25] proposed a
model-independent viscoelastic characterization method to identify and classify the matrix
cracking in polymeric composites based on the Lamb wave propagation method. Cas-
taings et al. [26] evaluated complex wavenumbers of guided waves in viscoelastic materials
using a numerical and asymptotic approach. Petia et al. [27] explored the propagation of
elastic waves in a complex geological media, which was characterized by the inhomogeneity
and transverse inhomogeneity of the material parameters varying with depth in the lateral
direction. In these studies, either numerical methods were used or complex integrals were
required. Using the simple reciprocity theory, Achenbach [28] determined the motion of a
radiating surface wave with a time-harmonic point load, which was applied normally to the
free surface of a material whose elastic moduli and mass density depended on the depth.

In this paper, the amplitudes of scattering surface waves caused by a vertical surface
crack under normal and shear stresses of incident surface waves were calculated by using
the elastic dynamic reciprocity theorem. The displacement integral was approximated
when the crack length was sufficiently smaller than the wavelength of the incident surface
wave and the viscosity of the material was low. For this special case, explicit analytical
solutions were determined, and it was shown that the amplitudes of the scattered surface
waves were dependent on the crack length and depth. Numerical calculations based on the
finite element method were carried out to verify the theoretical analysis, and the two results
were found to be in good agreement. It can be seen that using the reciprocity theorem
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is of great value in the crack scattering problem, which can avoid the complex integral
transformation formula.

2. Incident Surface Wave and the Scattering Problem
2.1. Incident Surface Wave

When a wave propagates in a viscoelastic material, viscoelasticity will cause the
dissipation of wave energy, which is manifested as wave attenuation and wave dispersion.
In the uniform isotropic viscoelastic two-dimensional half plane defined by the x-z axis, the
displacement field of the incident surface wave can be expressed as:{

ux = ±iAinUR(z)e±ik∗x

uz = AinWR(z)eik∗x (1)

where Ain and ω are the amplitude and frequency of the incident surface wave, respectively.
t is the time, and ux and uz represent the displacements in the x-axis and z-axis directions,
respectively. Moreover, the positive and negative signs indicate that the propagation direc-
tions of the surface wave are the positive and negative directions of the x-axis, respectively.
The time item e±iωt is omitted to make the theoretical derivation convenient. For viscoelas-
tic material, k∗ is the complex wave number, which can be calculated by k = ω

cR∗
, where cR

∗

is the complex phase velocity of the surface wave, which is the solution of the well-known
Rayleigh wave phase velocity equation:

(2− (cR
∗)2

(cT∗)
2 )

2

− 4(1− (cR
∗)2

(cL∗)
2 )

1/2

= 0 (2)

where cL
∗ and cT

∗ are the complex velocities of the longitudinal and shear waves, respec-
tively, which can be written as: {

cL
∗ =

√
(λ∗ + 2µ∗)/ρ

cT
∗ =

√
µ∗/ρ

(3)

where λ∗ and µ∗ are the complex Lamé parameters of the viscoelastic material. When the
viscoelastic model is considered as the Kelvin–Voigt model, the complex Lamé parameters
can be represented as: {

λ∗ = E∗σ
(1−2σ)(1+σ)

µ∗ = E∗
2(1+2σ)

(4)

where E∗ is the complex Young’s modulus, which can be written as:

E∗ = E0(1− jηE) (5)

where E0 is the static Young’s modulus, and ηE is the loss factor of Young’s modulus, which
can be expressed as the ratio of imaginary parts to real parts of the complex Young’s modulus.

The functions UR(z) and WR(z) in Equation (1) are defined as follows:{
UR(z) = d1e−pz + d2e−qz

WR(z) = d3e−pz − e−qz (6)

where the parameters of d1 − d3 are determined by the following formula:
d1 = −

(
k2 + q2)/(2kp)

d2 = q/k
d3 =

(
k2 + q2)/(2k2) (7)
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where the parameters p and q can be calculated by the following equations:{
p2 = k2(1− c2

R/c2
L
)

q2 = k2(1− c2
R/c2

T
) (8)

The stress equation relative to Equation (1) is
τxx = AinTxx(z)e±ikx

τzx = τxz = ±iAinTxz(z)e±ikx

τzz = AinTzz(z)e±ikx
(9)

where 
Txx(z) = µ(d4e−pz + d5e−qz)
Txz(z) = µ(d6e−pz + d7e−qz)
Tzz(z) = µ(d8e−pz + d9e−qz)

(10)

and 

d4 =
(
k2 + q2)(2p2 + k2 − q2)/(2pk2)

d5 = −2q
d6 =

(
k2 + q2)/k

d7 = −
(
k2 + q2)/k

d8 = −
(
k2 + q2)/(2pk2)

d9 = 2q

(11)

2.2. Scattering Problem

There are body waves and surface waves in the scattered waves caused by surface
cracks. However, it is known to us all that the surface wave energy usually dominates after
a certain distance of propagation due to different geometric decays. In a two-dimensional
half space, surface waves attenuate slowly, while the attenuation speed of body waves is
1/
√

r, where r is the travel distance of the body waves. Therefore, only scattered surface
waves are considered in this paper. It is worth mentioning that the following analysis is
based on the assumption that the two surfaces of the surface-breaking crack do not interact
with each other under the action of the ultrasonic field.

The model is regarded as a two-dimensional homogeneous, isotropic, linear viscoelas-
tic half space with x-z as the coordinate axis, where the surface crack is on the boundary of
the half space (z = 0); h is defined as the depth of the crack center, and l is the length of the
crack, as shown in Figure 1.
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Figure 1. Schematic diagram of a surface crack. Figure 1. Schematic diagram of a surface crack.

As shown in Figure 2, the incident surface wave propagates in the x positive direc-
tion along the free surface and interacts with the surface crack, producing forward- and
backscattered surface waves. The total wave field during the interaction of the surface
waves with the surface crack can be expressed as:

utotal(x) = uin(x) + usc(x) (12)
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where utotal is the total sound field, uin is the incident sound field, and usc is the scattered
sound field. According to reference [23], the surface wave scattered by a crack can be
equivalent to the radiated surface wave generated by the application of tractions (P′ and
T′, as shown in Figure 2c) on the crack surface. The direction of the tractions shown in
Figure 2c are opposite to the tractions (P and T as shown in Figure 2b) that are generated
by the incident surface wave at the virtual crack boundary. In addition, the magnitudes of
P′ and P and T′ and T are equal, respectively.
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field of incident wave and scattered wave; (b) incident wave field and its resultant tractions; (c) crack
under tractions and corresponding scattered wave field.

3. Study on Scattered Surface Wave from Surface Crack Based on Reciprocity Theorem
3.1. Form of Scattered Surface Wave

The normal and shear stresses are loaded on the crack surface, and they jointly de-
termine the amplitude of the scattered surface waves. Similar to the forms of the surface
waves expressed in Section 2.1, the forward-scattered surface waves can be represented as:

un+
x = iA+

scn UR(z)eikx, un+
z = A+

scn WR(z)eikx (13)

τn+
xx = A+

scn Txx(z)eikx, τn+
xz = iA+

scn Txz(z)eikx (14)

us+
x = iA+

scs U
R(z)eikx, us+

z = A+
scsW

R(z)eikx (15)

τs+
xx = A+

scs Txx(z)eikx, τs+
xz = iA+

scs Txz(z)eikx (16)

The back-scattered surface waves can be represented as:

un−
x = −iA−scn UR(z)e−ikx, un−

z = A−scnWR(z)e−ikx (17)

τn−
xx = A−scn Txx(z)e−ikx, τn−

xz = −iA−scn Txz(z)e−ikx (18)

us−
x = iA−scs U

R(z)e−ikx, us−
z = −A−scs W

R(z)e−ikx (19)

τs−
xx = −A−scs Txx(z)e−ikx, τs−

xz = iA−scs Txz(z)e−ikx (20)

For the convenience of calculation, the time item e±iωt is omitted. The superscript n and
s in Equations (13)–(20) indicate normal stress and shear stress, respectively. The symbols
“+” and “-” denote forward- and backscattered surface waves, respectively. In addition, A±SCn

and A±SCs are the amplitude of the surface waves radiated by normal stress and shear stress,
respectively. Since normal stresses are symmetric, it can be obtained that A+

SCn
equals A−SCn

.
For the antisymmetric shear stresses, it can be verified that A+

SCs
equals −A−SCs

.
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3.2. Reciprocity Theorem for Solving the Amplitude of Scattered Surface Waves

In this section, the reciprocity theorem based on time-harmonic fields is employed to
determine the amplitudes of the scattered surface waves. For the integral area of a body
(V) and its surface (S), the reciprocity theorem can be expressed as:∫

V

(
f A
i uB

i − f B
i uA

i

)
dV =

∫
S

(
uA

i τB
ij − uB

i τA
ij

)
njdS (21)

where nj is the outer normal direction component of the surface S, and fi, ui and tij are the
body force components, displacement components and stress components, respectively.
The superscripts A and B represent the two results for the same object, respectively. In
this problem, state A is the result of the scattered surface waves generated by the normal
and shear stresses, and state B is the result of the scattered surface wave generated by a
virtual wave at the crack. The virtual wave can be an acoustic wave of any mode. For the
convenience of calculation, a virtual surface wave with the amplitude B was selected as
state B in this paper, and the virtual surface wave propagates in the x positive direction
along the free surface. The state B can be expressed as:

uvi
x = iBUR(z)eikx, uvi

z = BWR(z)eikx (22)

τvi
xx = BTxx(z)eikx, τvi

xz = iBTxz(z)eikx, τvi
zz = BTzz(z)eikx (23)

Since no body force exists in state A and B, f A
i = f B

i = 0, and Equation (21) can be
simplified to: ∫

S

(
uA

i τB
ij − uB

i τA
ij

)
njdS = 0 (24)

For the integral contour of the body (S presented in Figure 3), let the integration of the
line at x = a, 0 ≤ z < ∞ be J1, and for x = c, 0 ≤ z < ∞, the integration is represented as
J2, while the integration on the two crack surfaces are called J5 and J6, respectively. The
integrations along the free surface and the bottom of the contour are called J7, J4 and J2,
respectively. The integration far away from the free surface is called J2, since the energy of
the surface waves exists within twice the wavelength depth, J2 = 0. For the integration
on the free surface, that is J4 and J7, the results are also zero since the traction on the free
boundary is zero. In the previous study [20], it has been verified that integrations are not
zero only when the two waves are counter-propagating waves. In this paper, states A and
B are counter-propagating waves at x = c, 0 ≤ z < ∞. Hence, we have J3 = 0. Therefore,
the contour integral reduces to:∫

S

(
uA

i τB
ij − uB

i τA
ij

)
njdS = J1 + J5 + J6 = 0 (25)
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 (29) 

and 𝐽 is dimensionless. 
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For J1, the substitution of un−
x ,un−

z ,τn−
xx ,τn−

xz (represented in Equations (17) and (18)),
us−

x ,us−
z ,τs−

xx ,τs−
xz (represented in Equations (19) and (20)) and uvi

x ,uvi
z ,τvi

xx,τvi
xz (represented in

Equations (22) and (23)) into Equation (24) yields:

Jn
1 =

∫ ∞

0

(
un−

x τvi
xx + un−

z τvi
xz − uvi

x ¯uvi
z τn−

xz

)
|x=a ∗ (−1)dz = 2iBA−scn I

Js
1 =

∫ ∞

0

(
us−

x τvi
xx + us−

z τvi
xz − uvi

x τs−
xx − uv¯

z τs−
xz

)
|x=a ∗ (−1)dz = −2iBA−scs I (26)

The superscript n and s of the integral J1 represent the scattered surface waves gener-
ated by normal stresses and shear stress, respectively, and I is written as follows:

I =
∫ ∞

0

(
UR(z)Txx(z)−WR(z)Txz(z)

)
(27)

It should be noted that I can be determined by Equations (6) and (10); thus, it can be
written as:

I = µJ (28)

where
J =

d1d4 − d3d6

2p
+

d1d5 + d2d4 − d3d7 + d6

p + q
+

d2d5 + d7

2q
(29)

and J is dimensionless.
Next, the contributions from the integration along J5 and J6 are considered. For the

normal stresses condition, we have:

Jn
5 = −

∫ l

0
Fn+

ab |x=0+dz

Jn
6 =

∫ l

0
Fn−

ab |x=0−dz (30)

where
Fn+

ab = un+
x τvi

xx + un+
z τvi

xz − uvi
x τn+

xx − uvi
z τn+

xz

Fn−
ab = un−

x τvi
xx + un−

z τvi
xz − uvi

x τn−
xx − uvi

z τn−
xz (31)

For the normal stresses, the crack opens up symmetrically, so we have un+
x = −un−

x ,
un+

z = un−
z ,τn+

xx = τn−
xx , τn+

xz = τn−
xz = 0. As a consequence, only the first term in Equa-

tion (31) remains, and Jn
5 + Jn

6 reduces to:

Jn
5 + Jn

6 = −
∫ l

0

(
un+

x (0, z)− un−
x (0, z)

)
τvi

xx(0, z)dz= −B
∫ l

0
∆un

x(0, z)Txx(z)dz (32)

Similarly, the crack opens up anti-symmetrically under the shear stresses, so we have
us+

x = −us−
x ,us+

z = −us−
z ,τs+

xx = τs−
xx = 0, τs+

xz = τs−
xz . Thus, for shear stresses, Equation (32)

changes to:

Js
5 + Js

6 = −
∫ l

0

(
us+

z (0, z)− us−
z (0, z)

)
τvi

xz(0, z)dz= −iB
∫ l

0
∆us

z(0, z)Txz(z)dz (33)

where ∆un
x and ∆us

z are the CODs in the x and z directions, respectively. The superscript
n and s mean that the CODs are generated by normal and shear traction on the surface
crack, respectively. Since the total contour integral is zero as expressed in Equation (25),
the amplitudes A−scn and A−scs can be solved by Equations (25), (26), (32) and (33), which are
finally simplified as follows:

A−scn = − i
2I

∫ l

0
Txx(z)∆un

x(0, z)dz
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A−scs = −
1
2I

∫ l

0
Txz(z)∆us

z(0, z)dz (34)

It is worth mentioning that the CODs ∆un
x and ∆us

z are, as yet, unknown. The crack-
opening displacement will be obtained numerically in the next section.

4. Special Case of Low Frequency and Low Viscosity

When the frequency of the incident surface wave is low and the ratio of the crack
length to wavelength of the incident surface wave is sufficiently small, the normal and
shear tractions generated by the incident surface wave can be considered to be uniformly
distributed on the crack surface. In addition, for low-frequency waves, wave dispersion
can be neglected when the viscosity is small, that is, the phase velocity of sound waves
remains unchanged during propagation. Thus, for the simplicity of verification, the crack
length was set to be sufficiently smaller than the wavelength of the incident surface wave.
Thus, the tractions on the crack surface can be expressed by the stresses at the center of the
crack, which are as follows:

P = τxx = AinTxx(h)e−ikx1

T = τxz = AinTxz(h)e−ikx1 (35)

where x1 is the distance between the origin of the incident surface wave and the surface
crack. In the special case, x1 = 5 mm.

For the special case of low frequency and low viscosity, a numerical calculation was
carried out to verify the analytical results. The numerical simulation was solved by the
commercial software ABAQUS. In the simulations, the material was rubber, of which the
density and Poisson’s ratio were 1140 kg/m3 and 0.49, respectively. When the frequency of
the surface wave is 5 kHz, the Lamé parameters and Young’s modulus can be determined
by Equations (6) and (7). Then, the corresponding velocities of the longitudinal wave, shear
wave and surface wave can be determined based on Equations (4)–(7), which were 810 m/s,
100 m/s and 95 m/s, respectively. Thus, the corresponding wavelength (λ) was 5.8 mm. In
order to make the wavelength of the incident surface wave sufficiently larger than the crack
length, the crack lengths (L) were between 100 µm and 2000 µm with a step of 400 µm.
It should be noted that the crack shape was rectangular in the numerical model, and the
width of the crack was set to be 10 µm. The ratio of the crack length to width was greater
than 10, which meant the rectangular-shaped defect could be used to simulate crack.

For the plane strain condition, the numerical simulation can be modeled in a two-
dimensional plane, which would save a lot of calculation time of the model. In order to
minimize the influence of the reflected waves from model boundaries, and to reduce the
size and running time of the simulation model, absorbing boundaries were applied to the
left and right sides and the bottom of the model. The free surface of the model adopted free
boundary conditions, and the initial displacement field was zero. In order to accurately
solve the wave propagation problems and track the generation process of the scattering
surface wave from the crack, a small time step and element size were needed. In general,
to solve wave propagation problems, the element size should be smaller than 1/20 of the
wavelength to obtain better spatial resolution of the wave propagation, and the time step
should be smaller than 1/20 of the reciprocal of the wave frequency, namely:

∆t <
1

20 f
(36)

∆x <
λ

20
(37)

where ∆t is the time step of the numerical calculation, ∆x is the element size, and f and
λ are the frequency and wavelength ultrasonic wave, respectively. It is worth noting that
in the simulation model, the element size in the region around the crack should be equal
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to the crack width to accurately simulate the wave propagation in the region around the
crack. Thus, the element size was 10 µm near the crack, and gradually increased to 200 µm
in the far field, and the time step of calculation was 2 ns.

The amplitude of the incident surface wave was set as 10 nm, which was Ain = 10 nm.
The central depth of the surface crack was h = L/2. Thus, the stresses of τxx, τxz and
τzz could be obtained according to Equations (9)–(11), and the ratio of stresses to τxx at
depth of zero (τxx0) is shown in Figure 4. The trend of the curves was consistent with
that of the surface wave stress curve of linear elastic material, as shown in Figure 4. In
addition, the three stresses all increased first and then decreased, and at the depth of twice
the wavelength of the surface wave, the stress decreased to almost zero. Furthermore, the
directions of stresses τxz and τzz remained the same, but the direction of stress τxx changed
from positive to negative at a certain depth.
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The tractions at the center of the cracks with different length can be calculated using
Equation (35), and the results are shown in Table 1. Then, the uniform tractions shown
in Table 1 were applied to the crack surface in the numerical models; the corresponding
crack-opening displacement along the surface of different cracks was obtained, and the
results are shown in Figure 5. It can be seen that the CODs at the same depth increased with
the increase in crack length due to the increase in the normal and shear tractions. However,
for a certain crack length, the COD decreased with the increase in the crack depth since
the two crack surfaces connected with each other at the bottom of the crack, which made
the crack surface hard to open. The farther away from the bottom of the crack, the easier it
was to open and the larger the crack-opening displacement was. In addition, the maximum
crack-opening displacement was several nanometers, which was sufficiently smaller than
the crack width in the model, so the two surfaces of the crack did not interact with each
other. It was consistent with the hypothesis of the study in the paper. It should be noted
that theoretical solution of the crack-opening displacement should be determined to obtain
more accurate results, since the shape of the crack in the numerical model is rectangular,
which is slightly different from the real crack.

Table 1. Magnitudes of normal and shear tractions on crack surface.

Depth (µm) 50 200 400 600 800 1000

P
(
N/m2) 21.099 20.703 20.128 19.505 18.843 18.150

T
(
N/m2) 0.068 0.286 0.607 0.958 1.334 1.729
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For the simplicity of computation, the Newton–Coates formula was used to approxi-
mate the average COD (represented as ∆Ux and ∆Uz) of the crack, and then the theoretical
amplitudes of the scattering surface waves by cracks can be represented as:

A−scn = − i
2I

∆Ux

∫ l

0
Txx(z)dz = − iµ∆Ux

2I
[
d4

p

(
1− e−pl

)
+

d5

q

(
1− e−ql

)

A−scs = −
1
2I

∆Uz

∫ l

0
Txz(z)dz = −µ∆Uz

2I
[
d6

p

(
1− e−pl

)
+

d7

q

(
1− e−ql

)
(38)

By substituting Equation (38) into Equations (17) and (19), the theoretical expressions
of the displacements of back-scattered surface waves in x and z directions can be determined
as follows:

u−x = un−
x + us−

x = i
(

A−scs − A−scn

)
UR(z)e−ikx

u−z = un−
z + us−

z =
(

A−scn − A−scs

)
WR(z)e−ikx (39)

It is worth noting that the forward-scattered surface waves can be evaluated by
selecting a virtual surface wave that propagates in the x-negative direction.

To verify the theoretical results, numerical amplitudes of the scattered surface wave
were calculated by applying the uniform tractions (shown in Table 1) with a frequency of
5 kHz on the crack surface in the finite element models. The amplitudes of the scattered
surface waves in x and z direction were detected at the free surface of the model, where
x = 50 mm. The numerical and theoretical results are compared in Figure 6. The theoretical
results are in good agreement with the numerical results, as shown in Figure 6. In addition,
with the increase in crack length, the amplitude of the scattered surface wave increased and
the error between the numerical and analytical results increased. The special case of low
frequency and low viscosity proved that the reciprocity theorem, together with the virtual
wave technique, is feasible to determine the amplitude of the scattered surface wave of
viscoelastic materials.
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5. Conclusions

In this study, the amplitudes of scattered surface waves by a surface crack in a ho-
mogeneous, isotropic, viscoelastic material with a plane strain condition was evaluated
based on the elastic reciprocity theorem and virtual wave technique. It was shown that the
amplitudes of scattered surface waves were the function of COD and crack length, and
the COD was related to the crack depth. For the special case of low frequency and low
viscosity, the finite element method (FEM) was used to verify the theoretical analysis, and
good agreement was achieved. It can be concluded that the reciprocity theorem and the
virtual wave technique can provide a very effective way to theoretically derive scattering
surface waves from surface cracks. In addition, the method can avoid complex integral
transformations and is promising in the quantitative characterization of surface cracks in
viscoelastic material. In future work, scattering surface waves from partially closed surface-
breaking cracks will be studied. The wire cutting method will be used to manufacture these
cracks in rubbers, and experimental studies will be carried out to study nondestructive
testing approaches with acoustic methods of real rubbers.
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