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Abstract: Inspired by recent breakthroughs in cyber-physical systems (CPSs) and their applications,
in this paper, we propose a novel multi-objective method to optimize the threshold values within the
ternary event-based framework. To reduce communication overhead, the particle swarm optimization
(PSO) approach is applied as an optimizer to identify Pareto optimal set values of the threshold. The
proposed optimization technique is subject to constraints to ensure its feasibility. The simulation
results confirm the efficiency of the recommended method. Furthermore, the simulation results
demonstrate that the proposed framework is comprehensive and capable of finding a wide variety of
Pareto optimal ternary event-based state estimations for each predefined threshold.

Keywords: event-based state estimation; wireless sensor networks; ternary and hybrid event-based;
multi-objective optimization; swarm optimization

1. Introduction

Cyber-physical systems (CPSs), and the integration of event-based estimation (EBE)
methodologies in this framework, have gained considerable attraction by researchers in
recent years [1,2]. In particular, the development of strategies for energy-efficient data
transmission of sensor observations in wireless sensor networks (WSNs) in order to de-
crease the communication overhead is essential in response to the recent progress in CPSs.
Some of the application areas of WSNs include biosensors for healthcare monitoring [3],
remote monitoring and surveillance [4], wildfire monitoring [5], intelligent environment
and Internet of Things (IoT) [6], and target tracking [7]. The communication potential, as
well as the energy of the sensor nodes in WSNs, are constrained due to cost and other
considerations, including storage capacity and communication bandwidth. Therefore, in
WSNs, information transmission and computing power must be lowered to conserve energy.
As a result, having low-energy and high-performance WSNs are necessary. Yan et al. [8],
for instance, suggested a low energy-based node positioning method in WSNs, based
on the PSO approach. The purpose of their suggested technique is to efficiently identify
and optimize the dynamic location of the sensor nodes, which may considerably enhance
routing in terms of decreasing the energy consumption of the optical sensor nodes. Ad-
ditionally, an adaptive distributed artificial intelligence (ADAI) method, a hierarchical
resource allocation strategy along with adaptive particle swarm optimization (APSO), was
introduced by Mukherjee et al. [9] in order to solve the problem of energy consumption
and resource allocation in multi-agent clustering networks. Over the past few decades,
various approaches for event-based state estimates have been developed by researchers
to address the sensor’s data transmission efficiency issue, besides other issues of a similar
nature, such as the power constraint of a remote sensor and its limited bandwidth [10–16].

In an EBE framework, the sensor’s data is only transmitted to the fusion center (FC),
or neighboring nodes, upon the occurrence of a specific event determined through an
event-triggering mechanism. Two primary challenges need to be addressed for an EBE
framework: (i) First, if the triggering event is not satisfied, resulting in the absence of
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an observation transmitted to the FC, the estimator can still read a measurement result-
ing from an event set defined by the triggering mechanism as secondary information.
Including this secondary information in the interim of a non-event, iterations lead to a
strategy that updates the state estimation in a hybrid fashion, simultaneously employing
the measurements as set and point values. As a result of this hybrid scenario, the posterior
distribution becomes non-Gaussian. One primary strategy to overcome this problem is to
employ stochastic triggering [17] for transmitting observations, which results in a Gaussian
approximation [18] of the posterior distribution. (ii) Second, EBE strategies include a
binary decision method on whether or not the sensor communicates its raw measurement
during an epoch (defined as the time frame between consecutive sensor activations and
based on the EBE strategy to decide when to transmit the observation, i.e., event epochs
or idle epochs) since transferring raw data during all the event occurrences would be
inefficient. As a result, the sensor communicates its raw measurement during an event
epoch while retaining its local measurement during an idle epoch [13]. To address the
aforementioned challenge Davar et al. [14,19] introduced a different approach, known as
the ternary event-triggering (TET) approach. Likewise, instead of a stochastic triggering
technique, a deterministic triggering mechanism via thresholding, referred to as send on
delta (SOD) [20,21], has been utilized to convert the non-Gaussian posterior distribution
to its Gaussian equivalent. The key rationale behind this choice is to provide a more
accurate estimation of the event-based posterior distribution than a Gaussian estimation
provided by a stochastic triggering [22]. As a result, the fact that a definitive triggering
method (e.g., SOD) is dependent on a predetermined threshold becomes a critical issue.
This research aims to develop a novel multi-objective framework, called ternary event
triggering swarm optimization (TETSO), to improve the TET mechanism’s threshold values.
The objectives of this paper improve the state of the art by the following: (1) Automating
the process for selecting threshold values versus with human intervention; (2) Finding
the optimized threshold values for the TET mechanism; (3) Reducing the communication
overhead; (4) Improving the energy efficiency for both the sensor side and the remote
estimator, and (5) Requiring less maintenance and, as a consequence, a decrease in the
overall cost.

The significant contribution of this new approach is the lowering of the communication
overhead by optimizing threshold levels for the TET mechanism. To achieve this goal,
a multi-objective approach is developed to increase the transmission rate of quantized
observations while simultaneously sending minimal periodic data during idle epochs, while
avoiding the transmission of redundant information, which, in turn, results in preserving
limited power supplies.

The main contributions of the proposed work can be summarized as follows:

• An automated and efficient thresholding event triggering swarm optimization (TETSO)
technique is proposed.

• Multi-objective PSO is utilized to improve boundary selection of the TET mechanism.
• The efficiency of the proposed TETSO method is confirmed with simulation results.

The rest of this work is structured as follows: Section 2 presents the background
information and the problem formulation. The suggested TETSO architecture is introduced
in Section 3. Simulation results and their interpretation with regards to performance are
given in Section 4. Finally, we conclude this paper in Section 5.

2. Problem Formulation

In the EBE context, consider a dynamic system whose state is measured by multiple
sensors. For instance, several sensors located in different locations on the ground can
simultaneously observe an object in a larger space area. Each sensor can be positioned far
or near the object, and the transmission of information can be fast or slow. Furthermore,
once the sensor has collected its data, this data must be delivered to the fusion center for
further processing.
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Therefore the following open-loop state-space model is considered which used to
model the estimation problem:

xk = Fkxk−1 + wk (1)

zk = Hkxk + vk (2)

where k denotes an iteration index; xk ∈ Rnx denotes the state vector; and zk ∈ Rnz

represents the sensor’s observations. Functions Hk and Fk show the observation and state
models, respectively. Uncertainties in the observation and state models are represented by
wk and vk, respectively. These uncertainties are considered mutually uncorrelated white
Gaussian noises having covariances Qk > 0 and Rk > 0, respectively. The state-space
model represented in Equations (1) and (2) is based on the development presented by Joris
and Mircea [23]. An important constraint in event-based communication is that the sensors
have inadequate power supplies, while the fusion center has enough power to perform
complicated computation algorithms. Hence, a sensor obtains each measurement based
on an activation mechanism, and after that, it decides, through a triggering mechanism,
whether to keep or transmit the measurement to the estimator. In traditional EBE, a binary
triggering mechanism is used for local decision making on the sensor side, denoted by γk,
defined as {

γk = 1 : Measurement occurs, communication triggered
γk = 0 : No measurement occurs, no communication

According to the above mentioned framework, the set of observations, including that
of iteration k, is defined as Zk = {γ0, z0, . . . , γk, zk}.

Ternary Event-Triggering (TET)

The counterpart to using traditional binary decision making is to use the triggering
approach called the ternary event triggering (TET) mechanism. The TET mechanism is a
deterministic and ternary scheduler which proposes three decision levels instead of the con-
ventional binary decision making. The sensor in the ternary mechanism initially determines
the discrepancy between its current and previously communicated measurements [14].
Later on, the TET method uses this difference to decide whether or not to send the data.
The TET scheduling mechanism is specified as:

γk =


0, if |zk − zτk | < ∆1
1, if ∆1 ≤ |zk − zτk | < ∆2
2, if |zk − zτk | ≥ ∆2

, (3)

where τk indicates the time of the previous transmission from the sensor to the estimator, and
∆1 and ∆2 are two triggering thresholds characterizing the ternary levels [14,19]. Inclusion of
the ternary framework leads to a hybrid observation vector Yk = {y1, y2, . . . , yk}where

yi =


{zi : zi ∈ (zτi − ∆1 , zτi + ∆1)} if γi = 0
z(Q)

i ∧ {zi : zi ∈ (zτi + ∆1 , zτi + ∆2) ∨ zi ∈ (zτi − ∆2 , zτi − ∆1)} if γi = 1
zi if γi = 2

(4)

The immediate consequence of utilizing the TET framework is the accessibility of the
below hybrid measurements at the fusion center:

1. Set-Valued Data: When γk = 0, the circumstances of the ternary mechanism are not
satisfied; hence the sensor does not transfer any measurement to the estimator. In this
scenario, fusion center does not have the specific value of the existing sensor’s obser-
vations. However, based on secondary information (i.e., the observation zk associated
with the following set (zτk − ∆1 , zτk + ∆1)), the FC knows which observations belong
to which set.
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2. Set and Quantized-Valued Data: When γk = 1, the estimator lacks the exact value of
the current measurement (zk), though it has access to the quantized version of the
current measurement, which is transferred to the FC. Meanwhile, the FC has access to
the set-valued data (i.e., the observation zk belongs to either of the following two sets
(zτk + ∆1 , zτk + ∆2) or (zτk − ∆2 , zτk − ∆1)). This additional secondary information
contributes to the enhancement of the approximation efficiency through quantized
measurements [14,19].

3. Point-Valued Data: When γk = 2, the TET mechanism conveys the specific measurement
of the sensor zk to the FC.

3. The Proposed TETSO Framework

Solving engineering problems in CPSs poses numerous challenges. Multi-objective
optimization is used to determine Pareto optimal solutions for each objective when more
than one objective is specified [24]. The multi-objective nature of such real-world practical
problems is the main characteristic that makes their solution difficult. For a given problem
that has more than one key factor objective, all of these objectives can not be satisfied
simultaneously, meaning there are no unique optimal solutions.

Therefore, multi-objective optimization is the process of finding Pareto optimal solu-
tions in the objective space, where each objective component of any Pareto optimal solution
may only be enhanced by degrading at least one of its other objective components. To find
solutions for multi-objective problems, one should provide a set of Pareto optimal solutions
in order to make the best trade-off between the multiple underlying objectives.

In 1995, Eberhart and Kennedy invented a meta-heuristic algorithm called particle
swarm optimization (PSO) for single-objective problems [25]. Figure 1 shows a general PSO
algorithm (the definitions and symbols are explained later in this section). This algorithm
is a stochastic optimization technique inspired by natural swarm behavior such as bird
flocking and fish schooling [26,27]. This approach discovers an optimal solution by moving
a large number of particles, or prospective solutions, throughout the search space while
following the current best particle positions. Each particle traces the best location, referred
to as the best solution, found in its path. When particle i finds a location that is better
than all former locations that it has found, it stores that location as a new current best
solution for particle i, P(t)

best(i). If P(t)
best(i) is better than the current global best solution, Gbest,

then Gbest is updated with P(t)
best(i) [28]. Initially, Gbest and P(t)

best(i) are set to zero. During the
evolution of the path of particle i, it considers its own best location and the best global
solution that the swarm has attained so far. In the PSO each particle firstly updates its
velocity by considering its current position, current velocity, P(t)

best(i), and Gbest. Then, the
particle adapts its position using the updated velocity at every iteration. The mathematical
model of the PSO algorithm is as follows,

V(t+1)
i = wV(t)

i + c1r1
(

P(t)
best(i) − x(t)i

)
+ c2r2

(
G(t)

best − x(t)i
)
, (5)

X(t+1)
i = X(t)

i + V(t+1)
i (6)

for 1 ≤ i ≤ NSP where t is the completed number of iterations and NSP is the number of
particles. As well, X(t)

i is the current position of the particle i at iteration t. The velocity

of particle i at iteration t + 1 is shown as V(t+1)
i . Moreover, w is an inertia weight which

determines the rate of a particle’s previous velocity to its current velocity, and the terms cj
and rj, j = 1, 2, represent acceleration coefficients and uniform random numbers, respec-
tively, distributed between 0 and 1. The concepts determining the updates of a particle’s
position and velocity are demonstrated in Figure 1. The first term (i.e., wV(t)

i ), on the right
hand side (RHS) of Equation (5), provides PSO with the exploration ability, whereas the
2nd and 3rd terms (i.e., c1r1(P(t)

best(i) − x(t)i ) and c2r2(G
(t)
best − x(t)i )) define the particle-best

calculation and collective global-best calculation of the particles, respectively. The PSO
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begins by randomly positioning NSP particles in the search area, and while conducting the
required iterations, the particles’ velocities by using Equation (5) are computed. Following
the particles’ velocities calculation, by using Equation (6) the positions of particles can
then be computed. The process of re-positioning of the particles continues until a certain
completion condition is fulfilled.

Calculate PBest of each particle  
  and Gbest of the population

Is Fitness > PBest?   Update 
 PBest = Fitness

Yes
Is Iteration > Max-Iteration 
 OR GBest >Desired Goal

BEGIN

Initialize particles with random  
position and velocity

Evaluate the Fitness for  
 particles using Fitness function

Yes

Is Fitness > GBest?

  Update  
GBest = Fitness

Yes

Show GBest,  
Optimal Solutions

  Update Particles 's  
Positions & Velocity

No

No

No

End

Figure 1. Flowchart of the general PSO algorithm.

As stated in Section 2, the TET mechanism is a ternary scheduler with three decision
levels. Our proposed approach, instead of using heuristics, chooses the decision levels
automatically using multi-objective particle swarm optimization and improves the selection
criteria of threshold values that feed into the ternary state estimation.

In this model, an open-loop and event-based architecture is considered when a remote
sensor transfers its measurement to the fusion center exclusively in case a specific event
happens. The TETSO framework modifies the PSO algorithm by adding sets of thresholds
representing the TET approach. The sets of thresholds are defined as follows for iteration k,
where ΠL,k is the left set of threshold values and ΠW,k is the right set:

ΠL,k = {∆1,k, ∆2,k, . . . , ∆m,k} for j = 1 . . . m,

ΠW,k = Kk·ΠL,k for j = 1 . . . m (7)

where m is the number of thresholds in each set, Kk is a coefficient whose value changes
randomly with each iteration, and each ∆j,k is randomly defined at each iteration within a
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predefined range. The simulations section will define the specific ranges of these random
values. It should be noted that the TETSO framework will look for Pareto optimal solutions
that will satisfy the following constraints in the sets of thresholds, which are described as
follows for ΠL,k and ΠW,k, respectively,

Constraint 1 : ∆j,k > ∆j,k−1 for j = 1 . . . m
Constraint 2 : ∆j+1,k > ∆j,k for j = 1 . . . m− 1

(8)

Constraint 1 ensures that the values of the thresholds in ΠL,k and ΠW,k increase with the
next iteration of k, and constraint 2 guarantees that the values in each set remain sorted.
The aforementioned set values of the thresholds are received by the objective function of the
TETSO framework as input. The framework attempts to increase the amount of quantized
data communication and simultaneously decrease the point-valued and set-valued data
transmission, which lowers the communication overhead and the cost [14].

4. Simulation Results and Discussion

This section discusses the simulation experiments developed to assess the effective-
ness of the proposed architecture. The simulation parameters used in this section are
based on previous work [14,29], studying observation-driven communication in WSNs,
which determined that the optimal scheduling strategy parameters which allow estimate
performance become comparable with full measurements under a moderate transmission
rate. In particular, using the same simulation details, we compare the TET mechanism [14]
with the proposed TETSO algorithm.

The following section uses the notation and development presented in the recent
literature on state estimation problems [29]. The following are considered as an object’s
position and velocity,

xk =

[
0.8 1
0 0.95

]
xk−1 + wk .

The sensor measures the position and velocity based on the observation model stated
as follows,

zk =
[

0.7 0.6
]
xk + vk .

In this simulation, the represented outcomes are calculated over a Monte Carlo (MC)
simulation of 100 runs with NSP = 30 particles. The object’s velocity and position in each
simulation iteration change randomly to provide a fair experimental benchmark. The
parameters used in this simulation are shown in the Table 1.

Table 1. Table of Parameters Used Throughout the Simulation.

NSP = 30
MC simulation = 100 Max iteration = 200
c1 = 1.4962 c2 = 1.4962
V1 = 0 X1 = 0

This simulation compares the five following filters: (1) Full-rate estimation of the
Kalman filter (KF); (2) Open-loop event-based estimation of KF; (3) Full-rate estimation of
particle filter (PF); (4) Event-based estimation of particle filter with binary decision; and
(5) The results of proposed TETSO architecture. KF, which is suitable for linear systems
and Gaussian white noise [30], is an efficient recursive algorithm that estimates unknown
variables based on measurements observed over time and is used to estimate unknown
variables optimally when they are not directly measurable but indirect measurements
are available [15,31]. PF is a Bayesian-based estimation algorithm based on conditional
probability density, developed by Gordon et al. [32] for addressing applications that are
nonlinear and non-Gaussian. Without making assumptions about the state space model
or the state distributions, PF provides a mechanism for producing samples from the
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appropriate distribution. The values c1 = c2 = 1.4962 have been considered for the TETSO,
and the number of particles within the swarm, NSP, is set to be 30. The multi-objective
problem consists of three objectives, and the repository of previously discovered solutions
is 100 in size.

The completion criterion for the particle swarm optimization is the maximum number
of iterations, set to be 200. The reported results are calculated over various communication
rates. The matrix consisting of a pair of sets of ΠL,k and ΠW,k is considered, where ΠL,k
includes a set of m = 6 numbers selected randomly at each iteration k from 0.001 to 10
(i.e., 0.001 ≤ ∆j,k ≤ 10), and ΠW,k is determined by Equation (7) where Kk is chosen
randomly at each iteration from the range 1.0001 to 2. As mentioned in the previous section,
constraints 1 and 2 are satisfied by the ∆j,k values for the proposed TETSO.

In this experiment, we consider multi-objective optimization, which is concerned
with optimization problems that involve more than one objective function to be optimized
simultaneously; thus, no single optimal solution may exist. Therefore, the algorithm pro-
vides a set of Pareto optimal solutions. In multi-objective optimization problems, all the
components of the Pareto optimal solution set are believed to be satisfactory designs. The
suggested TETSO will identify a set of Pareto optimal solutions that are the optimal thresh-
old values. Figure 2 illustrates the search history of the TETSO over 15,000 simulations
with the points indicated by red stars being the Pareto optimal answers. Pareto optimal
solutions of multi-objective PSO with Subfigures are shown in Figure 3. Each subfigure
emphasizes different angles. Mean squared error (MSE) calculates the mean of the squares
of between the actual values and the estimated values. The position MSE against different
values of the ∆j,k among the ternary levels of the TETSO is presented in Figure 4. The
comparison of position MSE among different transmission rates is presented in Figure 5.
The results demonstrate that TETSO shows remarkable performance in terms of reducing
the ∆i,k rates compared to the other filters. The results show that the suggested architecture
contributes to a lower communication rate and surpasses its counterparts, which verifies
that the suggested approach is effective.

Figure 2. Search space history of multi-objective PSO with some marked designs. The Pareto optimal
solutions are highlighted by red stars and non-dominated solutions with dark points.
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Figure 3. Pareto optimal solutions of multi-objective PSO with some marked designs. Each subfigure
emphasizes different angles.
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Figure 4. The MSE comparison across various values of the ∆j,k.
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Figure 5. The MSE comparison across communication rates achieved by TETSO.

Table 2 demonstrates the analogy between the set-valued, quantize-valued, and point-
valued measurements against the changing values of ∆j,k, of which the results in the eight
best solutions are shown. It should be noted that the suggested framework has the potential
to decrease the overall communication rate by transmitting more quantized measurements
and decreasing the measurement’s transmission rate in the case of the event epochs.

Table 2. Total number of communicated observations in terms of idle epoch (IE), transient (QE), and
raw measurements (RM).

Group I II III IV V VI VII VIII

IE 6 3 20 4 5 22 8 11
QM 186 170 166 181 189 166 176 182
RM 8 27 14 15 6 12 16 7

5. Conclusions

The TETSO solution presented in this paper works for a wide range of applications
in the domain of CPS, where the problem has multiple objectives that must be optimized
to generate efficient solutions. In this article, we have presented an effective approach
for the calculation of a Pareto optimal set of threshold values in the ternary event-based
estate estimation. In the state estimation problems, the triggering mechanism depends
on a predetermined threshold value; hence, selecting an efficient threshold value has
become a significant matter. To achieve this, we proposed a multi-objective framework
called ternary event triggering swarm optimization (TETSO), which effectively selected
the TET mechanism’s threshold values. The suggested approach yields a non-Gaussian
distributed event-based approximation framework that is also systematic. The simulation
results confirm that the suggested technique is capable of designing and optimizing the TET
mechanism’s threshold values and, furthermore, can be applied to any TET mechanism. The
proposed technique relies less on the initial threshold value to start the optimization and
limits human involvement in the optimization process. Finally, the proposed framework
presents an effective technique of intelligently using hybrid sets of information, resulting
in concurrent decrements in communication overhead as well as MSE.
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List of abbreviations used throughout this paper:

Abbreviation Definition
ADAI Adaptive distributed artificial intelligence
APSP Adaptive Particle Swarm Optimization
CPS Cyber-physical system
EBE Event-based estimation
IE Idle epoch
KF Kalman filter
MSE Mean square error
PF Particle filter
PSO Particle swarm optimization
QM Quantize measurements
RM Row measurements
SOD Send on delta
TET Ternary event triggering
TETSO Ternary event triggering swarm optimization
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