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Abstract: Natural language models brought rapid developments to Natural Language Processing
(NLP) performance following the emergence of large-scale deep learning models. Language models
have previously used token units to represent natural language while reducing the proportion of
unknown tokens. However, tokenization in language models raises language-specific issues. One of
the key issues is that separating words by morphemes may cause distortion to the original meaning;
also, it can prove challenging to apply the information surrounding a word, such as its semantic
network. We propose a multi-hot representation language model to maintain Korean morpheme
units. This method represents a single morpheme as a group of syllable-based tokens for cases where
no matching tokens exist. This model has demonstrated similar performance to existing models
in various natural language processing applications. The proposed model retains the minimum
unit of meaning by maintaining the morpheme units and can easily accommodate the extension of
semantic information.

Keywords: language model; tokenization; multi-hot representation; maintain morpheme units;
morpheme and syllable-base tokens

1. Introduction

Natural Language Modeling is a technique that uses the information surrounding a
particular position within a set of natural languages, such as sentences or context, to predict
the natural language that is likely to appear in that position. Language models are used
as a pre-training concept in other natural language processing techniques. Representative
models include Embeddings from Language Model (ELMo) [1], Bidirectional Encoder
Representations from Transformers (BERT) [2], and Generative Pre-Training (GPT) [3],
which are large-scale deep learning models. The development of such language models
has brought significant changes in natural language processing research.

Representative language models have used encoder-decoder-based transformer mod-
els [4]. Typical language models include BERT and GPT. BERT uses the encoder part of
the transformer model to learn text representations, while GPT uses the decoder part. In
addition, BERT has an improved understanding of contexts and sentences, while GPT
possesses the strength of generating natural languages using the inputted information.
Research on BERT has mainly been conducted to improve the model’s problems. Some
models that have modified the existing BERT’s training process to address its problems
include RoBERTa (a Robustly optimized BERT pretraining Approach) [5], ALBERT (A Lite
BERT) [6], and ELECTRA [7]. Studies have also been conducted on models such as Sense-
BERT and KnowBERT that use lexical semantic information such as WordNet [8,9]. Other
transformer encoder language models include CharBERT and Charformer [10,11]. Those
models use a character-based tokenizer. Conversely, research on GPT has focused on the
expansion of the language model’s size, leading to the release of GPT-2 and GPT-3 [12,13].
These models expanded the size of the model and training data to increase their capacity to
represent larger amounts of data.

Appl. Sci. 2022, 12, 10612. https:/ /doi.org/10.3390/app122010612

https://www.mdpi.com/journal/applsci


https://doi.org/10.3390/app122010612
https://doi.org/10.3390/app122010612
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122010612
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010612?type=check_update&version=2

Appl. Sci. 2022,12, 10612

2 0f9

Recent studies have presented standards for processing and handling the exponentially
increasing amounts of corpus data needed to train a language model. Research has also
been conducted on T5 (Text-to-Text Transfer Transformer) [14], a model that predicts
sentences based on the inputted text, rather than predicting correct answers as done by
existing language models.

Byte Pair Encoding (BPE) is a tokenizer for language models [15]. BPE generates a
list of tokens to be conclusively used through the process of combining high-frequency
combinations that appear in documents using a data compression algorithm. However,
BPE does not reflect the characteristics of the language to be used as it simply performs
combinations based on frequency. Using the BPE-based tokenization method poses the
following issues:

e Differences in morpheme separation and unknown token ratios due to dependence on
the corpus used for tokenization;
e Loss of meaning due to morpheme separation.

In the BPE-based token generation method, a loss of morpheme information occurs in
the process of converting morphemes into tokens. For example, the newly coined word

‘staycation’ (a compound of ‘stay’ and ‘vacation’) is separated into ‘stay’ and ‘cation” by

BPE. However, if ‘staycation” does not appear in the training data or the frequency is low, a
problem occurs. Since ‘cation’ is often used as a chemical term, the meaning of ‘vacation’
may disappear, leading to a possible loss of meaning of ‘staycation’. BPE-based composition
methods have posed issues when applying the various lexical semantic information about
words. In addition, the separation of morphemes has rendered it difficult to apply the
semantic information of vocabularies such as WordNet—an English lexical database of
semantic relations [16].

The one-hot representation is the easiest way to express natural language, and by
embedding it, many language processing models use it. In the case of one-hot representa-
tion, there is a problem in that the embedding table becomes large when the number of
types of natural language to be expressed increases. For example, in the case of Chinese,
there are simply many characters, and in the case of English or Korean, there are many
words that can be generated according to the combination of characters. Therefore, the
use of one-hot encoding increases the proportion of the embedding matrix in the overall
model. Many studies have been conducted to solve the problem of one-hot expressions.
K-way D-dimensional Discrete Embedding (KD encoding) expresses a natural language
as a K-way D-dimensional code rather than a one-hot, embedding it and expressing it as
a vector [17]. One the other hand, Multi-hot compact network embedding (MCNE) and
Effective Multi-hot encoding and classification modUle (EMU) have introduced a method
to reduce the size of a model using multi-hot representation [18,19]. These two studies did
not use multi-hot expressions for language models, but multi-hot expressions were used to
reduce the number of objects to express with embeddings.

We propose a multi-hot representation-based language model to maintain morphemes
in token-based language models. We chose Korean as the language to be used in the experi-
ment because Korean consists of several combinations with one character, and different
morphemes can be applied to a subword owing to its characteristics as an agglutinative
language. Additionally, there is a limit to the number of words that can be expressed in
BPE because the number of words created by the combination of letters in Korean is large.
The NIKL MODU Corpus: Newspaper Corpus (https://corpus.korean.go.kr, (accessed
on 25 August 2020)) was used as training data for the language model, and UTagger, a
morpheme analyzer developed by the University of Ulsan, was used to conduct a mor-
pheme analysis on the corpus [20]. In addition, a multi-hot representation method—a set
of one-syllable tokens—was used for words not included in the token list. Syllables were
tokenized by extracting high-frequency syllables from the corpus, where the proposed
model combined these with an existing set of morpheme-based tokens. All tests were
conducted using an existing morpheme-based language model as a comparative model.
The performance of each model was evaluated in four areas.
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2. Materials and Methods
2.1. Input for the Multi-Hot Language Model

We propose a language model based on multi-hot representation. In existing language
models, a specific result value is derived for each token after converting an inputted
sentence into tokens. However, this method poses challenges when a single morpheme is
represented as a set of syllable tokens, and tokens may exceed the maximum length when
the number of generated input tokens increases. However, the existing subword method is
used only for verbs.

The multi-hot LM uses a method that generates a single combined token for a set of
syllable tokens. Figure 1 shows how the example “Staycation is trending” is generated as
input to the language model. If no perfect match exists for ‘Staycation’, it is converted into
a set of syllable tokens, and the token value for that morpheme is generated by multiplying
the embedding information for each syllable by the position embedding within the set
of tokens.

O =Y TiTP 1)

The set of syllable tokens is converted into a single token using the above equation.
T; is the token embedding value, and TP, is the token position embedding value within
the syllable token set. By multiplying the token position embedding value with the token
embedding value, the syllable tokens with the same combinations but different syllable
positions can be differentiated.

Input; = O; + Pos; + P; 2)

The above equation represents the process in which the input to the transformer
encoder is conclusively generated. Pos; is the part-of-speech embedding value for the
corresponding token, and P; represents the sentence position embedding, which has also
been used in existing models.

Language model Input | Input, | I Input, ” Input, |

i Pos Embedding | NN | | VBZ | | VBG |

Create Sentence Position 0 1 | 2 |
Input Embedding

Token Value TO Tl | TZ |

Multi-hot =

roken [S1[t][a][v][c][a] [t][i]

is [| trend || ing |

IE

PO | 12 7 33| 3 £ e

morphologye
parsing &

Staycation(Noun: NN) [[ is(Verb: VBZ) || trending(Verb: VBG) |

Figure 1. The multi-hot representation language model acting on an input value (on the example:
“Staycation is trending”).

2.2. Loss Function for the Multi-Hot Language Model

The multi-hot representation language model proposed in this paper uses BERT’s
training method. The multi-hot LM uses the same masked LM process as BERT, but more
than one correct token can exist. Because the multi-hot LM can have more than one answer,
the existing loss function was modified. In addition, the final output value was obtained by
adding one linear layer without applying the embedding table used for the input to the
final layer.

The existing masked LM uses Softmax cross entropy (SCE), which is a function that is
used for problems with a single correct answer. However, this function is difficult to use in
the multi-hot LM proposed in this paper.

SCE = — Y _.10g(5(0y))y; 3)
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The multi-hot LM can have several correct answers for one masking position. When
multiple answers exist, the y; value increase with the number of correct answers. Addition-
ally, since the model is trained so that the probability of the correct answer is 1, when the
position of a correct answer increases, the loss value of another true position increases and
does not fall below a specific loss value when multiple answers exist.

Another loss function is binary cross entropy (BCE), which finds a loss value for
multiple correct answers. The average of the loss value for each output position is used.

BCE =~ Y 11, 1 = yillog(p(yi)) + (1~ ) log(1 — p(y) @

This poses a problem for masked LM, as outputs are produced according to the list of
tokens, and, with most answers being zero, the model is trained to elicit a probability value
of zero for each output.

For the multi-hot LM, we implemented a function to obtain loss values for problems
with more than one answer by modifying the SCE. We changed the probability of a correct
answer from 1 to y;/n. Here, n is the total number of correct answers, and y; is the same
number of tokens included in the correct answer. By adjusting the probability value of the
correct answer, the sum of the Softmax function is designed to not exceed 1 and to prevent
excessive loss values. For example, for the masked word “Archimedes’ (a person’s name,
with multi-hot token representation: ['@A’, ‘@r’, ‘@c’, ‘@h’, ‘@1, ‘@m’, ‘@e’, ‘@d’, ‘@¢’, '@s']),
the resulting probability value for ‘@A’ is 1/10, and the total probability value for all ten
letters is 1. The ‘@ symbol was used to distinguish it from tokens created via the existing
BPE. The problem with using Softmax is that the probability value of the correct answer
of the tokens at each position becomes 1, resulting in a total of 10. In addition, if one of
the three answers’ loss decreases, the other answer increases the loss value. Therefore, the
model cannot be trained to converge. We calculate a loss value for O;, which is the output
value J;:

Ji = —(10g(5(0;)) — log(yi/n)) 5)

Here, S is the Softmax function. The above equation is the existing SCE, minus
log(y;/n). Since the multi-hot representation-based loss function gives an answer prob-
ability of y;/n, we infer that the log-Softmax value of the output value at that position
converges to zero using log(y;/n). For duplicate characters, y; increases, so the probability
of that character increases with the number of characters. For example, for a set of three
different tokens, the maximum value of log(S(0O;)) cannot be less than log(1/3) as the
probability of each answer position is 1/3. So, log(1/3) is subtracted to derive a loss value
such that the existing probability value is 1. After obtaining J;,—the loss value for each
output neuron—the correct answer for the current training data is redefined using this
value. This process is used to prepare for the case where the probability value of the model
exceeds y;/n.

label; = if J; < 0:y;else : 0 (6)

We redefine the answer value in the training data to consider cases where the loss value
of the answer position exceeds the maximum value in a multi-hot LM. When the loss value
of each output neuron becomes positive, it results in a loss value that exceeds the target
probability. The average loss value decreases if a positive J; value is used as the loss value
for the current training data, and the output value at the respective position becomes less
likely to be correct as the training progresses. The correct answer was redefined to exclude
positive J; values. When J; is positive, the result value label is 1, and in other cases, it is
0. The J; value—the modified loss value for multiple answers—and label,—the redefined
answer—were conclusively used to find the loss value for the current training data.

ALoss =) _.(Jilabel;)/ Y . (label;) 7)
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We then find the final loss value for masked embedding that can have multiple correct
answers used as training data in a multi-hot LM. The average of the redefined answer value
label; multiplied by the loss value J; was used as the final loss value. The average value
used as the multi-hot LM has more than one correct answer, and simple summation results
in a large loss value being applied to the model, as in the existing loss function.

2.3. Configuration of the Model and Token List

For all models, we used the “NIKL MODU Corpus: Newspaper Corpus’ (16GB) as
the training data. Masked LM and Next Sentence Labeling were used for training, as in
the existing BERT model. We used models of two sizes for this test. The size settings are
described below; all other settings apart from size remained the same.

e  Small Model—4 transformer layers, 256-neuron hidden layers, maximum token input
size of 256 tokens;

e  Basic Model—12 transformer layers, 768-neuron hidden layers, maximum token input
size of 512 tokens.

A test was conducted with different token configurations to evaluate the multi-hot
LM. Three methods were used: (1) the existing BPR method, (2) a combination of BPE and
syllable tokens, and (3) a combination of a dictionary-based token list and syllable tokens.

Table 1 shows the number of tokens used for each model. The list that combined
syllable tokens with the existing BPE base was used to evaluate the model’s performance
when syllable tokens were added to the existing model. This model was constructed by
removing English alphabets, numerals, and Chinese characters from the list of tokens
generated from the existing BPE base, removing tokens combined with parts-of-speech
from the morpheme-based BPE, and eliminating duplicates. The existing BPE base consists
of a token list with morphemes alone or morphemes combined with parts-of-speech.

Table 1. Number of tokens by generation method.

Model BPE Base BPE + Syllable Dictionary + Syllable
All Tokens 37,027 20,892 37,822
Syllable Tokens . 1994 1994

The dictionary-based token list was used to evaluate the performance of the multi-hot
LM for token lists using high-frequency dictionary words. This list extracted high-frequency
nouns and predicates from the words listed in the dictionary, and adverbs were included.
Compound nouns were excluded from nouns, and syllable tokens were finally added to
the list.

3. Results
3.1. Details of the Experimental Areas

We tested and verified the performance of the multi-hot LM in four evaluation areas.
These were KorQuAD v1.0 (https://korquad.github.io/KorQuad%:201.0, (accessed on
28 January 2019)), Named Entity Recognition (NER), Semantic Role Labeling (SRL), and
Naver Sentiment Movie Corpus (NSMC) (https://github.com/e9t/nsmc, (accessed on
28 June 2016)). All the data used a morpheme-analyzed corpus using UTagger, and answers
in raw corpus format were reprocessed according to morpheme units. The following is a
detailed description of the four areas.

e  KorQuAD v1.0—A Korean QA corpus constructed by LG CNS. It consists of 60,407 train-
ing data and 5774 validation data. This corpus was used to compare machine reading
comprehension performance with that of existing language models. An exact match for
the answers and the F1-score were used for the evaluation.

e NER and SRL (NIKL MODU Corpus)—The ‘NIKL MODU corpus’, constructed by the
National Institute of Korean Language, was used for NER and SRL. The two domains


https://korquad.github.io/KorQuad%201.0
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were used to test the model’s semantic analysis of natural languages. NER consists of
15 tags, while SRL consists of 18 tags. A BIO-based method was used for NER, and
for SRL, the word segments of the target predicates were attached after the natural
language sentence to be analyzed. The NER corpus contains 120,066 sentences of
training data and 30,018 sentences of test data. The SRL corpus contains 108,509 sen-
tences of training data and 27,501 sentences of test data. The Fl-score was used for
the evaluation.

NSMC (Naver Sentiment Movie Corpus)—The NSMC analyzes the positive and
negative emotions in review comments. Unlike the above domains, NSMC was used
to determine the suitability of the language model for a spoken corpus in which
everyday terms were used, rather than a written corpus like the newspaper corpus.
The corpus contains 150,000 training data and 50,000 test data. It was evaluated based
on the accuracy.

Figure 2 represents the model used in each experimental area. In order to compare the

performance of the language models, the experimental model was simply constructed. This
was to reduce the influence on the performance of the experimental area by other factors.

Start End Classification Classification
position position (Feedfoward Net) OIS Token
1 1 1
Language Model Language Model Language Model
(BERT) (BERT) (BERT)
t 1 t
| Tokenizer | | Tokenizer | | Tokenizer |
t 1 t
| Input data | | Input data | | Input data |
KorQuAD Model Named Entity Model Naver Sentiment Movie model

Semantic Role labeling Model

Figure 2. Experimental area (KorQuAD v1.0, NER, SRL, NSMC) usage model.

3.2. Comparison of Loss Functions

We evaluated the loss functions for the multi-hot LM. Each model used a BPE-based
syllable unit token list, which was applied to the small model. Under the same training con-
ditions, the loss function was structured and operated in three ways in masked embedding.
These included the existing SCE, BCE, and a variant of SCE for the multi-hot representation
proposed in this paper. The following are the test results on KorQuAD v1.0.

In Table 2, for multi-hot LM, the training method using the proposed multi-hot-based
SCE was the most suitable. The existing SCE and BCE methods are unsuitable for language

models with multiple correct answers.

Table 2. Results for KorQuAD v1.0 regarding the loss function; list of tokens based on BPE and
syllables, tested with a small model.

Loss Function Exact F1-Score
Softmax Cross Entropy 69.8% 76.3%
Binary Cross Entropy 43.3% 55.8%
Multi-hot Softmax Cross Entropy 73.6% 80.1%

3.3. Experiments on the Multi-Hot Language Model

The performance of the multi-hot LM that maintained the morpheme units proposed
in this paper was evaluated with regard to natural language processing and compared
with the existing models. The training and evaluation of the test domains were conducted
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within the same hardware environment. The same training settings were used for testing
models of the same size.

In Table 3, the evaluation results of the model proposed in this paper and the existing
models for each domain are presented by token configuration and model size. Among the
four domains, KorQuAD v1.0—which was used to test machine reading comprehension—
showed lower performance than the existing BPE base. The remaining three domains
showed higher performance, excluding SRL in the small models. A detailed analysis of
each domain was conducted to determine the cause of the differences from the existing
model. First, a detailed evaluation of the correct answers was conducted on the test results
from KorQuAD v1.0.

Table 3. Model test for KorQuAD v1.0, Named Entity Recognition, Semantic Role Labeling, and the
Naver Sentiment Movie Corpus; scores in bold are the best overall.

Area KorQuAD v1.0 NER SRL NSMC
F1-Score F1-Score
Token List Size Exact F1-Score - : Accuracy
Macro Micro Macro Micro
BPE base Small 75.2% 81.2% 78.65% 86.78% 43.41% 54.35% 86.99%
BPE + Syllable Small 73.6% 80.1% 79.81% 87.39% 43.18% 53.21% 87.62%
Dictionary + Syllable Small 74.9% 81.5% 79.70% 87.37% 43.07% 53.20% 87.97%
BPE base Basic 83.0% 89.1% 80.74% 88.57% 45.79% 57.12% 87.95%
BPE + Syllable Basic 81.8% 87.9% 81.47% 89.01% 46.54% 58.64% 88.91%

Subsequently, an analysis of the performance differences with existing models was
conducted. In addition, the results were divided and analyzed in relation to the exact
match ratio according to the answer form. The test consisted of the case where at least one
morpheme was separated and the case where no morphemes were separated when the
morpheme of the correct answer was tokenized. The analysis results were extracted from
the small models.

In Table 4, the comparison showed a large number of correct answers for unseparated
morphemes in the existing BPE model but lower performance than the dictionary-based
syllable token combinations when separation occurred. The table shows that maintaining
morphological forms has a significant effect on performance.

Table 4. Ratio of exact matches based on the separation of morphemes of KorQuAD v1.0 in the
small model.

KorQuAD Exact Match Ratio

Token List Not Divided Divided
BEP base 2046/2618 78.15% 2301,/3156 72.90%
BPE + Syllable 1958,/2618 74.78% 2291 /3156 72.59%
BPE + Dictionary 2002/2618 76.47% 2326/3156 73.70%

The small models performed well in NER but not in SRL. However, the multi-hot LM
showed high performance in both domains for the basic models. Proper nouns, which
frequently appear as answers in NER, appear less frequently in corpora and show more
diverse combinations than does commonly used vocabulary. Therefore, the multi-hot LM
showed high performance as morphemes are often separated or cannot be tokenized in
the existing BPE base. The following table shows the F1-score results of 3 main tags from a
total of 15 tags in the NER for each model. The selected tags were person, location, and
organization. These are typical categories of named entities that are in the form of proper
nouns. The performance comparison for these tags was based on three small models.

Table 5 shows higher performance for the set of named entities with a high number of
proper nouns in the model that is represented as a set of syllables than in the existing model.
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The set of syllables used in the multi-hot LM has a positive effect on performance for proper
nouns. For SRL, the existing model and the multi-hot LM showed good performance in
the small and basic models, respectively. The diversity of the multi-hot representation
increased with the number of parameters used in the model, showing better performance
than the existing model.

Table 5. Details of named entity recognition results in small language models; PER (person), LOC
(location), and ORG (organization).

NER Tag
Token List PER LOC ORG
BEP base 93.84% 87.53% 84.26%
BPE + Syllable 94.95% 87.68% 85.18%
BPE + Dictionary 94.77% 87.81% 85.09%

Finally, the multi-hot LM performed better in all areas than the existing models in
the NSMC. The incorrect separation of morpheme units affected the results in areas with
highly diversified and frequent informal expressions, such as dialog. In this regard, the
multi-hot LM is effective.

4. Conclusions

Herein, we proposed a multi-hot representation-based language model to maintain
morpheme units in morpheme-based language models. To represent and train a multi-hot
representation method, we proposed generating combined tokens with a set of syllable
tokens to be used as input to a transformer model. To train these combined tokens,
the language model was trained using a loss function that can apply changing answer
probabilities according to the number of correct answers, rather than using the existing loss
function. The model was evaluated in several natural language processing domains to test
its performance. Each domain was tested by changing the size of the model and token list.
The model exhibited better performance than the existing model in all areas, excluding
machine reading comprehension.

The multi-hot representation-based language model has several advantages because
of the retention of morpheme units. Maintaining the minimum unit of word forms aids
in restricting the result values of the language model to morphemes. In addition, these
results can be easily applied to the semantic knowledge of natural languages if they are
output as minimum units of word forms. The multi-hot LM can set the foundations for
research on methods to use semantic information with current language models. Finally,
although multi-hot representation was applied only to Korean in this paper, it can be easily
applied to other natural languages. It is easily accessible because the set of characters of
the corresponding natural language is simply added to the existing token list, and only the
location information of each token is additionally used. Further, it is a model that does not
have any special dependencies on a specific natural language.
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