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Abstract: Nonlinear distortion in loudspeaker systems degrades sound quality and must be properly
compensated for by linearization techniques. One technique to reduce nonlinear distortion is to use
a Volterra Filter, which approximates the nonlinearity of the target loudspeaker using the Volterra
series expansion. In general, the Volterra Filter is computationally very expensive, and the amount of
computation needs to be reduced for real-time processing. In this paper, we propose an efficient im-
plementation of the third-order Volterra filter based on singular value decomposition. The proposed
method determines the necessary coefficients based on the symmetry of the third-order Volterra filter
and applies singular value decomposition to them. In the filter structure consisting of singular values
and their corresponding singular vector, the computational complexity of the third-order Volterra
filter can be reduced by eliminating the part of the filter with small singular values. By focusing on the
magnitude of the singular values, the proposed method can improve the computational efficiency of
the third-order Volterra filter without decreasing its approximation accuracy. Simulation results show
that the proposed method can improve the computational efficiency by 60% while maintaining the
nonlinear distortion compensation performance of the micro-speaker for smartphones by about 8 dB.

Keywords: nonlinear signal processing; volterra filter; compensation of nonlinear distortions;
singular value decomposition; micro-speaker

1. Introduction

The performance of an acoustic or audio system is highly dependent on the perfor-
mance of the loudspeaker located at the final stage of the system. Generally, the perfor-
mance of a loudspeaker is evaluated by its frequency response, especially its amplitude
response, but it is not sufficient to evaluate the loudspeaker assuming it is a linear system.
This is because nonlinearities in loudspeakers become more pronounced as the diaphragm
is driven at higher amplitudes to increase the sound volume. The details of loudspeaker
nonlinearity are described in the literature [1]. The two types of nonlinearity are: the non-
linearity caused by the magnetic flux density changing with amplitude as the diaphragm is
driven at large amplitudes and the nonlinearity caused by the stiffness of the edges and
dampers that support the diaphragm changing with amplitude as the diaphragm is driven
at large amplitudes.

Loudspeaker nonlinearities generate nonlinear distortions that degrade sound quality.
Here, nonlinear distortion is classified into harmonic distortion, in which frequency com-
ponents of integer multiples of the input frequency are generated, and intermodulation
distortion, in which frequency components of the sum and difference of multiple input
frequencies are generated. In particular, second- and third-order nonlinear distortions are
dominant in loudspeakers, and reducing these nonlinear distortions is essential for improv-
ing sound quality. To compensate for nonlinear distortions, it is important to accurately
model the nonlinearities of the loudspeaker.
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A mirror filter [2,3] that relies on the mechanism that generates nonlinearity based
on the nonlinear motion equation of the loudspeaker has been proposed as a method of
modeling the nonlinearity of the loudspeaker. The mirror filter also reduces the nonlinear
distortion generated in the loudspeaker, and can be implemented using a nonlinear IIR fil-
ter [4–7], which requires a low amount of computation. However, nonlinear compensation
using a mirror filter or nonlinear IIR filter is based on the nonlinear motion equation of the
loudspeaker and can only compensate for nonlinear distortion caused by the nonlinearity
expressed in the motion equation. As a result, the compensation performance is known to
be quite limited and the intermodulation distortion cannot be compensated [8].

On the other hand, a method has been proposed by assuming the loudspeaker as
a general nonlinear system and approximating its nonlinearity by the Volterra series
expansion [9], which is an extension of the Theler expansion to systems with memory and is
composed of Volterra kernels that represent the impulse response of a linear system [10]. It is
composed of Volterra kernels that represent second-, third-, and higher-order nonlinearities,
corresponding to the impulse response of a linear system. The Volterra filters [11,12], which
realize these Voltera kernels as digital filters, can be used to model the nonlinearities of
loudspeakers. Here, the coefficients of the Volterra filter are identified using the adaptive
Volterra filter [13–15] or frequency response method [16]. The Volterra filter coefficients
obtained by modeling can then be used to construct a linearization system [17,18] to
compensate for nonlinear distortion and placed in the front stage of the loudspeaker
to improve sound quality. The Volterra filter can be used to compensate for nonlinear
distortion not only in loudspeakers, but also in parametric array loudspeakers [19–21]
using ultrasonic waves because the nonlinear distortion compensation is independent of
the cause of the nonlinear distortion [22].

However, Volterra filters are very computationally expensive because of their multi-
dimensional filter structure. In particular, the third-order Volterra filter used for compen-
sation of third-order nonlinear distortions has a three-dimensional filter structure, which
requires a very large amount of computation. Therefore, parallel-cascade truncated Volterra
filters [23,24], tensor decomposition realization [25], diagonalization [26], and subband
realization [27–31] have been proposed as efficient implementations of third-order Volterra
filters, respectively. However, in the parallel cascaded truncated Volterra filter, some of the
parameters used to design the approximate model of the target third-order Volterra filter
are determined by adaptive signal processing, and the accuracy of the approximate model
is reduced due to the adaptation error. In addition, the tensor decomposition realization
and diagonalization do not take into account the symmetry of the Volterra kernel, which
limits the improvement in computational efficiency. Furthermore, in improving compu-
tational efficiency in subband realization, there is a problem that it is not guaranteed to
reduce computational complexity because it strongly depends on the nonlinearity of the
target loudspeaker.

In this paper, we propose an efficient realization method for third-order Volterra filters
based on singular value decomposition. Using the symmetry of the target third-order
Volterra filter, the proposed method decomposes the filter into several 2D filters of different
shapes and performs singular value decomposition on each 2D filter. The resulting singular
values and their corresponding singular vectors are then used to construct each 2D filter.
By removing the filter sections with small singular values, the approximation accuracy of
the original third-order Volterra filter is not degraded and the computational efficiency
is improved.

This paper is organized as follows. In Section 2, a Volterra filter and the linearization
system to compensate for nonlinear distortions are explained. Then, the proposed efficient
realization method for the third-order Volterra filter is described in Section 3. Simulation
results are given in Section 4 to demonstrate the effectiveness of the proposed efficient
realization and a conclusion is given in Section 5.
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2. Linearization System for Loudspeaker

Loudspeakers increase volume as well as nonlinear distortion. This is due to the fact
that as the diaphragm amplitude increases, the voice coil is displaced from the magnetic
flux formed by the permanent magnet, causing the magnetic flux density of the voice
coil to change depending on the diaphragm amplitude, and the stiffness of the edges and
dampers that support the diaphragm to change depending on the diaphragm amplitude.
Therefore, the loudspeaker must be modeled as a nonlinear system. Since the nonlinearity
in a loudspeaker has a memory, like the impulse response in a linear system, it can be
approximated by a Volterra series expansion [9] that can accurately model a nonlinear
system with a memory. Then, the Volterra kernels representing each term in the Volterra
series expansion are represented as multidimensional digital filters, which are called
Volterra filters [13], and are one of the representative examples of nonlinear digital filters.
Now, if the nonlinearity of the nonlinear system under consideration can be terminated up
to the third order, in other words, if the nonlinearity above the fourth order is relatively
small and negligible, the nonlinear input–output relation of the Volterra filter can be
described as:

y(n) =
N−1

∑
k1=0

h1(k1)x(n− k1)

+
N−1

∑
k1=0

N−1

∑
k2=0

h2(k1, k2)x(n− k1)x(n− k2)

+
N−1

∑
k1=0

N−1

∑
k2=0

N−1

∑
k3=0

h3(k1, k2, k3)x(n− k1)x(n− k2)x(n− k3), (1)

where x(n) and y(n) are input and output signals with discrete time n, N is the memory
length of the Volterra filter, and h1(k1), h2(k1, k2), and h3(k1, k2, k3) are the filter coefficients
of the first-, second-, and third-order Volterra filters, respectively. From (1), the second term
is represented by a 2D digital filter and the third term is represented by a 3D digital filter.
Hence, as the computation of the third term requires huge computational cost, the efficiency
realization is required. In general, Volterra filters (kernels) have symmetry, for example,
the symmetric property for the third-order Volterra filter is given by:

h3(k1, k2, k3) = h3(k1, k3, k2)

= h3(k2, k1, k3)

= h3(k2, k3, k1)

= h3(k3, k1, k2)

= h3(k3, k2, k1). (2)

A block diagram of the linearization system that compensates for nonlinear distortion
in a loudspeaker is shown in Figure 1. H1(z), H2(z1, z2), and H3(z1, z2, z3) shown in the
loudspeaker section in this figure are the first, second, and third order responses of the
loudspeaker, respectively. Note that these are expressed in the form of multidimensional z-
transformed Volterra filters for each order in (1). Furthermore, Ĥ2(z1, z2) and Ĥ3(z1, z2, z3)
in the linearization system section represent the multidimensional z transform of the
pre-identified second- and third-order Volterra kernels of the loudspeaker, respectively.
Furthermore, Ĥ−1

1 (z) is the transfer function of the approximate linear inverse filter of the
identified first-order Volterra kernel (linear response) of the loudspeaker, which is designed
to satisfy the following condition:

H1(z) · H−1
1 (z) = z−∆, (3)
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where ∆ is called the inverse delay and generally set to half the filter length of Ĥ−1
1 (z).

Second- and third-order nonlinear distortions in loudspeakers can be fully compensated
for by the linearization system if the second- and third-order Volterra kernels are identified
with high accuracy and the approximate linear inverse filter is properly designed.

z −Δ

: 1st−order response of the loudspeakerH1(z)

: 3rd−order response of the loudspeakerH3(z1,z2,z3)

: 2nd−order response of the loudspeakerH2(z1,z2)

: Linear inverse filter

: Delay

H1
−1

 (z)

Ĥ2(z1,z2) : Identified 2nd−order Volterra kernel

Ĥ3(z1,z2,z3) : Identified 3rd−order Volterra kernel

x(n) y(n)u(n)

LoudspeakerLinearization System

z −
Δ

Ĥ3(z1, z2, z3)

Ĥ2(z1, z2)

H3(z1, z2, z3)

H2(z1, z2)

H1(z)

H1
−1

 (z)

Figure 1. Block diagram of the 3rd-order linearization system for loudspeakers with higher-order non-
linearity.

3. Efficient Realization for Third-Order Volterra Filter Using Singular
Value Decomposition

In this section, we describe the proposed efficient realization of the third-order Volterra
filter based on singular value decomposition. Figure 2 shows a schematic diagram to
understand the proposed realization method. Figure 2a shows all elements of the third-
order Volterra kernel when the memory length is N = 4. It can be seen that the third-order
Volterra kernel is a three-dimensional digital filter. Next, since the third-order Volterra
kernel has symmetry given by (2), the elements required to compute the output signal
of the third-order Volterra filter, denoted by the third term in (1), are shown in Figure 2b.
Then, Figure 2c shows the four 2D elements obtained by slicing the structure shown in (b)
in the l direction. This operation results in the decomposition of a three-dimensional filter
structure into multiple two-dimensional filter structures. Thus, the l-layer 2-D filter can be
represented by the following matrix:

i

j
l

i

j
l

(a) (b)

l = 1 l = 2 l = 3 l = 4

(c)

Figure 2. Third-order Volterra kernel considering its symmetry characteristic and its separated layers.
(a) All elements (N = 4). (b) Elements required for convolution. (c) Elements of each layer.
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H3,l =


h3(0, l − 1, l − 1) h3(0, l, l − 1) · · · h3(0, N − 1, l − 1)
h3(1, l − 1, l − 1) h3(1, l, l − 1) · · · h3(1, N − 1, l − 1)

...
...

. . .
...

h3(l − 1, l − 1, l − 1) h3(l − 1, l, l − 1) · · · h3(l − 1, N − 1, l − 1)

. (4)

Then, the input–output relation equation of the l-layer 2D filter is:

y3,l(n) =
l−1

∑
k1=0

N−1

∑
k2=l−1

h3(k1, k2, l − 1)x(n− k1)x(n− k2), (5)

or,

y3,l(n) = xT(n)H3,lx
′(n), (6)

where x(n) and x′(n) are the input signal vectors represented by:

x(n) = [x(n) x(n− 1) · · · x(n− l + 1)]T , (7)

x′(n) = [x(n− l + 1) x(n− l) · · · x(n− N + 1)]T . (8)

Thus, the output of the third-order Volterra filter is:

y3(n) =
N

∑
l=1

y3,l(n)x(n− l + 1). (9)

In the proposed realization, these matrices H3,l are decomposed by singular value
decomposition as follows:

H3,l =
M

∑
m=1

σm,lum,lv
T
m,l , (10)

where M is the rank of H3,l , σm,l is the l-layer mth singular value, um,l is a left singular
vector, and vm,l is a right singular vector, respectively. Hence, the l-layer output is given by:

y3,l(n) =
M

∑
m=1

σm,l

[
xT(n)um,lv

T
m,lx

′(n)
]
. (11)

This input–output relationship is represented by a block diagram shown in Figure 3.
Figure 3 shows that this filter structure has independent paths for each singular value.
Thus, even if we remove paths with small singular values, we expect to be able to model
the original l-layer 2D filter with high accuracy. If only the paths involving the singular
values up to the alth are kept and the other paths are removed, the input–output relation is:

y3(n) =
N

∑
l=1

y3,l(n)x(n− l + 1), (12)

y3,l(n) =
al

∑
m=1

σm,l

[
xT(n)um,lv

T
m,lx

′(n)
]
. (13)

The concrete procedure of the proposed implementation method is as follows.

1. Obtain the third-order Volterra kernel of the target loudspeaker using an identification
method such as FRM [16].

2. Reduce the obtained third-order Volterra kernel to only the necessary components as
shown in Figure 2b based on the symmetry of (2).
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3. Slice the third-order Volterra kernel with only the necessary components as shown in
Figure 2b into multiple two-dimensional components H3,l , as shown in Figure 2c.

4. Apply SVD to each of the sliced 2D components (matrices) H3,l to obtain singular
value σm,l , left singular vector um,l , and right singular vector vm,l .

5. Based on the pre-defined reduction ratio r, leave the singular value σm,l , correspond-
ing left singular vectors um,l and right singular vectors vm,l up to the upper alth,
and implement the configuration in Figure 3.

6. Apply the configuration in Figure 3 to the Ĥ3 block in Figure 1 to compensate for the
third-order nonlinear distortion of the target loudspeaker.

u1,l

v1,l

u2,l

v2,l

ual,l

val,l

σal,l

σ1,l

σ2,l

x(n) y3,l(n)

Figure 3. Block diagram of lth layer of the proposed structure based on singular value decomposition.

4. Reduction of Computational Cost and Compensation Performance for the
Third-Order Harmonic Distortion

In this section, some simulation results are shown to verify the effectiveness of the
proposed method. In the simulations, we first compare the path reduction in the proposed
method with the compensation performance of the third-order harmonic distortion. Next,
we compare the compensation performance of the third-order harmonic distortion in the
case of using the parallel cascaded truncated Volterra filter [23,24] with that of the proposed
method. The subject of distortion compensation is a micro-speaker for smart phones, which
generally has large nonlinearities. The specifications of the target micro-speaker are shown
in Table 1. Here, the third-order Volterra kernel of the micro-speaker was identified by the
frequency response method [16]. Table 2 and Figure 4 show the identification conditions
of the Volterra kernel and the distribution of singular values of the target third-order
Volterra kernel, respectively. Figure 4 shows that there are many singular values with
small values, which is expected to reduce the amount of computation while maintaining
compensation performance.

Table 1. Specifications of the target micro-speaker.

Micro-speaker HDR9267 (Hosiden)
Dimensions of target micro-speaker 9× 16× 2.4 mm
Rated power 0.4 W
Input impedance 7.3 Ω
Resonance frequency 1008 Hz
Enclosure type closed-box
Inside dimensions 26× 26× 20 mm
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Table 2. Identification conditions of the 3rd-order nonlinearity of the target micro-speaker.

Input voltage 1.2 Vrms
Sampling frequency 48,000 Hz
Frequency range 240–12,000 Hz
Tap length of 1st-order Volterra kernel 200
Tap length of 2nd-order Volterra kernel 200 × 200
Tap length of 3rd-order Volterra kernel 200 × 200 × 200

0 2000 4000 6000 8000 10,000

Number of singular values

0

0.5

1

1.5

2

2.5

A
m

p
li

tu
d

e

10
−3

Figure 4. Distribution of singular values for the third-order Volterra kernel of the target micro-speaker.

4.1. Computational Complexity of the Proposed Method

In this section, we compare the numbers of multiplications for each realization. First,
the number of multiplications for (1) considering the symmetry property given by (2) is
given by:

N(N2 + 3N + 2)
2

. (14)

Next, the total number of multiplications for all paths obtained by singular value
decomposition is given below for even and odd numbers of N, respectively. If N is even,

2
N/2

∑
l=1

{
l2 + l(N − l + 1) + 2l

}
+ N = 2

N/2

∑
l=1
{l(N + 3)}+ N, (15)

where the first term of the left-hand side indicates the total multiplications of the left
singular vectors um,l , the second term indicates the total multiplications of the right singular
vectors vm,l , the third term indicates the multiplications of each singular vector output and
the multiplications of singular values σm,l in Figure 3, and the fourth term indicates the
multiplications in (9), respectively. In the same way, if N is odd, we have:

2
(N−1)/2

∑
l=1

{l(N + 3)}+ (N2 + 4N + 3)/2 + N. (16)
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Applying the formula for the sum of arithmetic sequence to each of these expres-
sions yields:

N(N2 + 5N + 10)
4

(N is even), (17)

N3 + 7N2 + 23N + 9
8

(N is odd). (18)

Finally, we find the number of multiplications when we remove paths with small
singular values, which is the proposed method. In this case, the length of the singular
vector depends on the layer number (e.g., l = 1 and l = 2 in Figure 2), so the number of
multiplications cannot be determined explicitly. Therefore, by assuming that r [%] of the
multiplications required for all layers are removed, the total number of multiplications can
be approximated as:

N(N2 + 5N + 6)
4

(1− r/100) + N. (19)

For the cases of N = 200 and r set to 0, 60, 75, and 90%, the numbers of multiplications
of the proposed method for the third-order Volterra kernel are shown in Table 3. Table 3
shows that the amount of computation can be reduced to about half by applying singular
value decomposition compared to computing the output of the third-order Volterra filter
in (1) considering the symmetry property given by (2). The computational complexity can
be further reduced by applying the proposed method, which removes paths with small
singular values.

Table 3. Comparison of number of multiplications for the ratio of removed singular values.

Removed Path Ratio r [%] # of Multiplications Average Compensation [dB]

original (no SVD) 4,060,200 13.5 dB
0 % 2,050,500 13.5 dB

60 % 820,320 7.9 dB
75 % 512,775 3.5 dB
90 % 205,230 −1.2 dB

4.2. Compensation of Third-Order Harmonic Distortion

Next, the relationship between the reduction ratio of the amount of computation
and the compensation performance of the third-order harmonic distortion is examined.
By applying singular value decomposition to the identified third-order Volterra filter in the
linearization system shown in Figure 1 and applying the proposed method to remove paths
with small singular values, the compensation performance of the third-order harmonic
distortion is evaluated through simulations. For the evaluation of the third-order harmonic
distortion, a sweep sine is used as the input signal, and the sampling frequency is 48,000 Hz
and the sweep frequency is 240–5760 Hz. The third-order nonlinear distortion compensation
was simulated using MATLAB.

Figure 5 shows compensation results for third-order harmonic distortions. Here, the ra-
tio of removed singular values r was set to 0, 60, 75, and 90%. Furthermore, the average
compensation performance is shown in Table 3. Figure 5 shows that when the ratio of paths
removed was 60%, the compensation performance for harmonic distortion up to about
6000 Hz was almost as good as when all paths were used. The harmonic distortion was
also reduced for frequencies above 6000 Hz, although the compensation performance was
slightly lower. Next, when the ratio of paths removed was 75% and 90%, the compensation
performance for harmonic distortion up to about 4000 Hz was almost as good as when
all paths were used. However, the 75% case shows little compensation for harmonic dis-
tortion above 4000 Hz, while the 90% case shows an increase in distortion above 4000 Hz.
Table 3 also shows that the average amount of compensation decreased as the ratio of paths
removed increased. Therefore, for the micro-speaker used in this experiment, it is reason-
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able to limit the reduction of paths to about 60%. However, even with a 60% reduction,
the amount of calculation was sufficiently reduced, thus demonstrating that the proposed
method can reduce the amount of computation while maintaining the performance of
harmonic distortion compensation.
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Figure 5. Simulation results for compensation of third-order harmonic distortion. (a) Reduction rate
r = 60%. (b) Reduction rate r = 75%. (c) Reduction rate r = 90%.
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4.3. Comparison between Proposed Method and Parallel-Cascade Truncated Volterra Filter

Finally, the compensation performance was compared for the proposed method and
the parallel-cascade truncated Volterra filter [23,24] via simulation. This paper focuses
on nonlinear distortion compensation of micro-speakers. As shown in [10], the Volterra
series expansion is an effective nonlinear model for loudspeakers from both theoretical and
experimental perspectives. Therefore, this paper focuses on improving the computational
efficiency of the Volterra filter and compares it with the Parallel-Cascade realization, which
is a method for improving the computational efficiency of the Volterra filter, in this section.
Therefore, comparisons with other nonlinear models (e.g., functional link networks with
Legendre and Chebychev kernels) are out of the scope of this paper and will be discussed
in the future.

The simulation conditions are the same as the previous section and the ratio of re-
moved singular values (paths) r is set to 75%. Moreover, the number of branches of the
parallel-cascade truncated Volterra filter is set to 26 so that the number of multiplications is
almost the same as that for the proposed method with r = 75%. Figure 6 shows that the
parallel-cascade truncated Volterra filter is almost incapable of compensating for harmonic
distortion with the same amount of calculations as the proposed method. On the other
hand, the proposed method can compensate harmonic distortion up to approximately
4000 Hz, while reducing the amount of computation by 75%. Therefore, it has been demon-
strated that the proposed method, which slices the third-order Volterra kernel into multiple
layers, applies singular value decomposition to the two-dimensional filter in each layer,
and removes paths with small singular values, can reduce the amount of computation
while maintaining the harmonic distortion compensation performance.
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o
u
n
d
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ss

u
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 [

d
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After compensation (PCVF)

Before compensation

Figure 6. Comparison of compensation of third-order harmonic distortion between proposed method
and parallel-cascade truncated Volterra filter.

5. Conclusions

In this paper, we proposed a method for reducing the computational complexity of
third-order Volterra filters based on singular value decomposition, and evaluated its per-
formance in reducing computational complexity and compensating third-order harmonic
distortion. In the proposed method, the target third-order Volterra kernel is sliced into
multiple two-dimensional filters by considering its symmetry, singular value decompo-
sition is applied to the sliced two-dimensional filters, and the paths with small singular
values are removed to achieve the reduction of computational cost while maintaining
distortion compensation performance. The proposed method also achieves a reduction
in computational complexity while maintaining the compensation performance of the
nonlinear distortion. In addition, unlike conventional computational complexity reduction
methods, the proposed method does not use adaptive signal processing, so the accuracy
of the approximate model with reduced computational complexity is not degraded due
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to its adaptive error. Simulation results demonstrate that the proposed method has better
harmonic distortion compensation performance than the parallel cascade truncated Volterra
filter for the same amount of computation. Future works will include the application of the
proposed method to nonlinear acoustic echo cancelers and nonlinear active noise control.
In addition, it is necessary to compare the amount of computation and the performance of
nonlinear distortion compensation with other nonlinear models.
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