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Abstract: In the industrial domain, maintenance is essential to guarantee the correct operations,
availability, and efficiency of machinery and systems. With the advent of Industry 4.0, solutions based
on machine learning can be used for the prediction of future failures by exploiting historical failure
data. Most of the time, these historical data have been collected by companies without a specific
structure, schema, or even best practices, resulting in a potential loss of knowledge. In this paper, we
analyze the historical data on maintenance alerts of the components of a revamping topping plant
(referred to as RT2) belonging to the SARAS group. This analysis is done in collaboration with the
ITALTELECO company, a partner of SARAS, that provided the necessary data. The pre-processing
methodology to clean and fill these data and extract features useful for a prediction task will be shown.
More in detail, we show the process to fill missing fields of these data to provide (i) a category for
each fault by using simple natural language processing techniques and performing a clustering, and
(ii) a data structure that can enable machine learning models and statistical approaches to perform
reliable failure predictions. The data domain in which this methodology is applied is oil and gas, but
it may be generalized and reformulated in various industrial and/or academic fields. The ultimate
goal of our work is to obtain a procedure that is simple and can be applied to provide strategic
support for the definition of an adequate maintenance plan.

Keywords: predictive maintenance; data analysis; failure prediction; machine learning; data cleaning;
time series

1. Introduction

In the fourth industrial revolution, companies are constantly looking for ways to
increase production and reduce costs, especially those deriving from maintenance, which
amounts to about one-third of total operating costs [1].

In this scenario, data science is having great success because it can be leveraged to
extract valuable information from data that companies can exploit to their advantage to
expand their business and evolve [2]. However, not all companies are still able to carry
out this process, and knowing how to maximize the employment of self-learning models
represents one of the main issues linked to the process of extracting information from
data [3].

Data science [4,5] is giving remarkable results in various scientific fields, such as
materials science [3], maintenance management [6], programming [7] and improving the
quality of a product or service performed [8]. Thanks to the continuous development
of hardware, cloud systems, and new technologies, there has been an incentive for the
increasingly frequent use of machine learning techniques [9]. This phenomenon is also
supported by:
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¢  The growing availability of open source software packages that make the implementa-
tion of self-learning models simple [10,11];

*  The improvement of the availability of industrial data, big data, and servers in the
data processing phase [12,13].

Furthermore, within the manufacturing systems, new, reliable and secure human-
centered architectures have recently appeared at the heart of the evolution towards Industry
5.0 [14].

The employment of data processing techniques to carry out predictive analysis of
failures in the industrial sector has become a particularly hot topic due to the need to
obtain a maintenance strategy that guarantees the availability of the systems and prevents
unscheduled downtime due to sudden failures [2,3]. Furthermore, in very competitive
environments, it is necessary to better manage delivery times and reduce costs associated
with non-compliant products that must be reprocessed, if possible, or thrown away [15].

During the life cycle of an industrial machine, its components could be damaged and
broken, leading to high costs that companies have to face. For this reason, it is important
to diagnose the roots of failure over time. Traditionally, these diagnoses have been made
based on criteria (manual or knowledge-based) established by experts, but sometimes they
may not work. It follows the need to study the data collected by the machines using sensors
and identify possible operating anomalies to predict an imminent failure and intervene to
avoid the consequences [16].

There are several types of historical components in petrochemical plants. For example,
we could have rotating machines such as pumps and compressors. For these, in the
literature, we have examples of failure prediction approaches that exploit data extracted
from different sensors to provide adequate information for failure prediction [1,9,10,16-19].

In the literature, there are three maintenance approaches [1,20]:

*  Runto failure (R2F). This strategy is based on post-failure interventions and is therefore
the simplest of the maintenance approaches. Its use is justified when the consequences
of the failure lead to the replacement of the single component without causing damage
to the adjacent equipment and, more importantly, the failure must not have an impact
on the environment and human safety.

¢  Preventive maintenance (PvM). In this strategy, we intervene through a plan of peri-
odic corrective actions. This largely avoids breakdowns, but unnecessary maintenance
is often carried out, leading to an inefficient use of resources and increased operating
costs. PvM is used in cases when a failure can cause significant damage to the safety
of workers and the environment. Furthermore, the consequences of the breakdown
can lead to a long period of prolonged disruption and/or even serious damage to
adjacent components.

¢  Predictive maintenance (PdM). Maintenance is performed based on the estimated
health of the component. The PdM systems allow for detecting the fault before its oc-
currence, thus giving the possibility to intervene in advance. All this is possible thanks
to historical data, statistical methods, machine learning and engineering approaches.
In particular, machine learning techniques help defining useful methods on the data
for predicting future failures and for intervening proactively. This maintenance strat-
egy tries to overcome the limitations of PvM by trying to exploit the component until
the end of its life. It is therefore used for particularly critical components due to their
high cost of use and for possible losses in terms of safety.

In this work, we will focus and employ a predictive approach based on data analysis
and machine learning techniques to predict future failures. The case study is represented
by the analysis of the time series of the failures of the components of a revamping topping
plant (RT2) belonging to the SARAS group. It will show which issues present the raw
data and which pre-processing techniques we have used to clean and complete the data
with the goal of having a number of features and different samples that can be organized
in a data structure to be fed to the predictive models. Indeed, in real-world applications,
the dataset that it has to be managed can get extremely massive, complicated, and incom-
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plete, and mostly, it can contain data of all sorts, including missing or inconsistent values.
Therefore, data pre-processing is a crucial step in the implementation of machine learning
algorithms to extract valuable information, making the database completer and more pre-
cise. Thus, the achieved quality of the well-structured dataset makes the ML algorithm
able to accurately predict future observations. Simple natural language processing (NLP)
approaches are used to categorize each occurred fault and thus create a taxonomy that can
be used to classify future failures. The goal is to forecast the next failure for each component
in the RT2. In particular, predictions will be made by exploiting the time series of the past
related to single-component failures using simple algorithms such as linear regression,
ARIMA, and a polynomial interpolation strategy we propose. ARIMA has already been
widely used in the predictive field to make predictions on time series [21] and has already
been used in the petroleum environment to make predictions on the performance of crude
oil wells [22].

The remainder of this paper is organized as follows. Section 2 shows examples of
works similar to ours and the differences between our proposal and the state of the art.
In Section 3, the industrial plant that we have considered for its failure data will be described.
Section 4 contains the description of the historical data that will be processed. In Section 5,
we will explain the methodology with which data have been analyzed and fed to different
machine learning techniques. In Section 6, the results obtained using the methodology
developed in Section 5 will be shown. In particular, the results will be illustrated, step by
step, starting from the reconstruction of the data and ending with the forecasts of the faults.
Finally, Section 7 ends the paper with conclusions drawn as a function of the obtained
results, discussions on best practices that we define, and future directions we are headed
toward to improve the performances we obtained and generalize our approach.

2. Related Work

Currently, data are continuously generated as a result of the digitalization of manu-
facturing systems, enabling thorough data analytics. Large databases frequently have a
significant percentage of unreliable and irrelevant information due to noise, missing data,
data redundancy, or insufficient labelled data. Particularly, data-driven methods often
deal with difficulties in industrial applications where real data are collected from multiple
heterogeneous sources. In this scenario, data preprocessing is a crucial stage in data analy-
sis and has a significant impact on modelling outcomes. It represents a must-do process
before data analysis is performed, mainly involving four processes: cleaning, integration,
transformation, and reduction of raw data [23] aiming at improving the dataset quality and
the prediction accuracy.

Over the years, several methods and procedures for handling incomplete datasets have
been proposed in the literature. A manual search selection to screen suitable works within the
scope of the proposed paper is carried out by focusing on reviews concerning preprocessing
techniques applied to machine learning approaches in the manufacturing industry.

Thus, Ning et al. [24] compared three different algorithms for oil production fore-
casting: auto-regressive integrated moving averages (ARIMA), long short-term memory
(LSTM) network, and Prophet. Singh et al. [25] presented a comprehensive review for fault
detection and diagnostics in heating, ventilation, and air conditioning (HVAC) systems,
while Dogan and Birant [26] and Zhu et al. [23] focused their review on manufacturing
applications. Seo et al. [27] proposed a methodology for managing missing values of
dissolved gas analysis (DGA) data. Wang et al. [28] proposed a combined system based
on data preprocessing and multi-objective optimization in a wind production application.
Ranjan et al. [29] presented a review of preprocessing methods for data from power system
applications, while He et al., Xiao et al., and Xiao et al. [30-32] developed a data prepro-
cessing approach for energy consumption. Frye et al. [33] reported a benchmark-based
approach to be applied to production systems.
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By analysing the extant literature on data preprocessing, it can be noticed that it is
recognized as a crucial step since well-structured data can provide significant knowledge,
considered a valuable resource in the decision-making process [34].

It is worth highlighting that the challenge in ensuring a large amount of high-quality
data is related to settling the proper assignment of processes, data-oriented decision making,
more efficient operations, and reduced risks [35]. In this case, a data-driven approach is
applied to prevent the breakdown of equipment in advance via unique identifiers. This
allows enhancing the accuracy of diagnosis aiming at developing suitable failure predictive
models. In this scenario, the adoption of machine learning (ML) techniques is capable of
performing prognostics and failure prediction tasks [36].

Currently, PdM-related solutions based on ML techniques are widely investigated
for industrial applications such as manufacturing, energy production, transportation,
and heavy and light industry, among others. Therefore, the studies based on the real-world
dataset are limited, as reported by Leukel et al. [11] and Carvalho et al. [37], who presented
a recent systematic review on the use of ML technology for failure prediction in indus-
trial maintenance. However, restricting the analysis to operating machinery applications,
the sample size is further reduced [1,12].

Liu et al. [17] presented a comprehensive review of fault diagnosis approaches based
on artificial intelligence algorithms for rotating machinery. Hajizadeh [38] and Hanga
and Kovalchuk [39] proposed fault detection techniques based on artificial intelligence
in the oil and gas industry. Qian et al. [40] and Zhang et al. [41] investigated the transfer
learning method for rotating machinery by considering variable working conditions, while
Yang et al. [42] proposed a scheme based on hierarchical symbolic analysis (HSA) and a
convolutional neural network (CNN).

In [18,19,43,44], the authors proposed different ML approaches to be applied to roller-
bearing fault diagnosis. Orri1 et al. [1] compared two ML algorithms based on support-
vector machines (SVM) and multi-layered perceptron (MLP) by using a real dataset from
sensors placed on a centrifugal pump. Erdem and Eken [45] and Breviglieri et al. [46]
applied a deep learning model for a smart-grid stability prediction. In [47-49], the authors
used an SVM algorithm for failure detection, while Jirdehi and Rezaei [14] proposed two
different techniques based on artificial neural networks (ANN) and adaptive neuro-fuzzy
inference systems (ANFIS).

An ANN model was also presented by Guedes et al. [50] to monitor the actual condi-
tion of the stator electrical insulation of three-phase induction motors and by Yu et al. [51]
to predict failures of an oil-immersed transformer. Paolanti et al. [52] presented a random
forest model for fault diagnosis of a cutting machine. Giantomassi et al. [53] adopted an
estimation algorithm of the probability density function of current signals for the failure
detection and diagnosis of an electric motor. Chen et al. [54] developed an approach based
on the combination between CNN and extreme learning machine (ELM) to be applied to
a gearbox and motor bearing. In [55-57], the authors adopted ensemble learning models
for different rotating machinery. Khorsheed and Beyca [58] proposed a framework for the
proper implementation of an ML-based PdM strategy for pumping systems. Tang et al. [59]
reported a novel adaptive learning rate deep belief network combined with Nesterov
momentum applied to a gearbox and locomotive bearing test rigs. Zanisek et al. [60]
and Lee et al. [61] proposed a machine learning-based approach for the health condition
monitoring of a radial fan impeller and machine tool system elements, respectively.

The reported literature review depicts a scenario where machine learning turns out to
be a very appealing field of research, especially for industrial maintenance management
since it emerges as a powerful resource for the development of intelligent predictive
algorithms [62]. However, ML adoption in real factories is still considered challenging
mostly due to several barriers that limited its implementation regarding current industrial
applications [11,26,63]. Some of the main challenges are: (i) the acquisition of a suitable
and relevant dataset since it strongly affects the predictive model efficiency and (ii) the
selection of a proper ML algorithm. The former challenge highlights the importance of
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preprocessing data as a vital process impacting the results, especially when real raw data
are used, while the latter assumes that each manufacturing problem is unique, and each
algorithm performs differently depending on the data available, as well as parameter
settings. Therefore, this requires the analysis of the different models, aiming at selecting
the one capable of solving the targeted manufacturing problem. To deal with these open
challenges, this work proposes a preprocessing technique for the historical data of failures
of different plant equipment operating in the oil and gas sector. Moreover, the achieved
structured dataset is used to develop machine learning models and statistical approaches
aiming at performing reliable failure predictions to support the maintenance decision-
making process.

3. Description of the Plant

The revamping topping plan (RT2) is one of the crude oil fractionation plants owned
by the SARAS group. This plant is fed with crude oil transported by ship. The crude oil is
classified into the following products:

*  Propane;
. Butane;
e IC5 + light petrol;
¢ Heavy gasoline;
e  Kerosene;
e  Light diesel;
*  Heavy diesel.
The RT2 plant consists of two main sections:

*  The atmospheric distillation section;
*  The petrol splitting and liquefied petroleum gas (LPG) recovery section.

The atmospheric distillation section has the purpose of dividing the crude oil into the
various products listed above. It is also equipped with compressors for gas. This section
includes the following subsections:

*  Heat recovery (exchange train). The preheating of the crude oil is performed in the
exchange train, consisting of a group of heat exchangers, at the expense of the heat of
the products and of the circulatory reflux of the distillation plant.

*  Desalination. The crude oil, after being preheated, is mixed with a small percentage of
water and is sent to the desalter. Here, due to an electric field, the hydrocarbon phase
is separated from the water phase, rich in salts, which is discharged. This greatly
reduces the residual salt content in the crude oil.

¢  Furnaces. The final preheating of the crude is obtained through two vertical cylindrical
furnaces, each consisting of a convective section and a radiant section. Before entering
the convective area, the blank line is divided into several coils with flow regulation to
ensure a balanced distribution of the flow. After recovering the heat of the combustion
fumes, the raw material undergoes a final temperature increase due to the radiation.

The raw material coming from the furnaces, partially vaporized, is transferred to the
distillation column, where it is divided into different cuts. In particular, the following
products are obtained:

*  Residue: after being stripped in a counter-current with steam, the residue is extracted,
under level control, from the bottom of the column, and transfers heat to the raw
material in the exchange train and in some reboilers of the light fractionation section.
Then, it is refrigerated in tempered water exchangers and sent to storage.

e Heavy gas oil: stripped in a special column, the heavy gas oil transfers heat to the
crude oil in the exchange train, is cooled in tempered water coolants and is sent to
storage under flow control.

e  Light diesel: stripped with steam, the light diesel exchanges heat with crude oil, is
cooled in refrigerants and sent to storage in flow control and/or to the mild hydrocrack-
ing plant (another catalytic type treatment plant) and/or to the diesel drying column.
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e Kerosene: stripped with steam, the kerosene transfers heat to the raw material in the
exchange train. It is cooled in air refrigerants and sent to storage in flow control.

*  Top product: This fraction includes the light constituents of the crude oil, gasoline,
condensable gases, and non-condensable gases (fuel gas). It is cooled in two successive
stages at different temperature values: the liquid product is sent back to the column,
while the condensate is sent to the fractionation section, and the gases are conveyed to
a compression station for the recovery of the LPG fraction outside the battery limit of
the system.

In the second part of the plant, named the petrol splitting and liquefied petroleum gas
(LPG) recovery section, a second fractionation takes place to obtain light fuels. First of all,
in the stabilizer column, the separation of gases (top product) from petrol (bottom product)
takes place. The gases, LPG and non-condensable, refrigerated and condensed, are partly
recirculated and partly sent to another plant for the recovery of the LPG fraction. The petrol,
after heat exchange, undergoes a further fractionation in a special splitting column. As for
the stabilizer, the heat at the bottom of the column is supplied by two reboilers, which
exchange with the bottom residue of the main column. Subsequently, there is the petrol
splitter, which receives the stabilizer bottom product in charge after preheating and divides
it into three cuts:

*  Overhead product: this consists of a mixture of light petrol and isopentane. After con-
densation, it is partly recirculated in the column and partly sent to storage. From there,
it is sent to other plants for separation into the two components.

¢ Lateral cut: this is a medium-density petrol which, after heat exchange with the charge
to the column, is sent to storage.

*  Bottom product: this is composed of the heaviest fraction of petrol and sent to storage
after having transferred heat to the charge and having been further refrigerated.
The heat necessary for fractionation is supplied to the bottom product through two
reboilers, which exchange with the upper circulatory reflux.

Further details about the plant can be found in private corporate documents [64—66].

4. Data Description

The data we have worked with are related to the RT2 plant belonging to the SARAS
group and consist of “Notices” and “ODM” (maintenance orders):

e The first one contains the chronology of all the anomaly notices that occurred for each
component of the RT2 system from 2000 to 2021; we will refer to these also as alerts
or notices;

®  The second contains the maintenance orders for the same components, that is, the
order of the materials needed for maintenance activities.

We use “ODM” to understand whether a certain notice corresponds to a breakdown
or a simple malfunction (a breakdown is related to a piece of equipment that has broken,
whereas a malfunction corresponds to a piece of equipment or machinery that fails to
function normally but has not broken yet).

Both “Notices” and “ODM” have a similar structure: each sample (row) corresponds
to a notice with different features (columns) about the notice. The features of interest for
our analysis are:

e  The identification number of the notice;
*  The description;

¢  The date of the event;

¢  The technical office;

*  The equipment.

The identification number is a unique numeric code necessary to understand which
notice is being referred to. It is used to link information about a certain notice from “Notices”
to “ODM”. The description includes a short sentence indicating what happened. The date
of the event represents the moment of occurrence of the event, which may be a breakdown
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or malfunction. The technical office defines the place where a specific anomaly occurred.
The purpose of the technical office is to indicate the component that has presented a
malfunction or breakdown and is represented by abbreviations that can be composed of
three or four elements in the form:

"Plant" - "class of the component" - "component-name of the component"
or:
"Plant" - "class of the component" - '"name of the component" -

"part of the component"
An example for the first case is represented by:
RT2-FURNACES-RT2F1A

where FURNACES corresponds to “furnaces” and RT2F1A is a component of the class
“furnaces”. An example for the second case is:

RT2-PUMPS-RT2MP4-RT2MP4P

where PUMPS represents the class of pumps, RT2MP4 is the associated component and,
finally, RT2MPA4P is a sub-part of the component RT2MP4.

The last feature of the “Notices” and “ODM” data, the equipment, if indicated, rep-
resents the part of the component as shown in the second form of the technical office
just mentioned.

The main problem with the “Notices” data lies in the “technical office” column, which
is usually blank or partially filled. This generates an enormous amount of incomplete
information that cannot be used in any way. As the technical offices are supposed to
provide the information about the offices and the components that have presented a possible
anomaly, without that, we cannot associate the corresponding failure data. Therefore, many
components do not have information about their corresponding technical office, making
them unsuitable for the use of machine learning techniques.

This problem occurs because the compilation of the alerts has been performed manu-
ally under the responsibility of the operators. Sometimes the operators omitted text in this
field, compromising the overall quality of the available data.

Thus, one problem we had to face was the reconstruction of the missing data. This
was performed with a pre-processing step with the goal of filling the missing technical
office names and reorganizing the overall structure so that each component may be defined
and associated with a chronological data set of its notices.

To reconstruct the data, first we had to identify the columns from the “Notices” data
that could be a source of information or that could indicate which component presented an
anomaly. In particular, the column “Description” present only in “Notices” and “Equip-
ment” present both in the “Notices” and in the “ODM” have been considered. To reconstruct
the missing data, the “Description” and the “Equipment” fields could give some clues.
During the reconstruction, an attempt will be made to reconstruct the technical offices at
least up to the third element, which indicates the component that has presented a malfunc-
tion or breakdown. The way we have exploited the “Description” and the “Equipment”
features to reconstruct the technical offices up to the third element and how we carried out
the entire process is detailed in Section 6.1.

The “Notices” data contain 10,700 notices, 10,567 of which have an incomplete or
missing “Technical office”. According to the “ODM” data, it turned out that 4,907 notices
out of 10,700 correspond to a fault, while the remaining 5,793 correspond to malfunctions.
In total, 30 classes of components will be analyzed, for a total of 1,036 components. In
Table 1, we show three classes of examples and their corresponding components. The reader
notices that the class in the first row, FURNACES, corresponds to “furnaces” and includes
two components: RT2F1A and RT2F1B. The element in the second row, COMPR, corre-
sponds to “compressor” and includes two different components: RI2MC1 and RT2MC1B.
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Notices

Finally, the element in the third column, COLON, represents the “distillation columns” and
includes six further elements: L1T3, L1T4, RT2T1, RT2T2A, RT2T2B, RT2T2.

Table 1. Example of three component classes and the elements they include.

Class Components
FURNACES RT2F1A, RT2F1B
COMPR RT2MC1A, RT2MC1B
COLON L1T3, L1T4, RT2T1, RT2T2A, RT2T2B, RT2T2C

5. Proposed Approach

The architecture of the approach we propose is depicted in Figure 1 and consists of
four main modules:

e  Data reconstruction module;

*  Module for categorization of maintenance alerts;
. Data preparation module;

¢  Prediction module.

ODM

Madule for

Data Reconstruction Categorization Data Preparation . Failure

Prediction Module

h 4

Y

Module of Maintenance Module

Alerts

Prediction

Data preprocessing Data analysis

Figure 1. Flow chart of the four main modules.

As already mentioned, the provided data are characterized by a huge amount of un-
structured data lacking the most important information, namely the name of the component
that has failed.

For the first module, it is necessary to define support data that is useful for the recon-
struction step. For such a purpose, we have used the genealogy of the plant components,
where the plant name will represent the root, the type of the components will be inter-
nal nodes named NodetypeA, and the component names will be internal nodes named
NodetypeB. Sometimes, a NodetypeB can have children that are considered leave elements.
This last element specifies the part of the component. To build the link between the type
of component and the respective component of the plant, we start with the names of the
components, and we will create special “dictionaries”. A dictionary is a structure that
contains key-value pairs. Three dictionaries will be defined to properly handle the structure
of the components, as discussed in Section 5.1. The link between the key and the value will
allow us to walk through the family tree to reconstruct the unstructured data and identify
the location of the fault.

The first module will be described in Section 5.1, in which the data reconstruction
techniques that we have employed will be shown. In particular, we are interested in
reconstructing the “technical site”, which has the task of indicating which component has
failed. For us, these data are important, because for each component, we are interested
in extracting the time series of the related faults and using it in the forecast step. After



Appl. Sci. 2022,12,10617

9 of 29

NodetypeA

reconstructing the data, we will proceed with the categorization of the alerts. This module
will be described in Section 5.2. The categorization of the maintenance notices can be
done by attributing to each notice a word deemed important, which may represent a fault
phenomenon or a maintenance activity. This process may be important for future work on
the prediction of faults. We may be interested not only in predicting the date of the failure
but also the category of the component. This may provide useful information, such as the
cause of the failure or suggesting what activities should be carried out following a failure
and how much it could cost. As the last step, the total data will be reorganized by dividing
the information of each component and sorting them in chronological order. In Section 5.3,
the module dealing with the final data structure obtained through the previous steps and
the reordering of the alerts will be shown.

Finally, in Section 5.4, the data pre-processing module to generate the input for the
predictions will be shown, and the self-learning models used will be described. In this
phase, the forecasts of the next failure will be calculated for all system components that
have a sufficient number of historical data.

5.1. Data Reconstruction Module

First, it is necessary to define the family tree of the components. Each component
belongs to a type that is part of the plant in question; therefore, we could think of building
a tree where the main root represents the plant, the branches represent the various types of
components and the leaves represent the components or the specific parts of them. Figure 2
shows a subset of the tree in which the genealogies of 3 types of components are reported.
RT2 is the name of the plant, and COMPR, PUMPS and FURNACES are three classes
referring to compressors, pumps, and furnaces, respectively. Then, we have components
corresponding to NodetypeB, and, for some of them, we have specific parts of them at the
leaf level.

root RT2

| )

COMPR PUMPS FURNACES

l

| l l | l l—Ll

RT2F1A RT2F1B
NodetypeB | RT2MC1A RT2MC1B RT2MP10A RT2MP16A
RT2MC1A-C || RT2MC1A-M || RT2MC1B-C || RT2MC1B-M | |[RT2MP10A-P| [RT2MP10A-M RT2MP16A-P| |RT2MP16A-M

leaf

Figure 2. Subset of the component hierarchy.

We could, therefore, think of constructing the link between leaf and root, internal
nodes and root, and direct link between leaf and root using a “dictionary”. A dictionary
contains a sequence of key/value pairs. Keys and values can be given of any type; in our
case, we will use strings and lists.

A dictionary allows us to recreate the link between one part of the tree and the other,
managing to recreate an abbreviation such as:

Root — NodetypeA — NodetypeB — leaf

This abbreviation is similar to that of the technical site where “ROOT” is the name
of the plant, the “NodetypeA” element will be the type of component, the “NodetypeB”
element will be the name of the component, and the “Leaf” will be the part related to
the component.

We have defined three main dictionaries with the following key/values pairs:
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*  NodetypeA-NodetypeB: a dictionary that presents the types of components as keys
and the list of the respective components as values for each key;

*  NodetypeB-Leaf: in analogy to the previous dictionary, the system components will be
the keys, and for each of them, we associate the list of their related mechanical parts;

*  NodetypeA-Leaf: a dictionary that presents as keys the various types of components
associated with the list of the mechanical parts of the related components.

During the reconstruction phase, we also made use of the corresponding reversed
dictionaries, where keys and values were swapped. The use of these dictionaries allows,
starting from a match between strings, to reconstruct the link between the elements in the
technical area. To complete the missing information in the column of technical locations,
five different methodologies have been defined:

1.  Completion using the information contained in the “Equipment” column of “Notices”;

2. Completion using the information contained in the “Equipment” column of “ODM”;

3. Completion through the technical sites of “ODM”;

4.  Completion by mapping the words contained in the “Description” column and the
names of components;

5. Search for components using the suffixes of the components contained in the “De-
scription” field.

5.1.1. First Methodology

The first technique involves searching in each notice for the presence of a component in
the “Equipment” column of “Notices”. If found, the component is added to the technical site
of the respective row to correctly reconstruct the technical site. The following alternatives
may arise:

A. In the technical area, there is only ROOT;
B.  The technical office is constituted by ROOT-NodetypeA;
C. In the technical site, there is ROOT-NodetypeA-NodetypeB.

In case A, if a leaf element is present in the “Equipment” column, it is searched in the
dictionaries. The “NodetypeA” and “NodetypeB” elements are extracted, and the technical
site is rebuilt by placing the various elements in the correct order. There is no need to search
for the “ROOT” element because the system is unique and is common to all technical sites.

In case B, if a leaf element is present in the “Equipment” column, it is searched in
the dictionaries, and only the “NodetypeB” element will need to be extracted. As in the
previous case, the elements “NodetypeB” and “Leaf” are added in the technical site to
complete the missing information.

In the end, for case C, if in the “Equipment” column, there is a “leaf” element, it is
added to rebuild the technical site.

Table 2 shows the examples corresponding to the described cases. In the top row
(case A), a leaf element is present in the equipment field. By checking the dictionaries,
we can retrieve the entire chain up to the root RT2, RT2-PUMP-RT2MP23A-RT2MP23A-P.
In the middle row (case B), the leaf element is present in the equipment, and, according to
the dictionaries, if it is a child of the type COMPR, then it is added to the reconstructed
technical site together with its parent. Finally, the last row (case C) has a value within the
equipment. This is searched within the dictionaries, and it is found as a leaf matching the
information reported on the technical site. It is therefore added to the rebuilt technical site.

5.1.2. Second Methodology

The second heuristic is very similar to the first one, with the difference that it looks
for the leaf component within the “Equipment” column of the “ODM” data and not the
“notices” data. Examples for such a heuristic are the same as those shown in Table 2, with
the only difference that the equipment column is chosen from the “ODM” data instead of
the “Notices”.
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Table 2. Examples of reconstruction data with the first methodology.

Number of Description 0Old Technical Site Equipment Technical

Notice Site Rebuilt

10,026,296  Cleaning filter and RT2 RT2MP23A-P RT2-PUMSP-RT2MP23A-

suction line mp23a RT2MP23A-P

10,027,059  SYSTEM CONTROL MC1A RT2-COMPR RT2MC1A-C RT2-COMPR-RT2MC1A-
RT2MC1A-C

10,013,510  Large leak RT2-PUMPS-RT2MP13A- RT2MP13A-P RT2-PUMPS-RT2MP13A-
RT2MP13A-P

5.1.3. Third Methodology

The third method consists of comparing two technical sites coming from two different
data (“Notices” and “ODM”) with the same identification number of the notice. If the
technical office in ODM contains additional information compared to the one in “Notices”,
these data are copied to reconstruct the new technical site. An example of this methodology
is shown in Table 3.

Table 3. Example of reconstruction of the technical site using the third methodology.

Technical Site in “Notices”

Technical Site in “ODM” Technical Site Rebuild

RT2-PUMPS-RT2MP4

RT2-PUMPS-RT2MP4-RT2MP4_P RT2-PUMPS-RT2MP4-RT2MP4_P

5.1.4. Fourth Methodology

The fourth heuristic involves analyzing each sentence contained in the “Description”
column using the following actions:

*  The sentence is split into a list of tokens;

e  Ifin the technical site there is a NodetypeA or NodetypeB, the list of components or
parts of components having that as father is extracted;

*  Each token extracted from the description is compared with the names of the compo-
nents extracted in the previous step;

* Ifatoken in the description coincides with a component name mapped among those
extracted, then it is added to the technical area.

The code is structured in different levels of reconstruction depending on the number
of information contained in the technical site:
1. If the technical site includes just RT2, the description value is examined to find any
element descendant of RT2 (child or descendant). Three things can happen:

A. If the element found in the description is NodetypeA, it is therefore added to
the technical site, thus obtaining:

ROOT — NodetypeA

B. If the element found in the description is NodetypeB, the dictionary structure is
queried to find the NodetypeA between the ROOT and the found NodetypeB.
Subsequently, NodetypeA and NodetypeB are added to the technical site,
obtaining a value of the type:

ROOT — NodetypeA — NodetypeB

C. If the element found in the description is a leaf, the dictionary structure is
accessed to find the NodetypeB father of the leaf. Once we find it, we look for
the NodetypeA that links it to the ROOT as we did in the previous case. Then,
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the elements NodetypeA, NodetypeB and the leaf are added to the technical
site, thus obtaining:

ROOT — NodetypeA — NodetypeB — Leaf

2. If ROOT-NodetypeA is present in the technical site, we first extract the values from
the dictionary having the NodetypeA element as a key. Subsequently, each token of
the description is compared against the elements extracted from the dictionary, and,
if a match is found, the technical site is completed with the matched element. It can
either be just a NodetypeB or both a NodetypeB and a leaf element. The technical site
will therefore have the form:

ROOT — NodetypeA — NodetypeBorROOT — NodetypeA — NodetypeB — Leaf

3. If ROOT-NodetypeA-NodetypeB is present in the technical site, in this case, firstly the
values from the dictionary having NodetypeB as the key are extracted. Then, each
token of the description is compared against the extracted elements, and in case a
match is found, the technical site is completed with the leaf element and will therefore
have the following form:

ROOT — NodetypeA — NodetypeB — Leaf

In Tables 4-6 the examples related to the three different aforementioned cases of the
fourth methodology are depicted. In particular, in the description of the first row of Table 4,
the term pumps is found. It corresponds to the pump type, which is a direct child of
the root. The new technical site becomes RT2-PUMPS. For the second row, the token
level corresponds to a NodetypeB whose ancestors are VALV and RT2. For the third row,
the word r2frcv62 in the description corresponds to the leaf element with PORTATA as
NodetypeA and VALV as NodetypeB. Table 5 includes in the first row the RI2MC1A
element, which is a NodetypeB with the same class component (COMPR) as that found in
the current technical site. The table has in the same row the element MP19A-P, which is a
leaf with corresponding NodetypeB RT2MP19A. This has PUMPS as NodetypeA, the same
as in the current technical site, which is then augmented as reported in the table. Similar
mechanisms are applied in Table 6.

Table 4. Example of reconstruction site using the fourth methodology when the technical site contains
just the ROOT element.

Number of Notice Description Old Technical Site New Technical Site
10,011,330 RT2 pump—CHECK the tooth joint RT2 RT2-PUMPS
10,013,025 RT?2 level CONTROL Ircl RT2 RT2-VALV-LEVEL
10,010,917 replace intercept r2frcv62 RT2 RT2-VALV-FLOW-
R2FRCV62

Table 5. Example of reconstruction site using the fourth methodology when the technical site
contains ROOT-NodetypeA.

Number of Notice Description Old Technical Site  New Technical Site
10,014,245 RT2MCI1A cleaning CRANK OIL FILTER RT2-COMPR RT2-COMPR-RT2MC1A
10,029,113 MTZ RT2 MP19A-P RT2-PUMPS RT2-PUMPS-RT2MP19A-

RT2MP19A-P
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Table 6. Example of reconstruction site using the fourth methodology when the technical site
contains ROOT-NodetypeA-NodetypeB.

Number of Notice Description Old Technical Site New Technical Site
10,013,299 CHECK functionality LIFRC56 RT2-SPORT-FTDPE RT2-SPORT-FTDPE-L1FRCT56

5.1.5. Fifth Methodology

The fifth methodology of completion is applied only to notices that in the technical
site refer to a NodetypeA element (defined as an instrument) of the following type:

Instruments = [SLIV,SPORT,SPRES,STEMP,SVARI, VALV, VALVR]

The rationale behind this is that instruments (such as pressure gauges, valves, etc),
unlike the other system components, are mounted on the same loop and usually have the
same final numerical value, which represents the number of the loop they are part of. This
methodology leverages the numerical value they have as a suffix in their name, trying to
reconstruct further technical sites because of that.

In this case, we proceed as follows:

1. We check if we find a NodetypeA element in the technical site that corresponds to an
element of the list defined above;

2. Then we consider the last element of the technical site (which might be different than
the NodetypeA element found in the previous step) and look in the dictionary for
leaves having as their ancestor the last element of the technical site, which can be
either a NodetypeA or NodetypeB element.

3. We perform a search in the current description for tokens having at least one internal
numerical value (surrounded by other symbols); a token satisfying such a constraint
is considered a component by ITALTELECO.

4. If such a component is found, we take its last number from its string name;

5. This number is used to search for a component from the list found at step 2 that has
as a suffix the identified number;

6. In the case of correspondence, there are two possibilities:

A. ROOT-NodetypeA is already present on the technical site, and the component
found is a leaf. Consequently, the father (NodetypeB) of the leaf is searched
through the dictionary structure and will be included in the technical site,
obtaining a structure such as:

ROOT — NodetypeA — NodetypeB — Leaf

B. ROOT-NodetypeA-NodetypeB is present on the technical site. In such a case,
the component found is a leaf. Therefore, it is only necessary to add the element
to the technical site, obtaining:

ROOT — NodetypeA — NodetypeB — Leaf

Some examples related to the fifth methodology are illustrated in Table 7. The first
row has VALVR as NodetypeA and therefore satisfies the first step. Then, we extract
the leaf elements descendants of VALVR (being the final element of the technical site).
Among others, RT2PV7 is one such element. In the description, we find RT2PCV7C as a
token satisfying step 3 and identify the number 7 from step 4. Among the leaf elements
found in step 2, RT2PV7 satisfies the constraints in steps 5 and 6. The example shown in
the second row of Table 7 works similarly.
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Table 7. Example of reconstruction data applying the fifth methodology.
Number of Notice Description Old Technical Site New Technical Site
10,336,724 RT2PCV7C DISASSEMBLY REGULATORS RT2-VALVR RT2-VALVR-PRESS-RT2PV7
10,162,193 RT2FRC22 function check (T1 column) RT2-SPORT-FE RT2-SPORT-FE-R2FE22

5.2. Module for the Categorization of Maintenance Alerts

In this module, we want to classify the notices according to certain classes and using
words that we need to define. These classes, which we will call “Fault Categories”, can
represent a failure phenomenon or a maintenance activity. Classifying the notice according
to these “Fault Categories” can help understand which failure phenomena or maintenance
activities are more frequent for each component type. Additionally, this information may
be used as a predictive variable. First, the words contained in the “Description” were
analyzed to identify which ones were the most recurrent overall and grouping components
in categories. We used a list of “stop words” consisting of words that are not likely to
provide information about the faults such as articles, prepositions, and conjunctions. When
breaking down the “Description” in tokens, if a token was a stop word, we simply removed
it. Besides common stop words like those mentioned above, other stop words have been
defined in collaboration with ITALTELECO. When we considered all the components
independently, the following steps were followed:

1. Only the Descriptions that in the technical site have at least ROOT-NodetypeA
are considered;

2. Each Description is broken down into tokens;

3. The obtained tokens are inserted into a list;

4. The output is represented by the frequency value of each word. The percentage of
occurrence of each word was calculated using the formula:

presencepercentage = (numbero foccurrenceso fthesingleword  100) / (totalnumbero fwords)

When considering the components grouped by typology, the following steps were
carried out:

1.  The “Notices” data were divided into several subgroups, each related to the type of
components (which is basically the NodetypeA element present in the technical site);

2. For each subgroup of notices, points (a) to (e), defined in the previous case, were
performed, obtaining the frequency value of each word (which this time is referred to
each type of component).

The obtained results were shown to the ITALTELECO company, which took care of
manually choosing the words of interest by identifying 19 “fault categories” which are
depicted in Table 8. These words partly represent failure phenomena, such as vibrations or
leaks, or maintenance actions, such as cleaning, adjustment, and replacement.

Each original word that we have provided has been mapped to one of the 19 categories.
If a category includes more words, it means that they are all related or have the same
meaning or are synonyms. They represent the final categories used to group the alerts.
Clustering was performed to group together similar words or verbs in different forms. For
example, words such as “cleaned”, “clean”, and “cleaning” are all mapped to the same
category CLEANING. Once we had this list of 19 fault categories, we had to associate each
alert with one of them. Therefore, this further categorization process that has been carried
out dealt with checking each “Description” field to identify which fault class it contained.
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Table 8. Fault categories.

CATEGORIES

1 BLOCK

2 CONTROL

3 CORROSION

4 DAMAGE

5 REMOVE

6 FUNCTIONALITY
7 LUBRICATION

8 MANEUVERABILITY
9 MAINTENANCE
10 LEAK
1 CLEANING
12 REGULATION
13 REVISION
14 REPAIR
15 RAPTURE
16 NOISE
17 REPLACEMENT
18 WEAR AND TEAR
19 VIBRATION

At this point, we processed the “Notices” data by creating a dictionary having as keys
the categories and as values the words present in the description corresponding to the
categories (synonyms, verbal forms, plurals). This dictionary was created in collaboration
with the company.

Once we defined the fault categories, the categorization process involved the follow-
ing points:

1.  Creating a new column in the “Notice” data called “Fault Category” initially empty;

2 For each notice, extracting the description;

3.  Breaking the description down into tokens;

4. Comparing each token with the elements corresponding to each fault category ex-
tracted from the dictionary;

5. In case of a match with an element corresponding to a certain fault category, this was
written in the underlying notice.

5.3. Data Preparation Module

The collection of maintenance notices needs to be rearranged to obtain a data structure
that can be processed to extract valuable information. Since the notices for each component
must be examined, the entire structure has been divided into subgroups, where each
group is related to a component. Subsequently, each subgroup of notices was rearranged
in chronological order of occurrence. The data structure for each component has the
following items:

*  The name of the component;

e  The notice number;

e  The date when the fault occurred;
*  The fault category;

¢  The maintenance cost.



Appl. Sci. 2022,12,10617

16 of 29

For example, in Table 9, a subgroup related to the component RT2MP5B-P, which
represents a pump having eleven faults on eleven different dates, is reported. On the second-
last line, the box relating to the fault category is empty. This may happen because the
description related to that notice does not contain the information necessary to categorize
the alert automatically.

Table 9. Example of standard structure obtained for the pump RT2MP5B-P.

Component Notice Description Date Cost[€]  Fault Category
RT2MP5B-P 10,046,792 PUMP COOLING H20O LINE OFF 27/12/2001 203.84 CLEANING
RT2MP5B-P 10,111,379 RT2MP5B CLEAR CIRCH20 COOL 09/03/2004 203.84 CLEANING
RT2MP5B-P 10,124,210 RT2MP5B mechanics control (LOSS) 30/08/2004 6882.88 CONTROLL
RT2MP5B-P 10,303,874 RT2MP5B RESTORE COOLING H20 10/05/2010 549.8 MAINTENANCE
RT2MP5B-P 10,321,419 RT2MP5B RESTORE COOLING H20 25/10/2010 200.32 MAINTENANCE
RT2MP5B-P 10,403,663 RT2MP5B SEAL REVIEW 10/12/2012  2605.54 REVISION
RT2MP5B-P 10,494,752 RT2 MP5B H20 COOL DESCENDING 06/07/2015 855.54 CLEANING
RT2MP5B-P 10,525,298 RT2 MP5B H20 COOLING Clogged 13/06/2016  597.68 CLEANING
RT2MP5B-P 10,528,736  RT2MP5 BLIND DISCS REMOVAL 20/09/2016 11,650.99 CLEANING
RT2MP5B-P 10,640,333 RT2 MP5B NO WATER CIRCULATION TXT 29/11/2019 2005.73 none

RT2MP5B-P 10,648,669 RT2MP5B H20 COOLING Clogged 03/03/2020 672.48 CLEANING

5.4. Prediction Module

The predictive models that will be presented below are all fed with the same input
data and the prediction phase always follows a similar process. Therefore, in this section,
we will describe how the data are fed to the predictive models with the goal of obtaining a
forecast of the next fault for each component.

First, for each component cm we extract the fault dates of all the notices about c and
put them in a vector in chronological order. Let us call such a vector “y”. Subsequently,
an “X” vector will be generated containing integer values from 1 up to the length of the
vector “y”. To work with integer values, the dates have been transformed into an integer
representing the number of days elapsed from the oldest date in the “Notice” data; that is

31/12/1999. Some examples of conversion are shown in Table 10:

Table 10. Examples of conversion from dates to days with respect to 31/12/1999.

Date Converted Date (Elapsed Days)
01/01/2000 1

14/09/2007 2814

15/05/2012 4519

06/07/2020 7493

The vectors “X” and “y” are further split into training and test sets:
¢  X_train and y_train: learning vectors;

*  X_test and y_test: model validation vectors.

The process carried out is iterative, and for each prediction, the vectors are divided to
use 80% of the total data for training and the remaining 20% for testing. We are in presence
of a regression problem, and the forecasting process involves the following cyclical steps
whose number corresponds to the number of elements in the test set:

*  Model training using training data (X_train and y_train);
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*  Predicting the first element in the test data (y_test[0]);

¢  Evaluating the error as the deviation between the predicted value and the real value;

*  Augmenting the training vectors with the real data sample of the sample just predicted
(the first value of X_test and y_test are, respectively, added to X_train and y_train).

Therefore, for each forecast, the training vectors are augmented with the real data of
the previous forecast. This means that after each prediction, the training set grows by one
element (represented by the real value of the predicted element). Furthermore, the process
is sustainable. As soon as a new sample is inserted into the data structure, a new prediction
will be automatically forecasted.

The process is illustrated in Figure 3. At step 0, we need to forecast the first element
in the test. After we perform the forecast (step 1), we augment the training set with
the real value of the predicted element. This concept fits perfectly with that of real-time
data processing.

X_train vy train X test y_test X_train vy train X test y_test
x_1 y_ 1 x_9 y_9 x_1 y_ 1 x_10 y_10
x_2 y_ 2 x_10 y_10 x_2 y_ 2
x_3 y_3 x_3 y_3
x_4 y 4 x_4 y 4
X_5 y_5 X_5 y_5
x_6 y_6 x_6 y_6
x_7 y_7 x_7 y_7
x_8 y_8 x_8 y_8

x_9 y_9
Prevision of point(x_9,y_9) Prevision of point (x_10,y_10)

Figure 3. Example of forecast.

The regressors that will be used in this work are the following:

* Linear regression;
e ARIMA;
*  Regressor based on polynomial integration.

Regression models are very popular because they adapt quickly to the data and are
easy to interpret.

5.4.1. Linear Regression

Simple linear regression is nothing more than the approximation of the data along a
line such as:
y=ax+b

where the coefficient “a” represents the slope, while the term “b” represents the intercept
value [67].

The goal of a simple linear regression model is to replicate the existing relationships
between a single characteristic defined by the independent variable x and a continuous
evaluation response, also called the target variable y [68].

To use the linear regression estimator, we adopted the linear regression model from
the Scikit Learn library [67].

LinearRegression fits a linear model to minimize the residual sum of squares between
the observed targets in the dataset and the predicted targets from linear approximation [69].

5.4.2. ARIMA

The ARIMA model (or integrated autoregressive models with moving average) by
Box and Jenkins [70], on the other hand, starts from the assumption that between two
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observations of a series, the one that alters the level of the series is called the disturbance.
A general Box—Jenkins model is indicated as ARIMA (p, d, q) where AR = autoregression
(autoregression), p is the order of AR, I = integration (integration), d is the order of I,
MA = moving average and 4 is the order of MA. If the series is not stationary, that is, if the
mean and the variance are not constant over time, it is integrated after having performed a
possible transformation of the data, usually of the logarithmic type. In this way, a stationary
series is obtained. The proposed procedure of Box and Jenkins is iterative and is used for
the identification, estimation, and verification of an ARIMA model. It has the purpose of
building a model that adapts to the observed time series and represents the generating
process of the series itself:

1. Verification of the stationarity of the series;
2 Identification of the ARIMA model;

3.  Estimation of the parameters p, d and g;

4.  Verification of the model.

If the estimated model passes the verification stage, then it can be used for pre-
dictions. Otherwise, the identification, estimation, and verification phases are repeated
iteratively [70].

In our application case, this procedure was automated using auto-ARIMA, which
provides an automatic ARIMA algorithm. The auto-ARIMA process tries to identify the
most optimal parameters for an ARIMA model. The problem with this automatic model
is that due to stationarity problems, it may not find a suitable ARIMA model that will
converge. The reason why we chose an automatic model lies in the desire to find a simple
procedure that can be used without technical expertise on ARIMA. In fact, with this process,
there is the risk of making the series excessively stationary, affecting the final results.
Therefore, it was decided to initialize auto-ARIMA with the standard parameters proposed
by the library itself [71].

5.4.3. Regressor Based on Polynomial Integration

The last model is an algorithm that we designed and created from scratch based on
polynomial interpolation. The idea is to look for the polynomial of degree p that best
approximates the time series in question. To do this, every time a prediction is performed,
several polynomials with degree p ranging from 1 to n are generated, where 7 is the total
number of polynomials that are thought to fit. In our case, we have chosen not to go
beyond the ninth degree for each prediction; therefore, we chose among 9 polynomials.
This choice was made because polynomials with a very high degree could be problematic
to converge [72]. To choose the best polynomial, we carried out the following procedure:

*  We determined the prediction in the point preceding the one we are interested in
making the prediction for;

*  The error was calculated as the difference between the obtained element and its
corresponding real value;

*  We saved the error in a list.

In this process, it was necessary to impose two constraints:

*  The first constraint requires that the forecast value (which is a number corresponding
to a date) must always be greater than the date corresponding to the previous element,
as it cannot be possible to obtain forecasts in the past;

®  The second constraint imposes that the failure date must not tend towards an infi-
nite value.

This process is applied to all the polynomials and the one that at step i-1 provides the
lowest error (and satisfies the two constraints defined above) is chosen to predict step i-th.
This process tries to optimize the forecast by trying to follow the trend as much as possible.

An example of how it works is included in Figure 4, where we have four points
in the training set and are interested in the prediction of the fifth one (in purple). Three
polynomials with a different degree are determined on the first three points. The predictions
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on the fourth point (the three blue points are the predictions, whereas the red point is the
real value) are performed and the three errors are computed. The polynomial corresponding
to the lowest error, €3, is yellow, and it will be used to predict the fifth point.

Y a

v

Figure 4. Example of how the polynomial integration works.

6. Experimental Evaluation

The results obtained during the whole process described in Section 5 will be shown in
this section. First of all, in Section 6.1 the results related to the reconstruction of unstructured
data are highlighted, showing the information related to each reconstruction strategy.
Subsequently, in Section 6.2, we will report the results inherent to the techniques for the
categorization of the alerts. Finally, in Section 6.3, we will discuss the results related to the
forecasting of faults obtained by means of different forecasting approaches.

6.1. Results on Data Reconstruction

The “Notice” data contains 10,700 alarms related to malfunction and /or breakdown.
By checking the technical site of each notice, it emerged that 10,567 assets had a missing or
incomplete technical site. Consequently, it was necessary to define algorithms or completion
rules. As already mentioned above, there are five of these rules, and for each of them, we
report in Table 11 the number of technical sites that have been augmented. The reader
notices that the same technical site may have been augmented by more than one strategy.

The number of technical sites that have been augmented is 7204 over a total of 10,700.
This corresponds to having reconstructed 68.2% of the input samples.

The reconstruction results were manually validated in collaboration with the em-
ployees of ITALTELECO, who labeled as correct 100% of the performed augmentations.
The reader notices that it has not been possible to automatically reconstruct a higher
number of technical locations due to a lack of information necessary for their reconstruc-
tion. The lacking of a structured process when filling the notice reports led to several
missing data.

6.2. Categorization of the Alerts

The entire process of categorization has already been discussed in Section 5.2, where
it is reported that the frequency of words has been computed according to each type of
component and overall.

The reason to distinguish between these two cases is that certain words should occur
more often in certain types of components. For example, we expect that the word “LEAK”
is important in those types of components that may have fluid leaks, such as pumps, and it
will be less important in those components that are not subject to this type of phenomenon.
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Table 11. Results of unstructured data reconstruction.

Strategy Name Number of Reconstructed
Technical Sites
1 Completion using the information contained in the “Equipment” 2598
column of “Notices”
2 Completion using the information contained in the “Equipment” 104
column of “ODM”
3 Completion through the technical sites of the “ODM” data 2602
4 Completion by mapping the words contained in the “Description” column 1650
and the names of the components
5 Search for components using the suffixes of the 196

components contained in the “Description” field

By carrying out the categorization for each alert, we were able to categorize only
3641 alerts, which corresponds to 0.34% of the overall number of them. This low percent-
age strongly depends on how the descriptions of the warnings are written. As already
mentioned, they suffer from the problem of having too little information. As an exam-
ple, the description “RT2 MP5B NO WATER CIRCULATION TXT”, in the second-to-last
row of Table 9 and related to a pump, has the expression “NO WATER CIRCULATION”,
which is too general to be assigned to one of the categories of Table 8. It may be associ-
ated with faults related to DAMAGE, FUNCTIONALITY, REGOLATION, LEAK, REPAIR,
or REPLACEMENT.

In Figure 5, the percentages of occurrences of the fault categories for all the components
are indicated. Figures 6 and 7 show the frequency distribution of the fault categories of
compressors and pumps, respectively.

Clearly, the two graphs show a different distribution of the fault categories. This
is expected, as different component types may be subject to different failures. More
specifically, we notice that the pumps are more subject to fluid loss phenomena (LEAK),
perhaps due to the rupture of pipes. Conversely, the compressors are more subject to
failures related to cleaning (CLEANING), perhaps linked to the clogging of pipes or filters.
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Figure 5. Frequency distribution of the fault category with respect to the notices of all the components.
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Figure 6. Frequency distribution of the fault category with respect to the notices related to compressors.
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Figure 7. Frequency distribution of the fault category with respect to the notices related to pumps.

6.3. Results on Alerts Forecasting

Once the notices were reconstructed, we grouped them by component. Each group
was reordered in ascending chronological order. In this way, each group corresponded
to a data structure that we generated that was used for the predictive models. For each
component we have analysed, we split our process into two parts:

*  Extraction of the time series of faults and creation of training data and test data;
*  Predictive phase.

We have already discussed the first part in Section 5.4, where we have also mentioned
the three models that we have used for the forecasting phase.

We are targeting a regression problem, and the prediction we will obtain is represented
by a number corresponding to an elapsed interval time. This is considered good and
reliable from ITALTELECO if it is less or equal than three months from the real value.
Therefore, in the rest of this section, this will be our reference threshold.

To let the reader understand the process of our evaluation, let us consider the RT2MP4-
P component, which corresponds to a pump. For this component, there are 43 warnings
relating to faults. These were transformed into a vector of dates ordered chronologically.
This vector was then divided into two parts.

e A total of 80% of the data (corresponding to 34 faults for the example above) became
the training vector;
¢ The remaining 20% (corresponding to 8 faults) were used for the test phase.

The training vector was fed to the three predictive models introduced in Section 5.4.
Figure 8 shows the forecast of the eight elements in the test set performed by the linear
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regression. The gray points represent the training data, the red point is the forecasted
element, and the blue element is its corresponding real value. The reader notices that the
red point at step i becomes a new training element in the next iteration (the last gray point
in the graph at step i + 1). Moreover, the slope of the forecast line, shown in green, changes
as we add new elements in the training data as the course of the line tends to follow the
real data. The errors are computed as the absolute difference on the y-axis between the
forecasted point (red) and the real one (blue). Related to Figure 8, Table 12 illustrates the
value of the y coordinates of the eight points of the test set, the predicted value using the
linear regression model, and the error.
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Figure 8. Step by step predictions performed by the linear regression model of the RT2MP4-P component.

Table 12. Results table of the RT2MP4-P component performed by the linear regression Model.

#Step y_TEST Predict Value LR Error LR
step 0 6510 6413.62521 96.37
step 1 6578 6575.287302 2.71

step 2 6611 6726.968468 115.96
step 3 6744 6866.16074 122.16
step 4 7129 7004.561404 124.43
step 5 7136 7167.465385 31.46
step 6 7249 7315.310976 66.31
step 7 7375 7459.801394 84.80
Average error 95.02

We applied the three regression models to the alerts of 181 system components, and
the results are shown in Table 13.



Appl. Sci. 2022,12,10617

23 of 29

Table 13. Average error of each regression model.

Average Error LR Average Error ARIMA Average Error PI
647.66 418.56 476.15

The overall average error is very high: more than 647 days for the linear regression,
more than 418 days for ARIMA and more than 476 days for the polynomial integration
method. This phenomenon is due to the large amount of components having a very small
number of notices. In fact, we analyzed 181 out of the overall number of 1,036 components
because of the insufficient number of samples found in the “Notice” data to be applied to
the models. In particular, we processed components with a number of notices higher than
3 for the linear regression and the polynomial integration method. ARIMA needed at least
10 samples.

ITALTELECO argues that an acceptable error should fall within three months. The
reader can observe that the obtained error is much higher than the desired one (3 months
corresponding to 90 days). As several components had a few number of samples to be
used as training set, the predictions in such cases are usually very far from the real values.
Therefore, we counted the number of samples for each component, and Table 14 indicates
the related distribution and the corresponding errors averaged per each model and the
components with a number of notices fixed in the first column. The reader notices that the
average error for ARIMA for the first six rows is empty because the model requires at least
10 samples, as previously mentioned.

Therefore, we analysed the performances with respect to the sample size and identified
the cases that could generate an acceptable error. We defined the global error EM as the
errors of the model M computed, taking all the errors corresponding to the components
whose number of samples was greater than c. For example, ELR corresponds to the average
error of the linear regression for all the components with number of samples greater than
10 (from sample length 11 on). Table 15 illustrates the global error E. for different values of
c. As indicated in Table 14, by choosing ¢ = 43, we obtained the minimum average error
of 84.11 days. From this, it can be deduced that the model that outperforms the others is
ARIMA, and that for a sample size greater than 43 elements, both ARIMA and PI satisfy
the constraint related to the maximum acceptable error.

Table 14. Distributions of errors per model and per components with the same number of samples.

Sample Length #Components with #Samples Average Error Average Error Average Error
Defined in the First Column LR ARIMA PI

4 52 1104.97 1062.90
5 17 819.59 1149.15
6 14 793.61 813.02
7 12 949.85 1052.04
8 7 790.84 799.89
9 6 548.83 377.57
10 8 1037.15 1104.17 1198.78
11 9 802.77 823.65 634.69
12 5 432.93 458.22 458.83
13 3 412.57 418.71 685.24
14 1 3108.11 1787.67 1214.57
15 2 284.70 419.67 423.10
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Table 14. Cont.

Sample Length #Components with #Samples Average Error Average Error Average Error
Defined in the First Column LR ARIMA PI

16 3 747.45 788.68 616.79
17 8 784.69 501.16 504.10
18 5 1141.74 762.67 745.30
19 3 942.11 1075.21 545.53
20 1 285.41 383.63 453.06
21 4 829.39 484.20 548.16
23 1 276.26 273.32 303.25
25 2 1011.60 462.71 324.45
26 1 367.04 257.56 258.31
27 1 205.67 216.57 257.99
28 2 255.18 120.25 193.06
32 1 412.46 170.53 253.03
37 1 429.07 328.17 391.99
40 1 157.14 65.31 113.24
43 3 427.17 229.02 152.33
47 1 152.12 159.03 118.26
52 2 282.07 103.39 117.10
53 1 124.62 109.53 135.59
110 1 655.20 73.42 81.05
148 1 297.10 45.29 46.17
161 1 105.62 42.38 53.58
198 1 1045.45 55.72 106.89

Table 15. Global errors EM for different values of c.

Number of Samples Average Error LR  Average Error ARIMA  Average Error PI

10 591.69 393.17 360.58
21 387.74 169.51 181.64
43 386.17 84.11 94.09

7. Conclusions and Future Works

This paper provides a methodology to preprocess time series data related to fault
components of one of the systems of the SARAS company (oil and gas sector) aiming at
implementing a machine learning model to predict the next failure date of each component
of such a system. We performed a data cleaning step to fill in several of the missing infor-
mation within the raw data. This phase has been performed together with ITALTELECO,
a company partner of SARAS, which provided us with the necessary information to rebuild
some of the technical sites needed for the prediction step. Then, we identified the category
of the monitored faults for each component through natural language processing and clus-
tering techniques. An accurate analysis of the registered failures led to the identification of
19 fault categories, and, for each of them, an unique identifier i.e., the notice, was assigned.
Then, we tried to predict the next fault occurrences for each component. This has been
mapped as a regression problem where the number to predict corresponded to a date
(number of days elapsed from 31/12/1999). Three different machine learning models have
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been used to tackle the regression problem. Time series data of notices were used to train
each model, and the performances of each model have been analysed.

To support machine learning models in making reliable predictions, it is important to
make sure there are enough complete data. One of the most problematic parts of our work
was related to the reconstruction of missing information. The following issues were found
among the data and have been highlighted:

* incorrect compilation of a description where several different components were of-
ten inserted;

* anincorrect compilation of the component names, i.e., the component names in the
description are often named without the RT2 prefix or the last word indicating the real
part of the component subject to a maintenance event;

e lack of important data such as downtime that would have been useful to try to predict
data related to lost production;

¢ the component map provided was not complete and therefore it was not possible to
recognize some components and reconstruct their technical locations.

To solve some of these problems, natural language processing techniques were used
to recognize components using only parts of their name. In this way, if a word in the
description contained a mapped component, it has been recognized, and, consequently, it
has been possible to reconstruct the technical location of the relevant warning. Regarding
the data on downtime and maintenance costs, nothing could be done to reconstruct them.
The only action was to provide feedback to the company showing them the importance of
including this type of information in future actions.

One of the best practices that come from our analysis is to start collecting data using a
schema defined at the beginning of the collection process or to set up a system capable of
acquiring data directly without having to post-process them by hand. This would bring the
following advantages:

*  No pre-processing of the initial data;
*  Better data quality;
*  Better performance of the predictive models.

It would be advisable to use special hardware systems equipped with ad hoc software
that guides the workers during maintenance activities to correctly fill the report. Drop-
down menus or other easy-to-use techniques that can facilitate the acquisition phase of
the data should be adopted. For example, these menus should contain standard words
that the operator can easily choose to speed up the writing process and reduce errors when
entering information. In this way, the history of these activities will be clean and complete.

This would improve the forecast performances, and the better the forecast is, the lower
the costs will be, as the used components will be exploited throughout their life. This will
further avoid the waste of unnecessary resources, the costs related to the replacement or
repair of some components, and the loss of production due to the unexpected shutdown of
the plant. At this time, the forecasts obtained are subject to particularly high average errors,
and only in cases where samples were large enough, we obtained acceptable predictions.

On the other hand, potential limitations of our approach are related to the peculiarity
of the used data: the methodology is applicable to other domains, but each use case will be
different, and a human component must be always employed to identify the features of the
data that need to be completed.

As future directions, we would like to improve the prediction procedure by integrat-
ing sensor data. This is important because the proposed procedure does not take into
account the working conditions of the individual component. The sensors provide useful
quantities to understand the operating status of each component. Vibrations are, in fact,
one of the physical quantities that can be analyzed for this purpose by indicating the state
of health of a plant component by signaling anomalies when the values go out of the
predetermined ranges.
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Moreover, the generated data structure could also be automated with an IoT system
and data storage in the Cloud with automatic procedures. In this way;, it will be possible to
train the machine learning models and make predictions in real time, and this will allow
us to intervene promptly in the event of an imminent failure. Thanks to the help of these
models, it will therefore be possible to intervene when strictly necessary to optimize the
number of maintenance interventions and exploit the underlying component as much
as possible.
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Nomenclature

Acronym Description

a Slope coefficient

ANFIS Adaptive neuro-fuzzy inference systems
ANN Artificial neural networks

AR Autoregression

ARIMA Auto-regressive integrated moving average
b Intercept value

c Sample length

CNN Convolutional neural network

d Order of integration

DGA Dissolved gas analysis

e Error

E Global error

ELM Extreme learning machine

HSA Hierarchical symbolic analysis
HVAC Heating ventilation and air conditioning
i Number of steps

I Integration

LSTM Long-short-term memory

LPG Liquefied petroleum gas

LR Linear regression

M Model

MA Moving average

ML Machine learning

MLP Multi-layered perceptron

n Total number of polynomials

NLP Simple natural language processing
ODM Maintenance order

p Order of autoregression

PdM Predictive maintenance

PI Polynomial integration

PvM Preventive maintenance

q Order of moving average

R2F Run to failure
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RT2 Revamping topping plant
SVM Support-vector machines
X Independent variable

y Target variable
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