
Citation: Ullah, S.; Ahmad, T.;

Buriro, A.; Zara, N.; Saha, S.

TrojanDetector: A Multi-Layer

Hybrid Approach for Trojan

Detection in Android Applications.

Appl. Sci. 2022, 12, 10755. https://

doi.org/10.3390/app122110755

Academic Editors: Christos Bouras,

Safwan El Assad, René Lozi and

William Puech

Received: 9 September 2022

Accepted: 21 October 2022

Published: 24 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

TrojanDetector: A Multi-Layer Hybrid Approach for Trojan
Detection in Android Applications
Subhan Ullah 1, Tahir Ahmad 2 , Attaullah Buriro 3,* , Nudrat Zara 1 and Sudipan Saha 4

1 Department of Cybersecurity, FAST School of Computing, FAST National University of Computer and
Emerging Science, Islamabad 54000, Pakistan

2 Center for Cybersecurity, Bruno Kessler Foundation, 38123 Trento, Italy
3 Faculty of Computer Science, Free University Bozen-Bolzano, 39100 Bolzano, Italy
4 Department of Aerospace and Geodesy, Technical University of Munich, 85521 Ottobrunn, Germany
* Correspondence: attaullah.buriro@unibz.it

Abstract: Trojan Detection—the process of understanding the behaviour of a suspicious file has been
the talk of the town these days. Existing approaches, e.g., signature-based, have not been able to
classify them accurately as Trojans. This paper proposes TrojanDetector—a simple yet effective multi-
layer hybrid approach for Trojan detection. TrojanDetector analyses every downloaded application
and extracts and correlates its features on three layers (i.e., application-, user-, and package layer)
to identify it as either a benign application or a Trojan. TrojanDetector adopts a hybrid approach,
combining static and dynamic analysis characteristics, for feature extraction from any downloaded
application. We have evaluated our scheme on three publicly available datasets, namely (i) CCCS-
CIC-AndMal-2020, (ii) Cantagio-Mobile, and (iii) Virus share, by using simple yet state-of-the-art
classifiers, namely, random forest (RF), decision tree (DT), support vector machine (SVM), and logistic
regression (LR) in binary—class settings. SVM outperformed its counterparts and attained the
highest accuracy of 96.64%. Extensive experimentation shows the effectiveness of our proposed
Trojan detection scheme.

Keywords: android; malware detection; pattern matching; classification

1. Introduction

Mobile malware applications are divided into several categories based on their de-
structive purposes and behaviours (Trojans, Viruses, Worms, Botnets, Spyware, annoying
advertising tools, etc.). Trojans are applications that are seemingly useful and risk-free.
These applications secretly perform destructive actions such as stealing users’ information,
damaging their devices, changing system settings, loading malicious applications, etc. [1].
Android is open-source and extremely popular on mobile platforms and is targeted by
over 99% of malware attacks [2]. Nearly half of these malware attacks are multi-functional
Trojans capable of stealing users’ personal and sensitive data, i.e., contacts, email addresses,
and phone numbers. Besides stealing data, they are able to download additional modules
from the infected servers being maintained by attackers.

Detecting malware, in general, and Trojans, in particular, could be done by performing
static or dynamic analysis. Static analysis is performed without executing the program.
Examples of the information we can obtain from static analysis include opcode sequences
(extracted by disassembling the binary file), control flow graphs, and so on. Such feature
sets can be used individually or in combination for malware detection. On the other hand,
dynamic analysis requires that we execute the program, often in a virtual environment.
Examples of information that can be obtained by dynamic analysis include API calls, system
calls, instruction traces, registry changes, memory writes, and so on.

Technically, static analysis finds an app’s dangerous traits or faulty code parts without
executing it. In comparison, the dynamic analysis collects the app’s activity data to detect

Appl. Sci. 2022, 12, 10755. https://doi.org/10.3390/app122110755 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122110755
https://doi.org/10.3390/app122110755
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8105-6791
https://orcid.org/0000-0003-2723-2410
https://orcid.org/0000-0002-9440-0720
https://doi.org/10.3390/app122110755
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122110755?type=check_update&version=2

Appl. Sci. 2022, 12, 10755 2 of 12

malicious behaviour during the app’s operations [3]. Static analysis has been shown to be
somehow accurate and efficient in detecting known malware; however, it has been found
less accurate against apps containing camouflage techniques and encrypted code parts.
Additionally, they could not detect intrusions in real-time. In contrast, dynamic analysis
can detect zero-day threats; however, at the cost of expensive computations because it
could involve multiple resources running in parallel. These schemes are also not shown to
be highly accurate [3].

Detecting Trojan attacks by considering a single layer, e.g., the application layer where
the users use the application or only the package layer where the files of the apps are saved
on the Android, is not enough. Trojans can change their pattern by attacking by SMS or
emails or by attacking the system directly by getting permission. For instance, an excessive
amount of pop-up ads suddenly changes to user’s email service and starts sending spam
messages to all addresses in the contacts and then automatically unauthorised application
installation, which can make it more difficult to detect if all layers (e.g., application, package,
and user layer) are not monitored together. Suppose only one layer with a few features
considers SMS quantity and email quality. In that case, the detection of Trojan attacks is a
problem on the other layers, such as the user layer, network layer, etc. Due to this problem
of detecting the Trojan on a single layer, Trojans still have the door to attack the other layers
because they constantly change their behaviours and patterns and cause serious damage to
user privacy, security, and data loss.

Various security solutions have been proposed recently, which apply static or dynamic
analysis of the applications [4] and apply security approaches by implementing data
security with run-time enforcement. However, these approaches have limitations: firstly,
they are layer-specific, tackle a single layer (e.g., application layer or user layer), and require
a custom operating system [5]. Secondly, they are applied individually, resulting in lower
detection accuracy. A dire need for a multi-layer hybrid approach (combining both static
and dynamic analyses) that could potentially address the limitations of these individual
single-layer techniques is observed [6].

Android has its own local security mechanism based on permissions and app isolation.
These two features, i.e., permission and app isolation, enforce access control to security
resources and operations and keep away from an application that can interfere with the
execution of another. However, these schemes are not found too secure for two reasons:
they were found ineffective at warning users [7], and Trojan creators can bypass these
detection methods [8]. To address these issues, methods based on machine learning have
gained significant popularity in recent years.

In this paper, we propose a novel approach, namely, TrojanDetector, to detect android
malware or Trojans in a multi-layer (application, package, and user’s layer) and hybrid way.
TrojanDetector collects execution data of a set of known sample Trojan and benign Android
applications to generate patterns of individual system calls, sequential system calls with
different calling depths related to file and network access, and so on. TrojanDetector builds
up a malicious pattern set and a normal pattern set for malware detection and benign
application judgement by comparing the patterns of Trojan and benign applications. When
TrojanDetector needs to detect an unknown app, it uses a dynamic method to collect its
run-time system call data in terms of individual and sequential system calls with different
depths. Then we extract the target patterns of the unknown app from its run-time system
calling data. Using our chosen machine learning classifiers trained on both the malicious
pattern set and the normal pattern set, TrojanDetector classifies the unknown app as either
Trojan or benign. The proposed approach is a generic detection method suitable for several
types of Android malware detection. The TrojanDetector uses SVM as the classifier and
achieves the highest accuracy of 96.64%. Extensive experimentation shows the effectiveness
of our proposed Trojan detection scheme. Specifically, the contribution of this paper can be
summarised as below:

Appl. Sci. 2022, 12, 10755 3 of 12

• This work presents a multi-layer hybrid approach, i.e., TrojanDetector, to detect the
Trojan’s misbehaviour in Android applications from three different Android levels
based on the selected features and then apply multi-classifiers to train the model.

• This work uses four machine learning classifiers (random forest, support vector ma-
chine (SVM), logistic regression and, decision tree) for accurate Trojan detection in
Android applications.

• This work performs an extensive experimental evaluation to identify the usefulness of
the proposed approach and gauge the accuracy of the machine learning approach using
publicly available data sets of CCCS-CIC-AndMal-2020 [9], Contagio-Mobile [10], and
Virsushare [11] of Trojan applications.

The remainder of the paper is organised as follows. Section 2 briefly overviews related
work. Section 3 presents the proposed approach and defines Trojan characteristics that
detect known and anomalous behaviours. Section 4 presents an experimental evaluation
and discussion of the proposed approach. Section 5 concludes and presents the direction
for future work.

2. Related Work

The analysis of intrusion detection on Android devices is a rich field in the literature.
Three main approaches, e.g., static, dynamic, and hybrid, as shown in Table 1, are used
in the literature to analyse malware detection in Android applications. Examples of static
approaches are DroidSieve [12] and MiMalo [13], which analyse the features on the applica-
tion layer. Similarly, dynamic approaches [10,14–16] are also available for feature analysis
on the applications layer using machine learning and deep learning.

A hybrid analysis approach uses static and dynamic features for detecting malware,
which has been found to be more accurate due to the complementary strength of both
types of analysis. The hybrid analysis exploits the static and dynamic features to detect
malware in specific use cases [17]. A hybrid approach uses the Android application
sandbox environment and performs static and dynamic analysis in an offline mode. Both
static and dynamic approaches have their limitations, e.g., static analysis is more time-
consuming, and dynamic analysis is more resource-consuming for malware detection.
Yuan et al. [18] presented an engine called DroidDetector and automatically characterised
the application as benign or malicious. The DroidDetector has 96.76% accuracy compared to
the traditional machine learning (ML) approaches. Tong and Yan [3] used a hybrid approach
that considered the advantages and disadvantages of static and dynamic analysis to detect
Android malware. They collected the behaviour data of the application dynamically. They
used the static method in offline mode for the analysis of malicious and normal patterns of
the application from that collected data. They used a powerful malware detection server
to improve the processing speed and acceleration of malware detection. Martin et al. [17]
presented a static and dynamic analysis framework. They ran a learning classification
model on its OmniDroid dataset, which consists of 22,000 samples of malware and benign
Android applications. Hadiprakoso et al. [18] also proposed a hybrid analysis approach
and developed a machine learning and deep learning model for detecting malware in
the Android operating system. They used the Genome dataset and the Drebin project
for static analysis and the CICMalDroiD [11] dataset for dynamic analysis. Then they
extracted 261 combined features and applied a hybrid analysis approach. They further used
311 application samples, including 165 benign from the play-store and 146 malicious
apps from the VirusShare, and increased the detection rate by about 5%. Another hybrid
approach, ShielDriod [19], uses the CICMalDroid dataset and analyses the malware on the
application layer. They used random forest (RF) and multilayer perceptron models and
achieved 97% accuracy.

We proposed a hybrid technique and compared it to the state-of-the-art techniques
as baselines. We found that the TrojanDetector did not outperform state-of-the-art peer
approaches to malware detection on Android in general, such as DroidSieve [12] and
DroidCat [14]. Both DroidSieve and DroidCat achieved higher accuracy than the proposed

Appl. Sci. 2022, 12, 10755 4 of 12

detection approach. DroidSieve is an Android malware classifier based on static analysis
with an accuracy of 99.82%, whereas DroidCat is based on dynamic analysis with an
accuracy of 97%. However, considering the intrinsic limitations of both static and dynamic
approaches (refer to Section 1), the results are not comparable to TrojanDetector (with an
accuracy of 96.64%) based on combining both approaches and features extracted from
multiple layers, unlike DroidSieve and DroidCat. TrojanDetector improves the state-of-
the-art by implementing a hybrid analysis approach on three different layers, called the
multi-layer hybrid analysis approach.

Table 1. Comparison of TrojanDetector with state-of-the-art approaches.

Trojan Detectors Dataset Used
Intrusion Detection
and Classification

Techniques

Feature Selection on
Layers for Intrusion

Detection

Analysis
Approach

Accuracy of
Malware
Detection

MiMaLo [13] MiMaLo technique Neural Network
Algorithm Application Static

88.5%

DroidSieve [12]
exploited

obfuscation-invariant
features

Obfuscation 99.82%

Bokolo et al. [15] Tested on emulators STAMINA approach
based on DL

Application Dynamic

Nil

Yuan et al. [18]

Apps: Google play store
and Malware: from

Contagio community and
Gnome project

DBN-based DL 96.76%

Gan et al. [16] CICAndMal2017 ML-based random
forest model 98%

DroidCat [14]
Drebin and Gnome along
with virus total and virus

share databases
Supervised ML 97%

Aminuddin et al. [20] Trojan dataset from Drebin
and google play store

Random forest,
Naive Bayes, and J48 81.2%

Martin et al. [17] OmniDroid AndroPyTool

Application Hybrid

89.7%

Hadiprakoso et al. [18] Genome & CICMalDroid ML & DL

Tong and Yan [3]
Own data set created by

comparing the patterns of
malware and benign apps

Offline comparisons
of dynamic patterns

set to judge the
unknown app.

88%

ShielDroid [19] CICMalDroid
Random forest, and

Multilayer
perceptron

97%

TrojanDetector

CCCS-CIC-AndMal-2020,
Cantagio-Mobile and

Virusshare with
13,559 Trojan samples

Random forest,
decision tree, Linear

Regression, and SVM

(MultiLayer)
Application, user and

package layers
Hybrid

86.68% with an
EER of 0.1346 and

96.64%, with an
EER of 0.036

Further, compared to the state-of-the-art approaches, this work considers the most
notable features only at various levels of Android phones (called the multi-layer hybrid
approach) to detect Trojans. Aminuddin et al. [20] focused on only a single layer of Android.
They took only sys call features. However, they used a set of a total of 61 sys calls. In
addition to that, they used random forest, Naive Bayes, and J48. Their experimental results
show that random forest achieved the highest detection accuracy of 81.2%, with the lowest
false positive rate of 0.188.

On the other hand, TrojanDetector targeted three main layers of Android: the application-
level layer, user-level layer, and package-level layer. Compared to the state-of-the-art,
we selected features from all these layers and targeted almost the ten most crucial Trojan
families. All of the features were selected by taking into account the Trojan families.
Similarly, the proposed approach used four classifiers for predicting Trojan viruses in
Android devices: random forest, decision tree, linear regression, and SVM. By comparing

Appl. Sci. 2022, 12, 10755 5 of 12

our random forest results with the random forest results from [20], our classifier reported
an accuracy of 86.68% with an EER of 0.1346. In contrast, according to the selection of
features concerning our approach, the SVM classifier achieved the highest accuracy of
96.64% with an EER of 0.036.

Further, the state-of-the-art comparison with our proposed approach in Table 1 shows
that TrojanDetector is a multilayer simple and accurate Trojan detection scheme. It detects
intrusions in general, while specific intrusions are called malware in particular. Common
examples of malware categories include worms and ransomware, which can compromise
similar scenarios and require the selection of more specific features for their detection.
The proposed approach can be integrated with deep learning- and blockchain-enabled
frameworks [21,22] to enhance data privacy and to provide secure communication in such
specific Industrial IoT scenarios [23,24].

3. TrojanDetector Approach
3.1. Threat Model

To identify the attack patterns and threat agents, we hereby present the typical threat
scenarios of Android applications.

• Trojans can come automatically through the ad popups.
• Trojans can come by installing unauthorised applications.
• Trojans can enter the user space by fraud-clicking.
• Trojans can masquerade as legitimate programmes.

3.2. Attacks

In this section, we discuss the possible attacks based on the aforementioned threat scenarios.

• Trojans can exploit the granted permissions to perform actions not intentionally autho-
rised by the OS.

• Trojans can harm user data. It can leak user credentials by exploiting compromised
user data.

• Trojans can also steal user data by sending SMS and emails.

3.3. Trojan Detector

To mitigate the threats found in the threat model, we propose TrojanDetector. Our
approach to malware analysis starts with the training process at three levels in parallel; as
shown in Figure 1, TrojanDetector installs an Android phone application and monitors its
analysis features at the application, package, and user levels in parallel. The TrojanDetector
uses four phases to detect a Trojan.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 13

analysis features at the application, package, and user levels in parallel. The TrojanDetec-
tor uses four phases to detect a Trojan.
• Phase 1: TrojanDetector performs static analysis at the application level features, e.g.,

meta-data and critical API, and package level features, e.g., system calls and the en-
ergy level.

• Phase 2: TrojanDetector applies dynamic analysis at the user level features (activ-
ity/network, emails, SMS logs). Once triggered, it performs app evaluation, ranks
lists, and extracts behavioural patterns.

• Phase 3: TrojanDetector extracts energy, email, SMS, and activity features.
• Phase 4: TrojanDetector feeds all the features extracted from all the stages to the cho-

sen classifiers to apply classification.

Figure 1. TrojanDetector: Multi-Layer Hybrid Trojan Detection.

Algorithm 1 shows the underlying TrojanDetector Algorithm. It elaborates how Tro-
janDetector collects meta-data from the source code package, collects the features, evalu-
ates the meta-data and then ranks them. Afterwards, the model observes the behavioural
patterns of the Trojan and extracts the user-level features. After getting all the features, it
is given to the Prediction ML models, which then predict the Trojan and give the results.

Algorithm 1 Detect Trojan
1. procedure Detect Trojan(DATA)
2. Meta Data-set ← application is installed permissions, ratings
3. CollectFeatures ← GetFeaturesFromMata (Meta Data-set[])
4. PackageLevelAppEvaluaion ← EvaluateMeta (CollectFeatures[])
5. PackageLevelRank ← RANK (PackageLevelAppEvaluaion)
6.
7. Check Known Behavioral Patterns:
8. BPrediction ← PredictB (BehavioralPatterns[])
9.
10. Check User Level Features:
11. Activity Data-set ← MonitorActivity (app)
12. SMS Data-set ← MonitorSMS (app)
13. Energy Data-set ← MonitorEnergy (app)
14. Network Data-set ← MonitorNetwork (app)
15. Email Data-set ← MonitorEmail (app)
16.
17. Predict Trojan Using AI Models Based on Features:
18. Predictions ← AIModel (PackegeLevelFeatures+
BehavioralPatterns+UserLevelFeatures)
19. IsTrojan ← Classifier (Predictions)

Figure 1. TrojanDetector: Multi-Layer Hybrid Trojan Detection.

• Phase 1: TrojanDetector performs static analysis at the application level features, e.g.,
meta-data and critical API, and package level features, e.g., system calls and the
energy level.

Appl. Sci. 2022, 12, 10755 6 of 12

• Phase 2: TrojanDetector applies dynamic analysis at the user level features (activ-
ity/network, emails, SMS logs). Once triggered, it performs app evaluation, ranks
lists, and extracts behavioural patterns.

• Phase 3: TrojanDetector extracts energy, email, SMS, and activity features.
• Phase 4: TrojanDetector feeds all the features extracted from all the stages to the chosen

classifiers to apply classification.

Algorithm 1 shows the underlying TrojanDetector Algorithm. It elaborates how Tro-
janDetector collects meta-data from the source code package, collects the features, evaluates
the meta-data and then ranks them. Afterwards, the model observes the behavioural
patterns of the Trojan and extracts the user-level features. After getting all the features, it is
given to the Prediction ML models, which then predict the Trojan and give the results.

Algorithm 1 Detect Trojan

1. procedure Detect Trojan(DATA)
2. Meta Data-set← application is installed permissions, ratings
3. CollectFeatures← GetFeaturesFromMata (Meta Data-set[])
4. PackageLevelAppEvaluaion← EvaluateMeta (CollectFeatures[])
5. PackageLevelRank← RANK (PackageLevelAppEvaluaion)
6.
7. Check Known Behavioral Patterns:
8. BPrediction← PredictB (BehavioralPatterns[])
9.
10. Check User Level Features:
11. Activity Data-set←MonitorActivity (app)
12. SMS Data-set←MonitorSMS (app)
13. Energy Data-set←MonitorEnergy (app)
14. Network Data-set←MonitorNetwork (app)
15. Email Data-set←MonitorEmail (app)
16.
17. Predict Trojan Using AI Models Based on Features:
18. Predictions← AIModel (PackegeLevelFeatures+ BehavioralPatterns+UserLevelFeatures)
19. IsTrojan← Classifier (Predictions)

4. Experimental Validation
4.1. Dataset

• CCCS-CIC-AndMal-2020: The dataset includes 200 K benign and 200 K malware
samples of Android apps with 14 prominent and 191 eminent malware families. A
dataset is generated in collaboration with the Canadian Centre for Cyber Security
(CCCS) to capture 200 K android malware apps labelled and characterised into the cor-
responding family. The benign Android apps (200 K) are collected from the Androzoo
dataset to balance the huge dataset. They collected 14 categories of malware, includ-
ing adware, backdoor, file infector, Potentially Unwanted Apps (PUA), ransomware,
scareware, riskware, trojan, trojan-banker, trojan-dropper, trojan-SMS, trojan-spy, and
zero-day [25].

• Contagio Mobile: It is a blog-like website that collects malware for several mobile
OS. Contagio presents more than 1000 samples for each Trojan family. Contagio has
collected Trojans since 2012, including malicious apps found on Google Play, which
may affect any Android device regardless of nationality [26].

• VirusShare: It is a website hosting a database of malware for several operating systems,
which also includes a good share of Android malware. The database is continuously
updated, and it is also possible to retrieve some of the latest threats discovered [27].

4.2. Features Extraction

The Android Profiler is used by the proposed approach to detect how much CPU is
used by the Trojan, how much battery is consumed, and how much the Trojan uses RAM
and network. Based on these features, our approach trained the proposed machine learning

Appl. Sci. 2022, 12, 10755 7 of 12

model to detect Trojan applications efficiently. This features extraction phase dynamically
examines the collected Trojan.apk samples and extracts the requisite features. Next, it will
analyse the source code of an application by identifying system calls, user behaviours, and
the data at the package level for each application. Relevant features from every application
have been extracted to apply any machine learning technique. Android applications are
delivered as .apk files. This is expected since permissions allow applications to perform
actions that can potentially harm the user. Trojan applications also tend to request unusual
permissions compared to legitimate ones. For each sample, if the requested permission
matches the Android permission, it is assigned a 1 to indicate its presence in those samples,
while a 0 indicates the absence of the permission. Feature selection is done with the help of
information gain. We need to complete the features from the literature review and compare
them for information gain.

Our proposed approach extracts 23 features related to various processes, such as CPU
usage, App-services, etc. We briefly explain these processes and extract features. For the
sake of brevity, we only provide an algorithm for calculating network usage.

Network Usage (user-level feature: dynamic).This feature describes whether or not
this code uses the network. The value of this feature is in Boolean form, either 1 or 0.
Algorithm 2 shows the algorithm to capture network usage after the installation of the app
over the first 30 s (selected as a reference point) and compare it with bandwidth usage at a
particular instance for the same period.

Algorithm 2 Calculating Network Stats

Input Trojan apps with the APPs
Output Bandwidth value
1. getting_BandwidthBroadcastReceivers = 0
2. BandwidthBroadcastReceivers[]← GetBandwidthBatteryFromBroadcasts
3. for each BatteryBroadCast in BroadCastsReceivers do
4. CurrentBandwidthValue← GetCurrentBandwidthValue(NetworkLog)
5. BandwidthValueConsumed_After30Sec←MonitorBandwidthValue(BatteryBroadCast)
6. Value_change = CurrentBandwidthValue - BandwidthValueConsumed_After30Sec return value change

• CPU Usage (package level feature: static) This feature describes the use of CPU
cycles by the Trojan, as there are three levels of CPU utilization. (i) a high describes
the highest level of CPU usage (2) (ii) a Medium means the medium amount of CPU
usage (1), and (3) a low means the code is using minimum CPU cycles (1).

• App-Services (application-level feature: static) This feature describes whether the
Trojan uses the dangerous services which start in the background or not. The value of
this feature is also in Boolean.

• App-Permission (user-level feature: dynamic) This feature describes how the Trojan
automatically uses dangerous permission. The value of this feature is also in Boolean.

• App-APIs (application feature: static) This feature describes how the Trojan uses
third-party APIs designed to get users’ information without knowing them. It also
describes whether these APIs are running in the background or not. The value of this
feature is also in Boolean.

• Bandwidth-Consumed (user-level feature: dynamic) This feature describes the band-
width consumed by a Trojan application for 30 s. It also uses third-party APIs designed
to get the users’ information without knowing the use of the bandwidth. These APIs
start in the background or not. The value of this feature is in Boolean.

• Is-SMS-Sent (user level feature: dynamic) This feature shows that the Trojan sends
the SMS in the background, gets the user’s information without their knowledge, and
monitors the sending numbers. The value of this feature is in Boolean.

• SMS-Quantity (user level feature: dynamic) This feature describes the number of
sending SMS by the Trojan and its injected applications. It checks whether the Trojan is
sending messages or not in the background, which gets the user’s information without
their knowledge.

Appl. Sci. 2022, 12, 10755 8 of 12

• Email-sent (user-level feature: dynamic) This feature describes that the Trojan sends
the email in the background and gets the users’ information without their knowledge.
It also monitors the number of sent Emails. The value of this feature is in Boolean.

• Email-Quantity: (user level feature: dynamic) This feature describes the number of
sent emails and the injected applications of Trojans. It also checks that the email is sent
in the background and gets information without the user’s knowledge. The value of
this feature is also in numbers.

• Sys-Call-Invoked (package level feature: dynamic) This feature checks the system
and whether the application invokes the system calls, e.g., turning off the ringtone,
putting the phone into airplane mode, turning on the user location, etc. It checks
whether or not the event in the background is getting the users’ information without
their knowledge. The value of this feature is in Boolean.

• Sys-Call (application-level feature: static) This feature describes system calls invoked
by the application.

4.3. Classifier Selection

Our classification toolbox includes a decision tree (DT), random forest (RF), logistic
regression (LR), and support vector machine (SVM). A decision tree is a tree-structured
classifier where branches represent the decision rules. One step further, random forest is an
ensemble method that operates by constructing a multitude of decision trees in the form of
a forest. Logistic regression is a simple yet powerful classification method that combines
features and processes them using the sigmoid function. The support vector machine is a
maximum-margin classifier and is the most complex among the four. Altogether, these four
methods cover a range of ML classifiers working on different principles [28]. Our toolbox
does not include a deep neural classifier because such networks require a large dataset and
are computationally expensive.

4.4. Experimental Settings

The proposed work performed extensive tests to verify the effectiveness of the pro-
posed approach for detecting Trojans coming from a comprehensive Android malware
dataset. TrojanDetector uses the train/test split method: 80% of the dataset is used for
training and 20% for testing.

4.5. Feature Selection

Feature or variable subset selection selects the best predictive feature subset from
the original feature set. We performed feature selection using a well-explored Feature
Importance method to obtain the top-10 features based on their scores.

Algorithm 1 shows the importance of every feature used in this work for different
classifiers, i.e., 2a for DT, 2b for RF, 2c for LR, and 2d for SVM. The x-axis mentions all
the features, while the y-axis shows the scores from 0 to 100. We select the top 10 features
based on the score and use the reduced feature vectors (10-features long) to train and test
our chosen classifiers.

The importance of the features varies according to the chosen ML classifier and is given
by the feature importance graphs of the corresponding classifier. Technically speaking, API
(F1), system call (F2), CPU usage (F3), and dangerous permission used (F8) are consistently
important irrespective of the chosen classifier. On the other hand, energy level (F4) and
is-email-sent (F6) are of limited significance for any classifier.

4.6. Experimental Results

The outcome of the chosen binary classifiers is either True Positive Rate (TPR), False
Reject Rate (FRR), False Positive Rate (FPR), or True Reject Rate (TRR). TPR is the total
number of Trojan apps correctly classified as Trojans, FRR is the total number of Trojan
apps incorrectly classified as benign, FPR is the total number of benign apps incorrectly
classified as Trojans, and TRR is the total number of benign apps correctly classified as

Appl. Sci. 2022, 12, 10755 9 of 12

benign. Equal Error Rate (EER) describes situations where FPR and FRR are equal. We
show the evaluation results regarding TPR, EER, and accuracy. We do not report FPR, FRR,
and TRR because they can be easily derived as FRR = 1-TPR, and TRR = 1-FPR.

Figure 2 summarises the results of the considered classifiers over the selected features.
The DT classifier on chosen features (shown in Figure 3a) is the lowest accurate classifier
with 82.25% accuracy, followed by RF with an accuracy of 86.68%. SVM is the most
effective algorithm in this scenario. It attains an accuracy of 96.64%, followed by LR with
91.50% accuracy.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 13

Figure 2. Results of the chosen classifier on selected features.

Figure 3. Features importance graph for (a) DT, (b) RF, (c) LR, and (d) SVM classifier.

The results of the chosen classifier on selected features indicate that TrojanDetector
could be effectively used to differentiate between Trojans and benign applications.

4.7. Discussion on Results
Experimental results on three publicly available datasets, i.e., CCCS-CIC-AndMal-

2020, Contagio Mobile, and VirusShare, are promising. The analysis suggests that the Tro-
janDetector using SVM as the classifier attains the highest accuracy of 96.64%.

This research exploits the decision tree classifier with a depth of 10—the value of
min-weight-fraction-leaf to 3 and max-leaf-nodes to 5. DT is normally considered useful
on a smaller dataset, which is not the case here. In a large dataset, this classifier normally
overfits, resulting in over-prediction. Similarly, we applied RF with just five trees and
used the default criterion of (mse, mae). Here, we set the max depth to 5, with min-sam-
ples-split to 3 and min-weight-fraction-leaf to 10.

Though the accuracy increases with respect to the DT classifier, it is still lower than
the top-performing SVM classifier. This work uses SVM with a Radial Basis Function
(RBF) as its kernel function. This algorithm is commonly known as a maximum margin

Figure 2. Results of the chosen classifier on selected features.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 13

Figure 2. Results of the chosen classifier on selected features.

Figure 3. Features importance graph for (a) DT, (b) RF, (c) LR, and (d) SVM classifier.

The results of the chosen classifier on selected features indicate that TrojanDetector
could be effectively used to differentiate between Trojans and benign applications.

4.7. Discussion on Results
Experimental results on three publicly available datasets, i.e., CCCS-CIC-AndMal-

2020, Contagio Mobile, and VirusShare, are promising. The analysis suggests that the Tro-
janDetector using SVM as the classifier attains the highest accuracy of 96.64%.

This research exploits the decision tree classifier with a depth of 10—the value of
min-weight-fraction-leaf to 3 and max-leaf-nodes to 5. DT is normally considered useful
on a smaller dataset, which is not the case here. In a large dataset, this classifier normally
overfits, resulting in over-prediction. Similarly, we applied RF with just five trees and
used the default criterion of (mse, mae). Here, we set the max depth to 5, with min-sam-
ples-split to 3 and min-weight-fraction-leaf to 10.

Though the accuracy increases with respect to the DT classifier, it is still lower than
the top-performing SVM classifier. This work uses SVM with a Radial Basis Function
(RBF) as its kernel function. This algorithm is commonly known as a maximum margin

Figure 3. Features importance graph for (a) DT, (b) RF, (c) LR, and (d) SVM classifier.

Appl. Sci. 2022, 12, 10755 10 of 12

The results of the chosen classifier on selected features indicate that TrojanDetector
could be effectively used to differentiate between Trojans and benign applications.

4.7. Discussion on Results

Experimental results on three publicly available datasets, i.e., CCCS-CIC-AndMal-
2020, Contagio Mobile, and VirusShare, are promising. The analysis suggests that the
TrojanDetector using SVM as the classifier attains the highest accuracy of 96.64%.

This research exploits the decision tree classifier with a depth of 10—the value of
min-weight-fraction-leaf to 3 and max-leaf-nodes to 5. DT is normally considered useful
on a smaller dataset, which is not the case here. In a large dataset, this classifier normally
overfits, resulting in over-prediction. Similarly, we applied RF with just five trees and used
the default criterion of (mse, mae). Here, we set the max depth to 5, with min-samples-split
to 3 and min-weight-fraction-leaf to 10.

Though the accuracy increases with respect to the DT classifier, it is still lower than
the top-performing SVM classifier. This work uses SVM with a Radial Basis Function (RBF)
as its kernel function. This algorithm is commonly known as a maximum margin classifier
and is utilised to tackle classification problems for a large dataset. There are several kernel
selections available for the SVM method. We applied all the available kernels, and the RBF
kernel yielded the highest accuracy. There are two tuning parameters for SVM-RBF: kernel
parameter sigma (σ) and cost parameter (C) adjusted for repeated training. The sigma
value plays a role in getting a good fit model to the data. The cost parameter is the penalty
limit if the data point is miss-classified or oversteps the maximum margin. The SVM works
better on the margins, and due to the clear margins, the SVM gives the highest accuracy.

4.8. Limitations

TrojanDetector has some limitations: Firstly, it is evaluated on just three publicly
available datasets (which we believe are sufficient to draw an initial conclusion). Secondly,
it exploited simple classifiers; it would be interesting to check the performance of advanced
machine learning classifiers, e.g., CNN, Transformers, etc., on these datasets. Finally, Tro-
janDetector is analysed in offline settings; it would be interesting to extend TrojanDetector
to work in online mode to perform this classification in real-time.

5. Conclusions and Future Works

In this paper, we presented an effective trojan detection technique, namely, Trojan-
Detector, for detecting Trojans using a multi-layer hybrid approach, i.e., by checking its
features at various levels of an Android device. We used four different ML classifiers to
detect the Trojan in conjunction with the extracted features. Among them, SVM obtains the
best performance. We further identified four features that play a crucial role, irrespective of
the classifier. Our work is a step toward providing a safe platform for Android users by
effectively detecting Trojans.

In the future, we plan to further improve the proposed method by considering features
from the kernel layer of the Android device. We also have a plan for extensive experimental
evaluation of TrojanDetector. Like performing ablation tests to measure the impact of each
feature (when dropping it) on the classifiers and performing experiments with a particular
focus on zero-day exploits. Moreover, we would like to address the limitations of this work,
as identified in Section 4.8.

Author Contributions: Conceptualization, S.U., N.Z. and T.A.; methodology, S.U., N.Z. and T.A.;
software, N.Z. and S.S.; validation, N.Z., A.B. and S.S.; formal analysis, A.B. and S.S.; investigation,
S.U., N.Z. and T.A.; resources, S.U., N.Z. and T.A.; data curation, N.Z., A.B. and S.S.; writing—original
draft preparation, S.U., N.Z. and T.A.; writing—review and editing, T.A., A.B. and S.S.; visualization,
A.B. and S.S.; supervision, A.B. and S.S.; project administration, S.U.; funding acquisition, A.B. All
authors have read and agreed to the published version of the manuscript.

Appl. Sci. 2022, 12, 10755 11 of 12

Funding: This work is supported by the Open Access Publishing Fund of the Free University
of Bozen-Bolzano.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wotring, B.; Potter, B. Host Integrity Monitoring: Using Osiris and Samhain; Books24x7.com: Norwood, MA, USA, 2005.
2. Sharma, H.; Govindan, K.; Poonia, R.C.; Kumar, S.; Wael, M. Advances in Computing and Intelligent Systems. Springer Nat. 2022.

[CrossRef]
3. Tong, F.; Yan, Z. A hybrid approach of mobile malware detection in Android. J. Parallel Distrib. Comput. 2017, 103, 22–31.

[CrossRef]
4. Cayron, C. ARPGE: A computer program to automatically reconstruct the parent grains from electron backscatter diffraction data.

J. Appl. Crystallogr. 2007, 40, 1183–1188. [CrossRef] [PubMed]
5. Edraki, M.; Karim, N.; Rahnavard, N.; Mian, A.; Shah, M. Odyssey: Creation, Analysis and Detection of Trojan Models. IEEE

Trans. Inf. Forensics Secur. 2021, 16, 4521–4533. [CrossRef]
6. Liu, K.; Xu, S.; Xu, G.; Zhang, M.; Sun, D.; Liu, H. A Review of Android Malware Detection Approaches Based on Machine

Learning. IEEE Access 2020, 8, 124579–124607. [CrossRef]
7. Felt, A.P.; Ha, E.; Egelman, S.; Haney, A.; Chin, E.; Wagner, D. Android permissions: User attention, comprehension, and behavior. In

Proceedings of the Eighth Symposium on Usable Privacy and Security—SOUPS ’12, Washington, DC, USA, 11–13 July 2012; p. 1.
[CrossRef]

8. Baghirov, E. Techniques of Malware Detection: Research Review. In Proceedings of the 2021 IEEE 15th International Conference on
Application of Information and Communication Technologies (AICT), Baku, Azerbaijan, 13–15 October 2021; pp. 1–6. [CrossRef]

9. Martín, A.; Lara-Cabrera, R.; Camacho, D. Android malware detection through hybrid features fusion and ensemble classifiers:
The AndroPyTool framework and the OmniDroid dataset. Inf. Fusion 2018, 52, 128–142. [CrossRef]

10. Hadiprakoso, R.B.; Kabetta, H.; Buana, I.K.S. Hybrid-Based Malware Analysis for Effective and Efficiency Android Malware
Detection. In Proceedings of the 2020 International Conference on Informatics, Multimedia, Cyber and Information System
(ICIMCIS), Jakarta, Indonesia, 19–20 November 2020; pp. 8–12. [CrossRef]

11. Zhao, Y.-l.; Qian, Q. Android malware identification through visual ex-ploration of disassembly files. Int. J. Netw. Secur. 2018, 20,
1061–1073.

12. Suarez-Tangil, G.; Dash, S.K.; Ahmadi, M.; Kinder, J.; Giacinto, G.; Cavallaro, L. DroidSieve: Fast and Accurate Classification of
Obfuscated Android Malware. In Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy,
Scottsdale, AZ, USA, 22–24 March 2017; pp. 309–320. [CrossRef]

13. Sriyanto; Sahrin, S.B.; Faizal, A.M.; Suryana, N.; Suhendra, A. MiMaLo: Advanced Normalization Method for Mobile Malware
Detection. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 2022, 14, 24–33. [CrossRef]

14. Cai, H.; Meng, N.; Ryder, B.; Yao, D. DroidCat: Effective Android Malware Detection and Categorization via App-Level Profiling.
IEEE Trans. Inf. Forensics Secur. 2018, 14, 1455–1470. [CrossRef]

15. Bokolo, B.; Sur, G.; Liu, Q.; Yuan, F.; Liang, F. Hybrid Analysis Based Cross Inspection Framework for Android Malware Detection.
In Proceedings of the 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and
Applications (SERA), Las Vegas, NV, USA, 25–27 May 2022; pp. 99–105.

16. Gan, Y.; Qian, H.; Gao, Y. Combining traditional machine learning and anomaly detection for several imbalanced Android
malware dataset’s classification. In Proceedings of the 2022 7th International Conference on Machine Learning Technologies
(ICMLT), Rome, Italy, 11–13 March 2022; pp. 74–80.

17. Qamar, A.; Karim, A.; Chang, V. Mobile malware attacks: Review, taxonomy & future directions. Futur. Gener. Comput. Syst. 2019,
97, 887–909. [CrossRef]

18. Yuan, Z.; Lu, Y.; Xue, Y. Droiddetector: Android malware characterization and detection using deep learning. Tsinghua Sci.
Technol. 2016, 21, 114–123. [CrossRef]

19. Ahmed, M.F.; Biash, Z.T.; Shakil, A.R.; Ryen, A.A.N.; Hossain, A.; Ashraf, F.B.; Hossain, M.I. ShielDroid: A Hybrid Approach
Integrating Machine and Deep Learning for Android Malware Detection. In Proceedings of the 2022 International Conference on
Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand, 23–25 March 2022; pp. 911–916.

20. Aminuddin, N.I.; Abdullah, Z. Android Trojan Detection Based on Dynamic Analysis. 2019. Available online: https://
fazpublishing.com/acis/index.php/acis/article/view/4 (accessed on 21 August 2022).

21. Kumar, R.; Kumar, P.; Tripathi, R.; Gupta, G.P.; Islam, A.K.M.N.; Shorfuzzaman, M. Permissioned Blockchain and Deep Learning
for Secure and Efficient Data Sharing in Industrial Healthcare Systems. IEEE Trans. Ind. Inform. 2022, 18, 8065–8073. [CrossRef]

22. Kumar, P.; Kumar, R.; Gupta, G.P.; Tripathi, R.; Srivastava, G. P2TIF: A Blockchain and Deep Learning Framework for Privacy-
Preserved Threat Intelligence in Industrial IoT. Trans. Ind. Inform. 2022, 18, 6358–6367. [CrossRef]

http://doi.org/10.1007/978-981-15-0222-4
http://doi.org/10.1016/j.jpdc.2016.10.012
http://doi.org/10.1107/S0021889807048777
http://www.ncbi.nlm.nih.gov/pubmed/19461849
http://doi.org/10.1109/TIFS.2021.3108407
http://doi.org/10.1109/ACCESS.2020.3006143
http://doi.org/10.1145/2335356.2335360
http://doi.org/10.1109/AICT52784.2021.9620415
http://doi.org/10.1016/j.inffus.2018.12.006
http://doi.org/10.1109/ICIMCIS51567.2020.9354315
http://doi.org/10.1145/3029806.3029825
http://doi.org/10.5815/ijmecs.2022.05.03
http://doi.org/10.1109/TIFS.2018.2879302
http://doi.org/10.1016/j.future.2019.03.007
http://doi.org/10.1109/TST.2016.7399288
https://fazpublishing.com/acis/index.php/acis/article/view/4
https://fazpublishing.com/acis/index.php/acis/article/view/4
http://doi.org/10.1109/TII.2022.3161631
http://doi.org/10.1109/TII.2022.3142030

Appl. Sci. 2022, 12, 10755 12 of 12

23. Kumar, P.; Kumar, R.; Gupta, G.P.; Tripathi, R. BDEdge: Blockchain and Deep-Learning for Secure Edge-Envisioned Green CAVs.
IEEE Trans. Green Commun. Netw. 2022, 6, 1330–1339. [CrossRef]

24. Kumar, R.; Kumar, P.; Tripathi, R.; Gupta, G.P.; Garg, S.; Hassan, M.M. BDTwin: An Integrated Framework for Enhancing
Security and Privacy in Cybertwin-Driven Automotive Industrial Internet of Things. IEEE Internet Things J. 2022, 9, 17110–17119.
[CrossRef]

25. Rahali, A.; Lashkari, A.H.; Kaur, G.; Taheri, L.; Gagnon, F.; Massicotte, F. DIDroid: Android Malware Classification and
Characterization Using Deep Image Learning. In Proceedings of the 2020 the 10th International Conference on Communication
and Network Security, Tokyo, Japan, 27–29 November 2020; pp. 70–82. [CrossRef]

26. Mila, P. Contagiodump. Available online: http://contagiodump.blogspot.com/ (accessed on 21 August 2022).
27. Virusshare. Available online: https://virusshare.com/ (accessed on 21 August 2022).
28. Alpaydin, E. Machine Learning; MIT Press: Cambridge, UK, 2021.

http://doi.org/10.1109/TGCN.2022.3165692
http://doi.org/10.1109/JIOT.2021.3122021
http://doi.org/10.1145/3442520.3442522
http://contagiodump.blogspot.com/
https://virusshare.com/

	Introduction
	Related Work
	TrojanDetector Approach
	Threat Model
	Attacks
	Trojan Detector

	Experimental Validation
	Dataset
	Features Extraction
	Classifier Selection
	Experimental Settings
	Feature Selection
	Experimental Results
	Discussion on Results
	Limitations

	Conclusions and Future Works
	References

