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Abstract: Mode division multiplexing (MDM) is a promising technology for the capacity enlargement
of the optical transmission network. As a key element in the MDM system, the mode converter plays
an important role in signal processing. In this work, a wideband E00-E10 silicon mode converter
constructed by Y-branch and cascaded multimode interference coupler is demonstrated. The theoreti-
cal mode crosstalk is less than –29.2 dB within the wavelength range from 1540 nm to 1600 nm. By
180 nm standard CMOS fabrication, the tested mode conversion efficiency of 91.5% and the crosstalk
of −10.3 dB can be obtained at 1575.9 nm. The 3 dB bandwidth is over 60 nm. The proposed E00-E10

silicon mode converter is applicable in mode multiplexing.

Keywords: integrated optical devices; silicon waveguide; mode multiplexing; mode converter

1. Introduction

Advanced by next-generation communicating and large-quantity signal processing,
high-speed data transporting and large-capacity data handling are highly demanded. Due
to the unique feature of photonics, various multiplexing methods, such as wavelength
division multiplexing (WDM), polarization division multiplexing (PDM), as well as mode
division multiplexing (MDM), are explored to enlarge the network capacity [1–7]. Except
for the fiber optic network [8,9], the on-chip MDM transmission implemented by optical
waveguide is investigated, too [10–12]. The mode signal can be processed by multimode
interferometer (MMI) [13,14], directional coupler (DC) [15], Y junctions [16,17], micro-
rings [12,18–20], and grating-assisted [21–23] and inversely designed structures [24]. The
mode converter, as one key device in the MDM system, could realize the conversion to
desired high-order modes within a certain bandwidth with features of high efficiency
and low loss. As reported, the mode conversion is commonly implemented by DC or
grating structures [25,26], however, the bandwidth is restrained by the intrinsic quality
of DC, which limits the combination with WDM technologies to enlarge the capacity of
data transmission.

In this paper, a wideband silicon E00-E10 mode converter is proposed. Finite difference
beam propagation method (FD-BPM) calculations are used for the design optimization.
The mode crosstalk is less than −29.2 dB within 1540–1600 nm. The theoretical design is
experimentally implemented by 180 nm standard CMOS fabrication. The measured highest
mode conversion efficiency is 91.5% at 1575.9 nm. The 3 dB bandwidth over 60 nm can
be obtained. This E00-E10 silicon mode converter has possible utilization in fields of mode
signal multiplexing.
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2. Device Design

In MMI waveguides, the self-imaging effect could reproduce the input field profile
in single or multiple images at periodic intervals along the propagation direction. Two
scenarios exist in the MMI effect. One is the general interference, another case is the
restricted interference. The beat length Lπ can be described by

Lπ =
π

β0−β1
≈ 4nrw2

3λ0
(1)

where λ0 is the operation wavelength, nr is the refractive index of the core waveguide, and
w is the width of the MMI coupler [27].

When one input waveguide is placed at the center of the MMI coupler, the distance L
of Mth N-fold images can be defined as

L =
M
4N

(3Lπ). (2)

For the MMI coupler with a certain length, and when only the fundamental mode or
first-order mode is input, we have M = N = 1. The length of the MMI coupler LMMI is

LMMI =
3
4

Lπ. (3)

For instance, for the MMI coupler shown in Figure 1 below, two E00 modes with
π phase difference are launched into the MMI section through two single modes. The
interference between two E00 modes with different phases in the MMI waveguide leads to
the E00-E10 mode conversion. The first-order E10 mode will be excited at the output port on
the right side of the MMI waveguide.
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Figure 1. Diagram of MMI as E00-E10 mode converter.

The proposed silicon E00-E10 mode converter that is constructed by three sections of
symmetric Y-branch 3 dB splitter, phase shifter (PS) waveguide, and 2 × 1 MMI coupler
is shown in Figure 2a. Firstly, two E00 modes with the same mode power and phase are
input into the PS waveguides via the 3 dB splitter. The π-phase difference would emerge
between two E00 modes after passing through the PS waveguide constructed by cascaded
tapered waveguides with different lengths. The interference between two E00 modes with
different phases in the MMI coupler leads to the E00-E10 mode conversion. Figure 2b shows
the cross-sectional view of the silicon waveguide.

When the silicon core thickness is fixed to 220 nm, the variation in effective indices
(neff) of two modes with the silicon core width is illustrated in Figure 3a. To support the E00
mode, the width of the input waveguide (w1) is chosen as 0.4 µm. We set the width of the
output waveguide (w3) as 0.8 µm to support both the E00 mode and E10 mode. For getting
π-phase difference, it is necessary to strictly manipulate the dimensional parameters of PS
waveguides. With FD-BPM calculating, the width of the Y-branch 3 dB coupler (w1) is set
to be w1 = 0.4 µm, and PS waveguides (w2) are set to be w2 = 0.28 µm to support E00 mode.
Additionally, the lengths of different tapered waveguides l1, l2, and l3 are selected to be
3.6 µm, 12.4 µm, and 8 µm, respectively.
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Here, the width of MMI coupler wMMI is chosen to be 3.3 µm, thereby, the beat length
Lπ is calculated to be 32.5 µm at 1550 nm according to Equation (1). The length of MMI
coupler that can be calculated by Equation (3) is optimized to be 25.3 µm for a compact
size. With above parameters, the mode field distribution of the proposed mode converter
at 1550 nm is shown in Figure 3b.

To be mentioned, the length of the Y-branch is chosen to be 25 µm, the length of
the taper that connects the Y-branch and PS is chosen to be 8 µm, and the length of the
straight waveguide that connects PS and MMI is chosen to be 5 µm. These parameters are
compromise choices after comprehensive consideration of optical loss and device size.
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with 220 nm silicon core thickness, (b) mode field distribution of mode converter at 1550 nm.

The normalized transmission spectra and conversion efficiency of E00 mode and E10
mode investigated by FD-BPM calculations under 25 ◦C room temperature is presented in
Figures 4 and 5, respectively. The minimum mode crosstalk of −41.7 dB occurs at 1566 nm.
Moreover, the crosstalk is less than −29.2 dB within the wavelength range from 1540 nm
to 1600 nm, which implies the conversion efficiency of the E00 to E10 mode is larger than
87.9% within the interested wavelength range. The maximum mode conversion is around
99.6% happened at 1575 nm. The normalized transmission (T) as dB can be represented by
Equation (4), where a is the transmittance of the corresponding mode.

T = 10lg(a) (4)

To confirm the temperature characteristic of the proposed mode converter, the E00
to E10 mode conversion at different temperatures was investigated. When the thermo-
optic coefficient of silicon is 1.88 × 10−4/K [28], the simulated conversion efficiency as
a function of wavelength is as shown in the Figure 6. It can be seen that no obvious
bandwidth change happens. However, when the operation temperature varies from 25 ◦C
to 40 ◦C, the maximum conversion efficiency happens at 1575 nm, 1573 nm, 1572 nm, and
1571 nm, respectively. The blueshift of maximum conversion efficiency with the increment
of temperature can be observed. Fortunately, the 3 dB bandwidths are all larger than 60 nm
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at temperatures of 25 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C, which proves the favorable temperature
stability of the proposed device. This phenomenon can be explained by the unremarkable
size change of the silicon waveguide and the limited variation in the effective refractive
index, which is favorable to stable mode conversion.
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3. Results and Discussion

The proposed mode converter was fabricated on silicon on insulator (SOI) wafer with
180 nm CMOS technology. The thicknesses of the top silicon and buried silica layers were
220 nm and 3 µm, respectively. By deep ultraviolet (UV) photolithography, the waveguide
patterns were transferred onto the photoresist. After development, the unprotected top
silicon was removed by coupled plasma etching, which offers the rectangular shape silicon
waveguides. Thereafter, 1 µm-thick silica was deposited by PECVD onto the SOI wafer
as the top cladding. Figure 7 shows the microscope image (×1000 times) of the mode
converter. The light from the fiber is coupled into the Y-branch through the grating coupler.
Thereafter, the split modes pass through the phase shifters and interfere in the MMI section.
The light output from the grating coupler is on the right side. To be mentioned, the layout
of Y-branch 3 dB splitter is modified to satisfy the design rule of 180 nm CMOS technology.
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Figure 7. Microscope image (×1000 times) of fabricated silicon E00-E10 mode converter.

The schematic diagram of measurement setup is shown in Figure 8. Figure 9 shows the
picture that the converter is under test. After passing through the polarization controller,
the light from the tunable laser source is coupled into the 3 dB splitter by a grating coupler
via the single mode fiber (SMF). Since the converted E10 higher mode is hard to directly
observe through the single mode grating coupler, it is first filtered through a tapered
waveguide. In this way, only the fundamental E00 mode can pass and be collected by
another SMF via the vertical grating coupler. Through a fiber power splitter, the obtained
E00 mode is coupled into the optical spectrum analyzer (OSA) (90%) and the optical power
meter (OPM) (10%), respectively.
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Figure 8. Schematic diagram of E00-E10 mode converter measurement setup.

To find out the loss of the proposed mode converter, referential waveguides with
different lengths are fabricated together with the mode converter. These referential waveg-
uides consist of two identical grating couplers and a straight single mode waveguide. The
propagation loss single mode silicon waveguide is confirmed to be ~1 dB/cm. Two grating
couplers-induced loss can be deduced by removing the single mode waveguide-induced
loss from the measured insertion loss of referential waveguide. Figure 10 shows the grat-
ing coupler-induced loss as the function of the optical wavelength. It can be seen that
input/output gratings-induced loss within the wavelength range from 1540 to 1600 nm is
lower than −25 dB. The minimum value of −25.06 dB happens at 1575.9 nm.
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Figure 10. Measured optical loss induced by the input and output grating couplers.

The measured transmission spectrum and conversion efficiency of the mode converter
within the wavelength range from 1540 nm to 1600 nm is shown in Figures 11 and 12,
respectively. It can be seen that the highest conversion efficiency of 91.5% occurred at
1575.9 nm, and the corresponding mode crosstalk is −10.3 dB. The conversion efficiency
in percent (Ep) and dB (Ed) are calculated by Equation (5) and Equation (6), respectively.
Here, b is the propagation loss of the E00 mode in the dB scale.

Ep = (1 − 100.1b) × 100% (5)

Ed = 10lg(1−100.1b) (6)

The 3 dB bandwidth is confirmed to be over 60 nm according to the measured E10
mode spectrum in Figure 11. The fluctuation of transmission is due to the overclose distance
between the input/output fiber and the grating coupler, which may lead to the instability
caused by the Fabry–Pérot cavity. Therefore, the distance between the input/output fibers
and the chip surface is supposed to be well controlled to guarantee the accuracy of the
measurement. To be noted, the transmission is only characterized at 25 ◦C due to the
limitation of the measurement setup.

Compared with the simulated results in Figure 4, the E10 mode conversion shows
good matching to experimental results. However, the measured mode crosstalk deviates
from the theoretical expectations apparently. This partly results from the unavoidable
fabrication errors. Due to the rules of 180 nm CMOS technology, compromises have to be
made in the waveguide layout design. The change in waveguide dimensions compared to
the ideal size inevitably affects the phase difference between the two branch arms. In the
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MMI coupler, the phase difference error will lead to the deviation of mode interference from
theoretical expectations. Not all the E00 mode was converted to E10 mode. Partial E00 mode
power remains at the output, which deteriorates the mode crosstalk within the interested
wavelength range. This effect first degenerates with the increment of the wavelength, then
becomes serious again at longer wavelengths.
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To demonstrate the proposed mode converter more clearly, performance comparisons
between the reported E00-E10 mode converters and this work are shown in Table 1. All
referential experimental results are based on the SOI technology. The inversely designed
mode converter shows the lowest mode crosstalk [29], while the mode converter, based on
the slot waveguide, has the smallest size and the lowest insertion loss [30]. The photonic
crystal waveguide-based converter exhibits balanced performances [31]. In comparison,
the proposed work shows the moderate insertion loss and mode crosstalk. Though the
largest size, the broadest bandwidth and lower E10 mode insert loss promise favorable
potentials in wideband operation.

Table 1. Comparison the proposed silicon E00-E10 mode converter with reported works.

Ref. Footprint (µm2) Insert Loss (dB) Crosstalk (dB) BW (nm) Structure Materials

[29] 2 × 2 2.2 −16.2 40 Inversely design SOI
[30] 0.8 × 1.2 <1.2 / 50 Slots waveguide SOI
[31] 6.3 × 3.6 2 −12 43 Photonic crystal waveguide SOI

This work 3.3 × 79.3 0.4–2 >−10.3 >60 PS + MMI SOI
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4. Conclusions

In this work, a wideband silicon mode converter based on E00-E10 is theoretically
proposed and experimentally demonstrated. With FD-BPM calculations, the simulated
mode crosstalk is less than −29.2 dB in 1540–1600 nm. The standard 180 nm CMOS tech-
nology is applied in the fabrication of designed device, instead of the E-beam lithography.
The best mode conversion, with an efficiency of 91.5%, is observed at 1575.9 nm. The
comparatively wide 3 dB bandwidth of over 60 nm offers the proposed great potential of
on-chip multiplexing systems in future.
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