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Abstract: Prediction accuracy for mass appraisal purposes has evolved substantially over the last
few decades, facilitated by the evolution in big data, data availability and open source software.
Accompanying these advances, newer forms of geo-spatial approaches and machine learning (ML)
algorithms have been shown to help improve house price prediction and mass appraisal assessment.
Nonetheless, the adoption a of ML within mass appraisal has been protracted and subject to scrutiny
by assessment jurisdictions due to their failure to account for spatial autocorrelation and limited
practicality in terms of value significant estimates needed for tribunal defense and explainability.
Existing research comparing traditional regression approaches has tended to examine unsupervised
ML methods such as Random Forest (RF) models which remain more esoteric and less transparent
in producing value significant estimates necessary for mass appraisal explainability and defense.
Therefore, the purpose of this study is to apply the supervised Regularized regression technique which
offers a more transparent alternative, and integrate this with a more nuanced geo-statistical technique,
the Eigenvector Spatial Filter (ESF) approach, to more accurately account for spatial autocorrelation
and enhance prediction accuracy whilst improving explainability needed for mass appraisal exercises.
By undertaking such an approach, the research demonstrates the application of this method can be
easily adopted for property tax jurisdictions in a framework which is more interpretable, transparent
and useable within mass appraisal given its simple and appealing approach. The findings reveal that
the integration of the ESFs improves model explainability, prediction accuracy and spatial residual
error compared to baseline classical regression and Elastic-net regularized regression architectures,
whilst offering the necessary ‘front-facing’ and flexible structure for in-sample and out-of-sample
assessment needed by the assessment community for valuing the unsold housing stock. In terms of
policy and practice, the study demonstrates some important considerations for mass appraisal tax
assessment and for the improvement of taxation assessment and the alleviation of horizontal and
vertical inequity.

Keywords: eigenvector spatial filtering; penalized machine learning; mass appraisal; prediction
accuracy; elastic-net regularized regression

1. Introduction

There has been increasing emphasis placed on the accuracy of house price and mass
appraisal estimation and its role in informing urban, housing and taxation policy. In light
of this importance, the accuracy, stability and defenceability of house price models has
been a key cornerstone for improving mass appraisal valuation models [1,2]. Typically,
the hedonic model has been applied within real estate economics to estimate house prices,
which observes house prices to be a function of the property characteristics [3]. How-
ever, it is well known that house prices tend to be spatially dependent due to similar
physical characteristics shared by neighboring houses and commonalities attributable to
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their neighbourhood environment such as access to public facilities and socioeconomic
status [4,5]. This spatial autocorrelation (SA), or heterogeneity, has been shown to violate
the independent observations assumption required for standard hedonic modelling due
to error-bias when not recognizing the spatial heterogeneity of pricing effects [5,6]. This
results in the inflation of Type I errors which can overestimate the degrees of freedom,
reduce confidence intervals and produce bias and inconsistent parameter estimates, leading
to inappropriate conclusions [7–9].

This heightened awareness has generated considerable attention for accounting for
spatial non-stationarity within house price studies and for mass appraisal estimation.
Indeed, insights into the ‘confounding effects of space’ has been well documented and
accounted for in more recent statistical specifications [8,10–12], largely due to advances
in spatial information, data sources and both parametric and non-parametric statistical
methods. These well-known (geo)statistical methodologies incorporating spatial structural
instability into hedonic price modelling have evolved over time which all make use of
the spatial characteristics of variables to improve results through reduced error terms and
spatial independence [1,13]. Despite these appealing methodological improvements, there
remains criticisms as to the stability and superiority of some of these methods, all of which
have been subject to scrutiny [6,14–17].

In a similar vein, there has been a research into machine learning (ML) which has
gained traction within mass appraisal studies, with a suite of ML algorithms honed and
developed since the early 1990s, particularly with respect to its role in Automated Valuation
Modelling (AVM) for mass appraisal systems [18,19]. However, these early forms of ML
generated some debate with respect to their predictive capacity [20–22] and wider adoption
as a consequence of their initial “black box” data-driven nature [10,23] culminating in
reduced transparency and opaqueness, both of which are fundamental for defensibility
and explainability, particularly within mass appraisal [24,25]. More recent ML approaches
have become more prominent due to the increasing availability of open source software
packages, codes, digitization and the ability to unearth new pattern recognition which
have shown better out-of-sample predictions and valuation accuracy [26–33]. Equally, the
“black box” aspect of ML has become less opaque with the augmentation and visibility
of (normalized) importance weightings which provide a basis for understanding value
significant effects [5].

Yet despite these sizeable improvements, applications of ML have seldom been
adopted for mass appraisal modelling or considered SA within their frameworks due
to their complexity and unsuitability for public scrutiny [34–37]. Notably, for mass ap-
praisal accuracy and the alleviation of horizontal and vertical inequity, as Sinha et al. [38]
contend, if the presence of SA that is not appropriately accounted for or detected, this
will affect the training set which will inherently impact upon the test (out-of-sample) data
robustness, reliability and prediction accuracy.

This integration of techniques whilst in its infancy has begun to emerge with some
contemporary studies [5,37,39–43] starting to extend various algorithms by integrating
geo-statistical methods to enhance prediction accuracy, whilst controlling for Spatial de-
pendency. However, to date, fewer studies have explored the application of Eigenvector
Spatial Filters (ESF) within supervised forms of Penalized regression algorithms to account
for spatial effects for mass appraisal purposes to investigate whether this provides a more
suitable methodology for AVM practice and the reduction of inequity.

Therefore the purpose and objective of this study is to apply a methodological ap-
proach which provides a simple alternative for including location within traditional regres-
sion and supervised Penalized regression approaches while offering a potentially more
readily usable approach for property tax assessment jurisdictions [44]. In doing so, this
study extends mass appraisal modeling by incorporating eigenvectors generated from a
contiguity-based spatial weights matrix to capture unexplained SA within Regularized
regression to investigate whether this enhances prediction accuracy in a more adoptable
and explainable way. The application of Regularized regression is investigated as these
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type of ‘supervised’ models are more ‘front-facing’ and transparent for mass appraisal
explainability, defensibility and accounting for complex functional forms, model com-
plexity and overfitting [45,46]. The estimated models are developed in training samples
and using cross-validation applied to predict market values within the validation sample.
The modelling outcomes are further subject to different valuation error measures, and
discrimination between the models is determined based on their relative performance.

2. Background

Studies investigating house price prediction and accuracy applying various approaches
have progressed apace since the 1990s, which Wang and Li [47] in a systematic review
of house price modelling, classified into three branches: AI-based models, Geographic
Information Systems (GIS) based models and mix-based models.

The application of ML within pricing and mass appraisal studies generally witnessed
seminal investigations examining Artificial Neural Networks (ANNs), with much debate
and mixed findings, particularly when considering their suggested adoption into mass
appraisal. The study conducted by Worzala et al. [19] showed the efficacy of ANNs,
however highlighted that they lacked transparency, explainability, and repeatability of
results. More recent research also exhibited inconclusive findings with some revealing that
ANNs performed better showing increased accuracy and lower predictive error, however,
various research has exhibited poorer performance relative to geostatistical methods and in
relation to transparency [18,24,25].

Other forms of ML such as Tree classification, Boosted Regression Trees (BRT), and
Random Forest (RF) methods have also been propagated within house price studies, and in
the main have demonstrated model superiority and the reduction of prediction error when
compared to MRAs and other approaches [25,48]. Some however, such as Zurada et al. [49]
who comparing various regression and AI-based methods, revealed that regression-based
methods were superior with homogeneous datasets, with AI approaches superior with less
homogeneous data. Appositely, a number of studies have been somewhat critical of ML
techniques, indicating that despite their (varied) superiority in prediction accuracy, they
are sensitive to the parameters applied which are not consistent, reliant on data quality
and richness, and can suffer from repeatability and model stability [50–53]. In contrast,
penalized regression has become a more accepted approach for price estimation especially
in the context of mass appraisal, as these types of models do not lack the transparency of
ML techniques, and unlike some geostatistical methods such as GWR do not suffer from
‘overfitting’ due to their shrinkage based approach.

The literature within this area is also emerging as to the efficacy of these regression
techniques with studies [54–56] showing reliable estimates and comparable prediction
accuracy to other ML approaches. In a similar vein, ESF has also emerged as a reliable
and effective approach for mitigating SA due to its ability to integrate into traditional
regression-based techniques to produce ‘mix-based’ geostatistical approaches that are
considered transparent and understandable [6,57,58].

As acknowledged by Wang and Li [47], an increasing number of studies are beginning
to combine various algorithms with geostatistical (spatial) models to better estimate the real
estate value. Studies [37,40,42,43] have all successfully adopted geostatistical approaches
within ML architecture to provide improved prediction accuracy and spatial dependence
relative to the existing ML specifications. Equally, studies have shown the ESF approach
to perform comparably with regression and other geostatistical approaches, but also to
comprise some advantages in terms of its ability to identify localized spatial patterns, spatial
dependency, residual autocorrelation, and less prone to multicollinearity issues [6,59].
Further, studies have integrated the ESF approach within multilevel modelling and the ML
Random Forest and Penalized regression such as Least Absolute Shrinkage and Selection
Operator (LASSO) approaches in order to capture spatial heterogeneity and unexplained
spatial dependency [5,17,41,60–62] with the findings showing the augmentation of ESF into
ML to improve model performance.
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The existing literature indicates that there are both advantages and disadvantages to
the varying classical regression models and geostatistical and ML techniques. For mass
appraisal taxation, regression approaches are more widely known and understood which
conforms to the ability to defend and explain readily in a tribunal setting. Similarly, spatial
approaches whilst more complex, offer the removal of spatial autocorrelation to produce
more reliable parameter estimates and improve predictive accuracy. The advancement of
ML has demonstrated more superlative prediction accuracy and error minimization, how-
ever has revealed problems within some of the model architectures for mass appraisal in
relation to transparency, their data hungry nature and repeatability—notably between train-
ing and test samples. Consequently, ‘mixed-based’ models, similar to validation models in
valuation practice, have evolved and have revealed that the combination of geostatistical
approaches within regression frameworks can help improve prediction accuracy. In the
specific context of mass appraisal, these combinations require some attention in order to
conform to explainability and transparency. Therefore, the application of ESF can be readily
applied and explained within the more classically orientated regularized regression for the
assessment community as this provides parameter estimates devoid of opaqueness whilst
accounting for SA. With limited insights currently available within existing literature, this
study examines the usefulness of this spatial filtering technique within this type of ML
approach.

3. Materials and Methods

This section provides descriptions of data, the variables applied within the modelling,
an overview of the ESF and Penalized regression approaches employed and the tests for
model accuracy.

3.1. Data and Variables

The analysis was conducted on a sample of transactional sales data for the Belfast
housing market area (UK) obtained from the Ulster University House Price Index (UUHPI)
over the period Q2, 2021 and Q2, 2022. In total, 3090 transactions were retained after
variable cleansing and erroneous data entry. A data merge was undertaken to obtain the X,
Y coordinates based on the property address using ArcGIS to determine absolute location
coordinates. For this study we apply a number of property attributes which represent a
key endogenous subset of value significant attributes recognized as the main determinants
within the house price literature representing extent and utility which are standard for
mass appraisal exercises. A description of the property and neighbourhood variables are
presented in Table 1 which includes a number of delineated spatial classifications, bound-
aries and deprivation ranks obtained from census information to control for locational and
neighbourhood attributes.

Table 1. Descriptions of property and neighbourhood variables included.

Variable Description Type

Property level

Sales price Transacted sales price (£) C
Ln sales price Logarithmic of sales price (£) C
Floor area Size of the property in m2 C
Beds Number of bedrooms, i.e., 1 bed = 1; otherwise 0. B
Baths Number of Bathrooms, i.e., 1 Bath = 1; otherwise 0. B
Year Built Age of the property [Year property was constructed] C
Type Type of property, i.e., Detached = 1, otherwise 0 B
Story Number of story’s B
Garage Size of garage in m2 C
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Table 1. Cont.

Variable Description Type

Spatial level

Ward Electoral ward the property is located B
Postcode Postcode area the property in located B

Locale Area the property is located. i.e., Suburban = 1;
otherwise 0. B

MDM Multiple Deprivation rank at Electoral ward level B

NB: C denotes Continuous; B denotes Binary.

Figure 1 portrays the geographic distribution of house prices across the Belfast Housing
Market Area (BMA) over 2021. The distribution shows there to be enclaves, or localised
submarkets in terms of the pricing structure, with higher house prices evident towards the
South of the BMA, in the East and a small pocket in the North of the City. In contrast, low
house prices concentrate in the North and display a radial movement within the inner city
over to the East, with a band also stretching from North-west to South west. Overall the
house prices reveal a non-uniform distribution and heterogeneity.
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Figure 1. The geographic distributions of house prices across the Belfast housing market area.

The descriptive statistics for the property variables can be observed in Table 2. The
average sales price over the sample period is £179,163 with the average property size 110 m2.
Following the convention of standard ratio study analysis, we adopted a randomly selected
set of observations to create a training set (or estimation sample based on approximately
80% of the data and assigned the remaining set of the available data into a testing set (or
prediction sample based on 20%).

Table 2. Descriptive statistics of the property variables.

Variable Mean Std. Dev Min Max

Sales price 179,163 107,426.517 35,000 835,000
Ln Sales price 11.950 0.5310 10.463 13.635
Floor area 110.226 42.801 36 440
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Table 2. Cont.

Variable Mean Std. Dev Min Max

Beds 3.032 0.786 1 6
Baths 1.025 0.168 1 4
Year Built 1950 27.872 1810 2017
Type 3.08 0.875 1 4
Build type 0.84 0.371 0 1
Story 1.898 0.5490 1 3
Garage 7.709 11.180 0 119.7

3.2. Methodology
3.2.1. Machine Learning Regression (Elastic-Net)

There are three well known penalized regression approaches, Ridge, LASSO and
Elastic-net, that performs variable selection and regularization both simultaneously. All
these types of ML approaches apply a shrinking method by using estimators with smaller
variance modifying the cost function in Ordinary Least Squares (OLS) to penalize additional
variables in the model, or complexity. The difference between each approach is how they
perform their L1-L2 regularization (See Hoerl and Kennard, 1976 for a detailed discussion
on Ridge regression and Tibshirani 1996 for LASSO regression). Within this study, we
concentrate on the newer form of penalized regression proposed by Zou and Hastie [62], the
Elastic-net method, which is a hybrid regularization variable selection method that linearly
combines the ridge and lasso regression techniques within a more flexible framework,
with the regularization parameter allowing to fluctuate. The approach therefore switches
the lambda penalty, when zero is selected it applies the LASSO approach, and when the
regularization parameter is one, it becomes a Ridge regression model. Under the Elastic-net
regression, the regression coefficient of (1), β is estimated by:

β̂ElasticNet = argminβ
[
(y− Xβ)′ (y− Xβ) + λ(∑p

j=1

[
(1− α)β2

j + α
∣∣β j
∣∣])] (1)

where the hyperparameter α controls how much L1- and L2-norm are used. If λ = 0,
there is no penalty term and βElasticNet = βOLS. If α = 0, βElasticNet = βRidge, and α = 1,
βElasticNet = βLASSO.

We incorporate the ESF into the Elastic-net model via the set of selected eigenvectors
to address any potential issues of spatial correlation. The ESF method introduces a set
of spatial matrix eigenvectors (Ejδ) into the regression framework to mitigate SA [63] by
applying geographical coordinates that are subject to an eigen analysis of geographical
distances to establish a set of spatial filters (eigenvectors) expressing the spatial structure of
the region at different scales (for a full explanation see [64]). This interaction of eigenval-
ues and spatially systematic covariates culminates in eigenvector decomposition which
extracts orthogonal and uncorrelated numerical components from the given contiguity
matrix [65]. Eigenvectors can be extracted from a doubly centered spatial weights matrix C,
expressed as:

MCM =

(
I− 11T

n

)
C
(

I− 11T

n

)
, (2)

where I is an n x n identity matrix, 1 is an n × 1 vector of ones, n is the number of areal
units, T the matrix transpose operator (For a full methodological overview see Griffith
(2003)). The set of eigenvectors of MCM, Efull = {e1, . . . , eN}, provides all the possible
distinct map pattern descriptions of latent spatial dependence, with each magnitude being
indexed by its corresponding eigenvalue [65]. As discussed by Chun et al. [65], this subset
can be identified from a candidate eigenvector set with a stepwise regression procedure
(Griffith (2008: 2761) further extended the basic linear model rather than using the final
EVs to correct for spatial autocorrelation (SAC) on a global level. Interaction terms are
introduced between the selected eigenvectors and the predictors to model spatially varying
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coefficients. See Griffith 2008 for a full methodological discussion). The ESF has been
applied extensively within a range of modelling techniques. This study further extends
the Regularized Elastic-net model by applying ESF and integrating spatial eigenvectors to
enhance model prediction accuracy and explanation. In total, five models are developed
with a baseline OLS model, an adjusted OLS including the ESF, and standard Elastic-net
and an Elastic-net incorporating ESFs.

As observed in Figure 2, the house price data is positively skewed (S: 1.909), we
therefore transform the sales price data using the logarithmic to normalize the house price
data (S = 0.248). The transformed house price variable is used as the dependent variable
across the resulting semi-logarithmic model specifications.

Appl. Sci. 2022, 12, x FOR PEER REVIEW  7  of  18 
 

modelling  techniques. This study  further extends the Regularized Elastic‐net model by 

applying ESF and integrating spatial eigenvectors to enhance model prediction accuracy 

and explanation. In total, five models are developed with a baseline OLS model, an ad‐

justed OLS including the ESF, and standard Elastic‐net and an Elastic‐net incorporating 

ESFs. 

As observed in Figure 2, the house price data is positively skewed (S: 1.909), we there‐

fore transform the sales price data using the logarithmic to normalize the house price data 

(S = 0.248). The transformed house price variable is used as the dependent variable across 

the resulting semi‐logarithmic model specifications. 

   
(a) house price data  (b) Normalized house price data 

Figure 2. Distribution of sales price across the Belfast Housing Market Area in 2021. 

3.2.2. Model Accuracy 

To test model performance, the data set is dissected into a training set (in‐sample) 

comprising 80 percent of sales transactions, and a test set (hold‐out) composing 20 percent 

of  the  sample  sales  data.  The  predictive  accuracy  is measured  using  three  standard 

measures:  the Root Mean Square Error  (RMSE), Mean Absolute Error  (MAE), and  the 

Mean Absolute Percentage Error (MAPE). International Association of Assessment Offic‐

ers (IAAO) benchmarks, the Price‐Related Differential (PRD) and the Coefficient of Dis‐

persion (COD), are also examined to measure model accuracy for valuation uniformity 

and inequity. 

The RMSE can be defined as the standard sample deviation between the predicted 

and observed values, with lower RMSE values denoting a better fit model. The RMSE is 

as follows: 

RMSE  
1
𝑛

𝑦 𝑦   (3)

where  𝑦   stands for actual and  𝑦   stands for the predicted. 
The MAE measures the prediction error by taking the mean of all absolute values of 

all errors. A MAE closer to zero means that the model predicts with lower error and its 

predictive capacity is superior. The MAE is expressed as: 

MAE  
∑ |𝑦 𝑦 |

𝑛
  (4)

where n is the number of samples,  𝑦   is the target values, and  𝑦   is the predicted values. 
The MAPE measures the absolute percentage error in the prediction and can be de‐

fined as: 

MAPE  
100

𝑛
𝑦 𝑦

𝑦
  (5)

where  𝑦   and  𝑦   stand for the predicted and actual values respectively, while n is the to‐

tal number of out‐of‐sample observations. 

Saleprice
35000 99000 163000 227000 291000 355000 419000 483000 547000 611000 675000 739000 803000

300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

0

LogPrice
10.463 10.717 10.971 11.224 11.478 11.732 11.986 12.239 12.493 12.747 13.001 13.255 13.508

180

160

140

120

100

80

60

40

20

0

Figure 2. Distribution of sales price across the Belfast Housing Market Area in 2021.

3.2.2. Model Accuracy

To test model performance, the data set is dissected into a training set (in-sample) com-
prising 80 percent of sales transactions, and a test set (hold-out) composing 20 percent of
the sample sales data. The predictive accuracy is measured using three standard measures:
the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the Mean Absolute
Percentage Error (MAPE). International Association of Assessment Officers (IAAO) bench-
marks, the Price-Related Differential (PRD) and the Coefficient of Dispersion (COD), are
also examined to measure model accuracy for valuation uniformity and inequity.

The RMSE can be defined as the standard sample deviation between the predicted
and observed values, with lower RMSE values denoting a better fit model. The RMSE is
as follows:

RMSE =

√
1
n ∑n

i=1 (yi − ŷi)
2 (3)

where yi stands for actual and ŷi stands for the predicted.
The MAE measures the prediction error by taking the mean of all absolute values of

all errors. A MAE closer to zero means that the model predicts with lower error and its
predictive capacity is superior. The MAE is expressed as:

MAE =
∑n

i=0|yi − ŷi|
n

(4)

where n is the number of samples, yi is the target values, and ŷi is the predicted values.
The MAPE measures the absolute percentage error in the prediction and can be

defined as:

MAPE =
100
n

n

∑
i=1

∣∣∣∣ ˆyi − yi
yi

∣∣∣∣ (5)

where ŷi and yi stand for the predicted and actual values respectively, while n is the total
number of out-of-sample observations.

The COD, is the percentage the average deviation of the ratios from the median,
and the most widely used measure of appraisal uniformity. This relative dispersion or
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variability of assessments from the median for improved residential property should be
<15% and is as follows:

COD =

100
n ∑n

i=1

∣∣∣Ri − R̃
∣∣∣

R̃
(6)

where Ri is the observed assessment ratio for each parcel, R̃ the median assessment ratio,
and n the number of properties sampled.

The PRD is a mean (valuation to selling price) ratio divided by the weighted mean
ratio, which measures the regressivity or progressivity of the assessments. Regressive
appraisals occur when high-value properties are under-appraised relative to low-value
properties. Progressivity occurs when the opposite happens. If no bias exists, the PRD
equals 1, indicating assessment neutrality. Regressivity arises when the values are greater
than 1.03; progressivity occurs when values are less than 0.98. The PRD is expressed as:

PRD =
R

A/S
=

R
WM

(7)

3.3. Eigenvector Filter Identification and Explanation

The eigenvectors were created applying a maximum distance connectivity estimation
(A number of connectivity criterion algorithms were investigated: the distance criterion
(0 < d > 1), the minimum spanning tree, relative neighbourhood, Gabriel criterion, and
Delaunay triangulation connections to determine the sampling units), with the spatial filter
selection determined by a pre-selection criteria (Threshold set at p < 0.05), as the number
of filters appointed tends to increase with both level of linear regression residual spatial
autocorrelation and the number of areal units. The spatial filters are subsequently examined
with the extraction of the filters to be utilised in the regression modelling undertaken using
a filter selection criteria with minimisation of the residuals is achieved based on a local
Moran’s I statistic. Overall, 301 (Note that only six spatial filters are demonstrated) spatial
eigenvectors filters were determined with the filter selection process applying the Akaike
Information Criterion corrected (AICc) and R2 improvement employed to retain those
spatial filters where it reduced the AICc statistic. This step therefore minimises the residual
short-distance spatial autocorrelation and reduces the level of residual autocorrelation,
ensuring model optimality and model stability whilst further encompassing the assessment
of each spatial filters spatial correlogram and the variance of the log-price estimation.

This produced 62 spatial filters to be included as independent predictors within
the modelling to mitigate spatial autocorrelation and error bias, with a filters showing a
coefficient of determination of 47.7 percent (AICc: 78485.929; p < 0.001). Further inspection
of Figure 3 shows a sample of the extracted spatial filters. Notably, each filter extracted
presents a detailed representation of the spatial patterns which can have a different degree
of spatial structure, smoothness and geographically varying relationship with house prices.
For example, spatial filters one and two capture the initial pronounced structure of market
clustering of the eigenvectors which tend to correlate with the underpinning high/low
price clusters observed in Figure 1. Notably the spatial structure becomes more ‘localised’
when displaying the filters (such as Filters 6 and 12) with smaller eigenvalues culminating
in more localized parameter surfaces (for example: Filters 25 and 78) given the reduced
truncation distances.
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4. Results

The results from the four training and test models are presented in this section. The
four training models are specified to account for location information such as the inclusion
of delineated boundaries (Models 1 and 3) and the extracted ESFs (Models 2 and 4). Overall,
all models exhibit good levels of explanation with model performance ranging between
78.8% and 87.3% (Table 3). The findings reveal the standard Multiple Regression Analysis
(MRA) model explains the lowest variation in house prices (78.8%) when incorporating
the delineated spatial information. With the inclusion of ESFs, the level of explanation
increases by 5.1% demonstrating an Adjusted R2 of 83.8%. The level of explanation further
increases when examining the Elastic-net ESF which observes an R2 of 87.3%.

The model coefficients reveal, by-and-large, the expected signs, magnitudes and
significance (Within this study, for the penalized regressions we report only the values of
λ-min (lambda)). For the standard OLS and Elastic-net models, apartments show negative
coefficients of 9.1%, however, for the augmented ESF models this effect increases to 13.9%.
The same observation is notable for the terrace coefficient which also increases in magnitude
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by approximately 5.8% between the model specifications. The analysis shows for a unitary
increase in one squared metre, price, increases by 0.5%. Similarly, property age (Year built)
exhibits a negative coefficient symbolizing that for every one year decrease in property age,
price decreases by 0.2%.

Table 3. Training models level of explanation and coefficients.

Model 1 Model 2 Model 3 Model 4

Variable MRA Elastic-Net MRA + ESF Elastic-Net + ESF

Coefficient Coefficient Coefficient Coefficient

Apartment −0.09099 * −0.09096 −0.13904 ** −0.13899
Detached 0.143561 *** 0.143531 0.154712 *** 0.154662
Terrace −0.12268 *** −0.12265 −0.18009 *** −0.18004
Size (m2) 0.0052 *** 0.0052 0.0050 *** 0.005
Year Built −0.0005 *** −0.0005 −0.0002 −0.0002
Bed 4 0.0324 * 0.0323 0.0225 0.0224
Bed 5 0.0012 0.0012 0.0233 0.0232
Bed 6 0.0944 * 0.0944 0.068 0.0679
Bath 2 0.0145 0.0144 0.0062 0.0061
Bath 3 −0.2777 * −0.2777 −0.2740 ** −0.2739
Garage size (m2) 0.0025 *** 0.0025 0.0027 *** 0.0027
Grade B −0.0358 −0.0357 0.0049 0.0049
Grade C −0.0367 ** −0.0367 −0.0489 *** −0.0488
Story 1 0.0547 ** 0.0547 0.0511** 0.0511
Story 1.5 −0.0462 −0.0462 −0.029 −0.029
Story 2.5 0.0309 0.0309 0.0238 0.0238
Story 3 0.0341 0.0341 −0.0318 −0.0317
Rural −0.2003 *** −0.2003
Rural village −0.3152 *** −0.3152
Suburban −0.0022 −0.0021
MDM 0.0001 *** 0.0001 0.0001 *** 0.0001
PC_2/SF_2 0.7429 *** 0.7429 −4.9570 *** −4.957
PC_3/SF_3 0.1025 *** 0.1025 4.1330 *** 4.133
PC_4/SF_4 0.1000 *** 0.0999 0.5410 * 0.541
PC_5/SF_5 0.1206 *** 0.1206 −0.334 −0.334
PC_6/SF_6 0.3131 *** 0.313 0.015 0.015
PC_7/SF_7 0.0867 *** 0.0867 −1.9810 *** −1.981
PC_8/SF_8 0.3303 *** 0.3303 −1.7050 *** −1.705
PC_9/SF_9 0.1549 *** 0.1549 2.3320 *** 2.332
PC_10/SF_10 0.1233 *** 0.1233 0.5000 ** 0.5
PC_11/SF_11 −0.0717** −0.0716 −0.355 −0.355
PC_12/SF_12 −0.1976 *** −0.1975 0.7620 *** 0.762
PC_13/SF_13 −0.1889 *** −0.1889 1.1500 *** 1.15
PC_14/SF_14 −0.0922 *** −0.0921 0.081 0.081
PC_15/SF_15 −0.0301 −0.0301 −0.6920 *** −0.692
2021Q −0.0805 *** −0.0804 −0.0828 *** −0.0828
2022Q −0.0466 *** −0.0465 −0.0446 *** −0.0446
C 10.532 10.584 10.6235 10.6855

R-squared 0.788 0.822 0.843 0.873
Adjusted R-squared 0.787 0.838
L1 Norm 22.91142 14.699
F-statistic 397.8216 *** 329.7989 ***
N 2481 2481 2481 2481

NB. SF denotes spatial filters. Only the first 15 spatial filters have been presented due to space limitations and for
presentation purposes to align with postcodes. The remaining ESFs are available upon request. Penalized models
are specified using Regressor transformation: Std Dev (smpl). Cross-validation method: K-Fold (number of folds
= 5), rng = kn: seed = 115121966, and the Selection measure: Mean Squared Error. *** denotes sig. 0.001 level;
** 0.05 level; * 0.10 level.
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Whilst the findings reveal a notable increase in model performance, the inclusion of
the ESFs has reduced the residual error and level of spatial autocorrelation across the study
area geography (Figure 4a–d), with the delineated spatial models demonstrating larger
clusters of heightened residuals within specific locales. In essence, there appears larger
differences between the actual and estimated sales prices which the standard regression
and Elastic-net models have not successfully addressed as a consequence of SA and not
detecting the underpinning spatial patterns.
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Model Prediction and Accuracy

The analysis examines the accuracy of the predictive capacity of the training and
test models. As observed in Figure 5, the scatterplots display the for the training models
the comparisons between the assessed (estimated) values and the observed sales price—
the Assessment to sales price ratio. The analysis reveals the standard MRA to display
a correlation of 74.1% between the observed and predicted, however the presence of
heteroskedasticity is noticeable, particularly at the higher end of the price strata, which
is symbolic of mass appraisal regressivity—where higher valued properties are under-
appraised relative to lower valued properties. The Elastic-net observed and predicted
values shows an increase in the relationship between the assessed and observed sales price
with a correlation of 77.2% and a reduction in the level of heteroskedasticity, albeit this
is still evident. The ESF regression and Elastic-net models show improvement in their
respective correlations (81.2% and 83.6%), some 9.5% increase from the baseline MRA,
increased linearity and the reduced presence of heteroskedasticity.
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Figure 5. Scatterplots of observed house vs. predicted prices. (a) MRA model. (b) Elastic-net model.
(c) MRA ESF model. (d) Elastic-net ESF model.

Table 4 further provides a summary of the accuracy and ratio statistics for each
model. The findings exhibit the standard MRA to show less accuracy than the other
models across all metrics analysed with the highest RMSE (22.98%), MAE (18.07%) and
MAPE of 1.517 across the training dataset. In comparison, The ESF models show sizeable
improvement on the predictive accuracy with the augmented MRA incorporating ESF
noting a RSME of 21.08%, MAE of 16.39% and MAPE of 1.378. The Elastic-net ESF model
performed the best exhibiting the lowest RSME (20.76%), MAE (15.93%) and MAPE (1.368).
This is also evident for the test dataset which also reveals the prediction accuracy to be
superior and more accurate for the Elastic-net models than the hedonic counterparts. The
models which integrate the ESFs produce the most accurate predictions exhibiting the
smallest RSME, MAE and MAPE statistics for the out-of-sample testing (Table 4).

The ratio statistics which measure prediction accuracy by testing for inequity and
uniformity using the IAAO benchmarks, reveal the models which comprise the spatial
filters to perform best. Examination of the COD for the training set data reveals the MRA to
perform worst (19.4%) with the Elastic-net model integrating the spatial filters to perform
best (15.9%) and only marginally falling outside the acceptable boundary of assessment
uniformity. This is also the case for the PRD with the standard MRA exhibiting regressivity
and beyond the accepted boundary of 1.03. Again, and notably, the Elastic-net containing
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the ESFs is superior and only slightly beyond the tolerance for appraisal inequity for the
training and test data. When considering the out-of-sample testing, the findings show
the MRA approach to be the least accurate, displaying heightened levels of assessment
inequity and a decrease in uniformity compared to the other approaches. The Elastic-net
however does not show as much pronounced differences, invariably due to the shrinkage
approach applied to the coefficients through the cross-validation. The MRA based ESF and
Elastic-net ESF exhibit the least variance between the in- versus out-of-sample tests.

Table 4. Model prediction accuracy and ratio statistics.

Model RMSE MAE MAPE PRD COD N

MRA
Train 0.2298 0.1807 1.5172 1.057 0.194 2841
Test 0.2351 0.1864 1.5659 1.074 0.211 602

Elastic-net
Train 0.2151 0.1787 1.5099 1.053 0.185 2841
Test 0.2268 0.1823 1.5358 1.061 0.190 602

MRA + ESF
Train 0.2108 0.1639 1.3777 1.044 0.171 2841
Test 0.2194 0.1687 1.3905 1.049 0.179 602

Elastic-net +ESF
Train 0.2076 0.1593 1.3682 1.032 0.159 2841
Test 0.2134 0.1638 1.3811 1.038 0.167 602

5. Discussion

The discussion and testing of model performance has tended to examine superiority
comparing the differing geo-statistical, traditional regression and ML approaches, all of
which show advantages and disadvantages for each, and different magnitudes of prediction
accuracy, which are all very much data and study area dependent. Of late, the scrutiny of
these different approaches has centered more on their amalgamation within a mixed or
hybrid framework, and specifically how to optimise model specifications to account for the
spatial variation of house prices.

For mass appraisal, the alleviation of horizontal and vertical inequity and uniformity
is of paramount importance. The results emerging from this study demonstrate that the
inclusion of ESFs accounting for SA enhance model explainability and predictive accuracy
compared to classic MRA and ML Elastic-net models which use delineated postcode proxies
to account for spatial heterogeneity. This finding is in accord with existing research studies
employing mixed-based approaches [5,17,41,61] who also found that the inclusion of spatial
eigenvectors derived from geographic coordinates improved model performance relative to
other ML or regression-based models applying other types of spatial information as proxies.
Pertinently, the findings also revealed reduced spatial error and more stable residuals when
including spatial filters, again in keeping with extant research [5,17,60,62]. The alleviation
of spatial residual error also improves the out-of-sample tests for accuracy, a finding in
keeping with Sinha et al. [38] who identified that the failure to adequately mitigate SA
reduces model reliability and test accuracy.

This finding is an important issue when undertaking mass appraisal exercises. The
in-sample versus out-of-sample performance is of primary concern when using the model
to subsequently value the unsold housing stock and for improving both horizonal and
vertical inequity and uniformity within mass appraisal assessment. Indeed, as identified in
the study of Hu et al. [5], the superior model performance and prediction accuracy resulted
from the addition of coordinate variables are likely to be attributable to the well-matched
spatial patterns observed in coordinate variables and house sale price data, and the results
do from both a visual and inferential perspective show the spatial eigenvectors to mirror
market structure, topography and submarkets which leads to model improvement through
the capture of spatial patterns or processes. In contrast, the application of delineated
boundaries within ML and other classical regression approaches result in not only the
confounding issues of SA, but also lack of explanation relative to house prices as they
rarely match housing sub-markets, and further open to scrutiny when considering omitted
variable bias.



Appl. Sci. 2022, 12, 10660 14 of 17

This study has found that the identification and extraction of the spatial filters reduces
any potential for this bias to occur as the spatial matrix eigenvectors minimise residual
autocorrelation based on the spatial structure of the study area at varying scales, and can
be regarded as patterns of independent spatial dimensions, culminating in the almost
complete elimination of residual spatial autocorrelation and therefore mitigating parameter
estimation bias and helping to account for unexplained spatial patterns. For the field of
mass appraisal, this identification of the spatial structure can help more accurately identify
local submarket fluctuations, leading to better ratio studies and more uniform, equitable,
and accurate valuations which can help save costs associated with inequity. Further the
incorporation of ESFs can greatly reduce the amount of time it takes to create multiple
sub-models or a flexible global model, making it more efficient for mass appraisal purposes.

Existing research has examined the role of ML within mass appraisal [18,25–28], with
early arguments critiquing the ‘black-box’ nature of the model outputs, and despite improve-
ments in the reporting of ‘importance’ plots providing information for assessors [35–38]
remains challenging for wholesale uptake within mass appraisal practice given the com-
plexity and repeatability of these types of algorithms. This study shows that the application
of Regularized regression incorporating spatial filters is a more obvious choice for the
assessment community, and for taxpayers, as the ESF approach provides a foundation for
including location providing market professionals and policymakers with a more readily
and understandable methodology for applying spatial analysis in a more standardised
and explainable hedonic framework for understanding housing markets and for applica-
tions seeking to harness such understanding, such as automated valuation modelling for
mortgage lending, or mass appraisal of residential values for property taxation purposes.

6. Conclusions

The role of spatial autocorrelation within house price studies and mass appraisal
has been an increasingly important topic for the generation of accurate price and valua-
tion estimations. This has evolved particularly due to the advancement of geo-statistical
techniques and ML approaches driven by developments within data, its accessibility and
open access software packages. Despite these innovations, until recently, existing ML algo-
rithms and studies have often neglected to account for SA. Recent developments within
house price analysis has begun to integrate hybrid or mixed-based approaches to augment
explanatory power and account for spatial dependency to improve prediction accuracy.
Indeed, an emerging corpus of existing studies have shown the efficacy of this type of
integration of spatial eigenvectors. However, despite this promising line of research, ML
learning approaches such as ANNs, Random Forests and Decision Trees remain limited in
their uptake, particularly for mass appraisal purposes, principally due to a lack of trans-
parency and complexity which is challenging for assessment jurisdictions to defend for
public accountability.

The literature has been advancing investigating the incorporation of geo-statistical
approaches and more latterly the selection of spatial eigenvectors within machine learning
algorithms. Therefore, this paper sought to extend both the standard regression and
ML regularized Elastic-net approaches by proposing a new hybrid model incorporating
eigenvector spatial filters in order to develop a flexible ML spatial methodology which
mitigates SA whilst offering a more readily transparent approach to improves house price
prediction and mass appraisal.

The empirical findings emerging from this study contribute to knowledge in three
ways. Firstly, the research advances the integration of the ESF geo-statistical approach
within ML for mass appraisal purposes.. In doing so it provides insights into developing a
more understandable and usable approach for assessment communities which will stand
up to tests for defensibility and explainability as opposed to other ML approaches. Thirdly,
it establishes that the integration of spatial filters show improved efficacy and predictive
capacity on baseline classical regression and Elastic-net architecture by reducing spatial
residual error. Indeed, the empirical findings demonstrate the exploratory capacity and
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capability of the Elastic-net ESF model for accommodating SA inherent within sales prices
and producing a ML model which offers the necessary ‘front-facing’ technique which is
readily implementable and flexible structure which provides enhanced price prediction for
in-sample assessment and out-of-sample assessment which is needed by the assessment
community for valuing the unsold stock. These analytical insights thereby offer a more
user-friendly adaptable approach for enhancing mass appraisal.

In terms of policy and practice, this study has demonstrated some important consider-
ations for mass appraisal tax assessment and for the improvement of taxation and housing
policy. Machine Learning has the power to interpret data to provide insights that are not
immediately apparent from the available data. Integrating geo-statistical methods not
only improves the power and performance of ML, it also provides a coherent structure to
interrogate and display the findings in a manner which is more appealing and intelligible to
practitioners and policy-makers, all of which operate in a spatial reality of communities and
economic landscapes, and who necessitate understanding of how more abstract analysis
relates to reality.

Future studies may wish to investigate other ML based applications and the integra-
tion of spatial filtering to establish whether comparable performance is achieved when
comparing the unsupervised forms of ML with the supervised forms of ML and the robust-
ness and accuracy of each. On a cautionary note, there remains some challenges, namely
voluminous datasets and the computational time required to extract the spatial filters due
to the large set of interaction terms required and the automation of the more complex
computational steps. Further, Finally, it is meritorious to note that whilst the ESF and
ML regularization techniques offer assessment jurisdictions and appraisers more oppor-
tunity for creating more accurate appraisals, this now requires advanced knowledge of
data science, statistical insights, and application which remains a challenge for assessment
authorities in practice.

Author Contributions: All authors listed meet the authorship criteria and are in agreement with
the submission of the manuscript. Conceptualization, M.M., P.D., J.M. and D.L.; methodology,
M.M., P.B., L.H. and D.L.; software, M.M., P.D. and L.H.; validation, all authors; formal analysis, all
authors; writing—original draft preparation, all authors; writing—review and editing, all authors;
visualization, P.B., J.M. and D.L.; project administration, all authors. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the analysis of this study are available from the
corresponding author, [MM], upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gao, X.; Asami, Y.; Chung, C.J.F. An empirical evaluation of spatial regression models. Comput. Geosci. 2006, 32, 1040–1051. [CrossRef]
2. Matysiak, G.A. Automated Valuation Models (AVMs): A Brave New World? Paper Delivered at Wroclaw Conference, Wroclaw,

Poland. 2017. Available online: https://www.researchgate.net/profile/George-Matysiak/publication/319355261_Automated_
Valuation_Models_AVMs_A_brave_new_world/links/59a881a5a6fdcc2398387b61/Automated-Valuation-Models-AVMs-A-
brave-new-world.pdf (accessed on 23 August 2022).
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