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Abstract: Preoperative, non-invasive, and accurate identification of the pathological subtypes of
pulmonary ground glass nodules (GGNs) play an important role in the precise selection of clinical
surgical operations and individualized treatment plans. Efforts have been made for the classification
of pathological subtypes of GGNs, but most existing methods focus on benign or malignant diagnosis
of GGNs by means of a one-time computed tomography image (CTI), which fails to capture the
nodule development based on follow-up CTI. In this paper, a novel method for subtype classification
based on follow-up CTIs is presented as a viable option to the existing one-time CTI-based approach.
A total of 383 follow-up CTIs with GGNs from 146 patients was collected and retrospectively labeled
via posterior surgical pathology. Feature extraction is performed individually to the follow-up CTIs.
The extracted feature differences were represented as a vector, which was then used to construct
a set of vectors for all the patients. Finally, a subspace K-nearest neighbor classifier was built to
predict the pathological subtypes of GGNs. Experimental validation confirmed the efficacy of the new
method over the existing method. Results showed that the accuracy of the new method could reach
72.5%, while the existing methods had an upper bound of 67.5% accuracy. Subsequent three-category
comparison experiments were also performed to demonstrate that the new method could increase
the accuracy up to 21.33% compared to the existing methods that use one-time CTI.

Keywords: radiomics; subtypes classification; ground glass nodules

1. Introduction

Lung cancer frequently manifests in the form of a malignant tumor with very high
morbidity and mortality worldwide [1]. In 2015, the World Health Organization integrated
multidisciplinary research on lung adenocarcinoma, classifying it into four subtypes based
on its different pathologies: atypical adenomatous hyperplasia (AAH), adenocarcinoma in
situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA).

With advancements in imaging technology, and the widespread application of com-
puted tomography image (CTI) for lung cancer scan, the detection rate of early-stage lung
adenocarcinoma, manifested as ground glass nodules (GGNs), has increased significantly.
GGNs are closely related to lung cancer, especially lung adenocarcinoma [2]. During the
pathological progress of lung adenocarcinoma from pre-invasive to invasive lesions, GGNs
can be observed in the CTI, but lack specificity [3]. The growth of GGN follows a regular
pattern, from benign lesions (e.g., AAH) to malignant lesions (e.g., IA) [4]. Most GGN
lesions are benign, but about 30% are malignant including AIS, MIA, and IA [5]. However,
GGN is likely to be related to other lung diseases such as viral pneumonia [6], the coron-
avirus disease 2019 (COVID-19) [7], etc., where COVID-19 has become a global pandemic.
To date, how to distinguish their differences remains a key issue.

In the past, traditional computer-aided diagnosis methods utilize various feature
extraction protocols to quantify the appearance of nodules on diagnostic CTIs, and machine
learning algorithms such as fuzzy clustering [8], threshold segmentation [9], support
vector machines [10], etc., have been employed to classify GGNs. Although these works
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have achieved impressive performance, extracting appropriate nodule features is very
time-consuming, unapparent, and unclear. In recent decades, three classes of remarkable
progresses on GGN have been made as follows.

(1) Rapid development in digital imaging and artificial intelligence technologies has
led to the field of radiomics, a new technique first proposed by Lambin et al. in 2012 for the
noninvasive diagnosis of tumors [11]. Radiomics is recognized as an effective quantitative
tool for characterizing the phenotypes of lung lesion [12]. It has achieved remarkable results
in oncology assessments and diagnosis as well as in post-treatment prognosis [13]. In early
pulmonary nodules diagnosis, for example, studies have demonstrated that radiomics per-
forms well when classifying benign or malignant pulmonary nodules, histopathologic lung
cancer phenotypes, and invasiveness in lung adenocarcinoma lesions based on quantitative
CTIs [14,15].

(2) Deep learning (DL) methods have been demonstrated to greatly reduce the diffi-
culty of feature extraction in CTIs [16]. Unlike the radiomics model, the DL-based model
can extract deep imaging features by using an end-to-end deep convolutional neural net-
work [17]. Wang et al. [18] showed that DL combined with the radiomics features could
conveniently and automatically obtain the best performance in predicting the invasiveness
of lung adenocarcinoma manifesting as GGNs. Moreover, a cascade architecture with both
segmentation and classification networks was built. It could perform better and was more
stable than the multi-task learning model appearing as GGNs. Ni et al. [19] proposed an
automatic GGN invasiveness classification algorithm for the adenocarcinoma. Experiments
showed that the algorithm outperformed the traditional machine learning method.

(3) AI techniques have attracted significant attention in the fight against COVID-19.
One crucial application to use CTIs is to segment the COVID-19 infections, which can aid
doctors in the treatment. A novel evolvable adversarial framework [20] has been devel-
oped for COVID-19 infection segmentation that incorporated the gradient penalty into
the network, penalizing the discriminator’s gradient norm input. Experiments verified
that the proposed model achieved superior effectiveness and stability for COVID-19 infec-
tion segmentation. Additionally, a weakly supervised method [21] was proposed for the
segmentation of COVID-19 infections in CT slices with scribble supervision. The whole
framework was constructed with a mean teacher framework and optimized by a weighted
combination of the supervised and unsupervised losses. In the same direction, some other
AI methods have been presented for the diagnosis and analysis of COVID-19 [22], and
so on.

Although efforts and progress have been made, existing methods are very limited due
to the following two issues:

(1) One-time CTI. The existing studies create their diagnosis models or classifiers based
on the set of one-time CTIs, while medical professionals compare the change in GGNs in
follow-up CTIs by reviewing and comparing visual characteristics rather than performing a
quantitative evaluation. Thus, follow-up CTIs at regular intervals are necessary to identify
and track the lesion change.

(2) Poor interpretability. As a data driven algorithm, the development of a DL-based
model usually needs a large training dataset with thousands of CTIs. However, the
diagnosis and therapy results for these models often have poor interpretability and do not
respond to the morphological characteristics in CTIs. In the case of a small scale CTI set,
their results may be unreliable. Since these characteristics are often atypical, it makes the
differential diagnosis of pathological subtypes based on GGNs even more difficult.

In this paper, we propose a follow-up feature difference-based classification method
(FFDC) to improve the accuracy of preoperative diagnosis, and overcome the limitation of
the existing one-time feature-based (OFDC) method.
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2. Materials and Methods
2.1. Sample Acquisition and Labeling

To build a classifier for the pathological subtypes of GGNs, a set of follow-up CTIs
with GGNs must be collected.

The CTIs used in this study were retrospectively collected from the department of
pulmonary tumor surgery, Tianjin Medical University General Hospital, corresponding
to 146 patients with early lung adenocarcinoma from January 2020 to June 2021. All
GGNs were retrospectively labeled by their surgical pathology. Figure 1 shows the four
pathological subtypes of GGNs. All patients had one-time follow-up CTIs at least in
which these lesions manifested as GGNs. These GGNs were pathologically analyzed after
surgical resection. Hence, their pathological subtypes were confirmed by histopathology
analysis. In this paper, the confirmed subtypes were used to label the GGNs for subsequent
classification when constructing a classifier. The study was conducted in accordance with
the Declaration of Helsinki, and all experiments were approved by the ethics committee
of General Hospital of Tianjin Medical University (IRB2020-YX-145-01). The requirement
to obtain informed consent from the participants was waived by the ethics committee.
Table 1 shows the number subtypes of 146 patients, their number of follow-ups along these
subtypes, and the GGNs subtypes in CTIs, respectively.
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Table 1. The GGNs subtypes of 146 patients.

Pathological Subtypes Number of Patients Number of Follow-Ups

Malignant
IA 96 249

MIA 21 50
AIS 8 37

Benign AAH 21 47

In this paper, we implemented the segmentation and feature extraction of GGNs using
3D Slicer [23]. 3D Slicer is a free and open-source multi-platform software package that is
widely used for medical, biomedical, and related imaging research.

Each GGN corresponded to a group of CTIs with different sizes and shapes, but we
fixed the CTI with the largest area for sequential classification purposes. According to the
pathological and the CT detection reports, each patient’s GGN location and subtype can be
found and labeled. The segmentation and labeling steps of GGN are as follows:

(1) Import a set of CTIs for each patient into 3D Slicer and locate the GGNs.
(2) Select CTIs that contain GGNs and then find the CTI with the largest area among

these selected CTIs.
(3) Segment the GGN with the largest area and save it as sequential classification.
(4) Label the GGNs subtype with pathology reports.

According to 3D Slicer, 1041 features can be extracted from each GGN from the
146 patients’ 386 follow-up CTIs. Algorithmically, let Date (k, i) be the ith follow-up date of
kth patient, ∆tk,i be the time interval from ith to (i + 1) paired follow-up dates, fk (i, j) be
the jth extracted feature from GGN in the ith follow-up CTI, and Tk is the total number of
follow-up times of k-th patient, k = 1, 2, . . . , 146, i = 1, 2, . . . , 383, j = 1, 2, . . . , 1041.
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Consequently, their feature differences along the paired follow-ups is computed as

∆ fk(i, j) = ( f2(i, j)− f1(i, j))/∆tij, k = 1, 2, . . . , 146; i = 1, 2, . . . , Tk; j = 1, 2, . . . , 1041 (1)

where the denominator of ∆tij aims to normalize the feature change in two different follow-
up time intervals. Hence, the GGN feature changes of different patients at different dates
are comparable.

Let SFFDC be the set of all feature-difference samples from Equation (1) in FFDC, and
SOFDC be the set of samples in OFDC in which the Tkth time CTI for each patient is used to
capture the latest features of GGN. Thus, SFFDC = {∆fk (i, j)}, SOFDC = {fk (Tk, j)}

Figure 2 shows the feature extraction process of our proposed method, where these
figures in the third row show CTI samples, and these figures in the fourth row refer to the
correspondingly segmented GGNs, respectively.
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2.2. Radiomics Feature Extraction

The built-in package Pyradiomics in 3D Slicer can extract the main features of GGNs [24].
Through an analysis of the contour, direction, and gray value of GGNs, we can not only
obtain the existing morphological characteristics, but also quantify the sufficient radiomics
characteristics [25].

These quantitative features from radiomics are then computed on the original CTI
and the six transformation images that follow: square, log, square root, exponential,
logarithm, and wavelet. The set of initial features consists of 95 original features, 86 square
features, 430 log features, 86 square root features, 172 wavelet features, 86 logarithm
features, and 86 exponential features. The original features include nine shape features,
18 histogram features, and 68 texture features. These texture features are further divided
into four categories: gray level run length matrix (GLRLM), gray level difference matrix
(GLDM), gray level co-occurrence matrix (GLCM), and gray level size zone matrix (GLSZM),
with their numbers being 16, 14, 22, and 16, respectively. In addition to the features extracted
on the original CTI, we could identify the histogram features and texture features in the
derived images.

Figure 3 shows the type and number of 1041 extracted features of GGN for the CTI of
each patient.

The pair of CTIs from two-time adjacent flow-up records was used for feature extrac-
tion in FFDC from the first to the final follow-ups before the patient was operated, since
each patient had two-time follow-up CTIs at least. On the other hand, a patient can have
multiple GGNs, and thereby the radiomics feature difference between two-time follow-up
CTIs of each GGN is regarded as a sample in FFDC. In contrast, only the most recent
CTIs before surgery were used in OFDC. These CTIs had a follow-up period of more than
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three years compared to the most recent preoperative CTI, which were also referenced as
samples and empirically compared for diagnosis in OFDC. In all, 383 samples in FFDC
were obtained while 146 samples in OFDC were used.
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2.3. Feature Selection and Data Augmentation

When all samples are used for the pathological classification of GGNs, two problems
remain, as follows:

(1) The number of samples is much less than that of the features, and some features
are unnecessary.

(2) The sample distribution is imbalanced; Table 1 shows that the number of samples in
the majority class is 96, but there are only eight in the minority class.

To overcome these problems, feature selection and sample augmentation are imple-
mented to SFFDC and SOFDC in advance. Feature selection removes irrelevant and redundant
features [26]. To identify the key features and reduce feature dimensionality, we applied the
analysis of variance (ANOVA) method [27]. ANOVA is a single variable analysis method
to test whether the effect of any independent feature is obvious for which we computed
the three sums of squares in S, SST, SSW, and SSB [28]. According to the four pathological
subtypes of GGN and all samples, S consists of four groups of {xij} in which each contains
ni samples, i = 1, 2, 3, 4; j = 1, . . . , ni.

As a result, SST is computed by

SST = ∑4
i=1 ∑ni

j=1 (xij − X) (2)

where X is the mean of all samples in S. SSB is computed as

SSB = ∑4
i=1 ni(Xi − X) (3)

Finally, SSW is calculated as

SSW = SST − SSB (4)

To calculate the effect of each feature in S, SSB is divided by its freedom degree of 3
to obtain an estimate of MSB. SSW is divided by its freedom degree of 233 to obtain an
estimate of MSW. Finally, a statistical value of F-ratio is computed as

F = MSB/MSW (5)

We consulted the priori table of critical F values to obtain a significant p value. In this
paper, we took a threshold of 0.05. If p > 0.05, the relative feature is rejected; if not, it is
accepted for classification. In the following, the feature selection process is implemented in
the IBM SPSS Statistics software. The feature number in S based on FFDC and OFDC was
reduced to 142 dimensions and 680 dimensions, respectively.
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To overcome the problem of the imbalanced sample distribution in S, the synthetic
minority oversampling technique (SMOTE) [29,30] is used to increase the balance radio
between cases in four classes in S. SMOTE randomly creates synthetic samples by adding
a weighted difference between the jth sample and its k nearest neighbors. This enables
oversampling of minority samples. These newly synthesized samples will enhance the
generality of the classifiers, thereby avoiding overfitting to a certain extent [31]. Before data
augmentation, all samples in the set on FFDC and the set on OFDC must be normalized
according to the following form:

Fsta = (F− µF)/σF (6)

where Fsta is the standardized feature; µF is the mean value of the feature; and σF is the
standard deviation of the feature.

According to Table 1, SMOTE is configured with five nearest neighbors for oversam-
pling to generate synthetic samples in SFFDC and SOFDC. The SMOTE steps are as follows:

(1) For each sample a in the minority class, five nearest neighbors are found.
(2) For each randomly selected nearest neighbor b, a new sample c is constructed with

the original sample a according to the following equation:

c = a + rand(0, 1)|a− b| (7)

(1) The new sample set is thus obtained by the original and generated samples.

2.4. Performance Assessment

After implementing SMOTE, the number of samples in SFFDC was extended from
237 to 413, and from 186 to 370 in SOFDC, as shown in Table 2. The extended sample set
is uniformly denoted as SS. In this study, we chose macro average arithmetic (MavA),
macro average geometric (MavG), and mean F-measure (MFM) as the criteria to evaluate
the classification performance [32]. These criteria have been widely used in multi-class
imbalance datasets [33–35]. The confusion matrix for binary classification problems is
shown in Table 3.

Table 2. The data distribution of augmentation anterior posterior.

Experiments IA MIA AIS Benign

FFDC

Before
augmentation

Training set 143 19 19 16
Test set 10 10 10 10

After
augmentation

Training set 143 95 95 80
Test set 10 10 10 10

OFDC

Before
augmentation

Training set 100 14 14 18
Test set 10 10 10 10

After
augmentation

Training set 100 70 70 90
Test set 10 10 10 10

Table 3. Confusion matrix for the binary classification problems.

Confusion Matrix
Predicted Class

Positive Negative

True class
Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

The confusion matrix represents the results of correctly and incorrectly categorized
samples. Here, the positive rate responds to the minority class and the negative to the
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majority class. In the binary scenario, several common assessment metrics can be derived
from the confusion matrix, as shown in Table 4.

Table 4. Typical assessment metrics.

Metrics Equation

True positive rate (TPR) or recall TPR = TP/(TP + FN)
True negative rate (TNR) TNR = TN/(FP + FN)
False positive rate (FPR) FPR = FP/(FP + TN)
False negative rate (FNR) FNR = FN/(TP + FN)

precision precision = TP/(TP + FP)

The MavA comprehensively considers the classification results, and each class is
assigned the same weight. It calculates the accuracy of each class independently, and then
computes their mean to obtain the assessment result. Therefore, the MavA is considered the
arithmetic mean of the individual accuracy of each class. MavG is defined as the geometric
average of the accuracy for each class. MavA and MavG are formulated as

MAvA = (∑4
i=1 TPRi)/4 (8)

MAvG = (∏4
i=1 TPRi)

1/4
(9)

where TPRi represents the accuracy rate for the class i, i = 1, 2, 3, and 4.
F-measure assigns the same importance degree to recall and precision. It is shown

as follows:
F−measure = 2× recall× precision/(recall + precision) (10)

The F-measure for two-class classification assessment can be extended to deal with
multi-class assessment problems. In this paper, MFM was employed to evaluate the four-
category task, defined as follows:

MFM = (∑4
i=1 F−measurei)/4 (11)

where i is the index of the class.
Alternatively, we computed the area under the receiver operating characteristic (ROC)

curve, which is also denoted by AUC. In order to extend ROC curve to multi-class classifica-
tion, the output is binarized. The ROC curve can be drawn by calculating metrics for each
label in a one-vs.-all manner and by finding their unweighted mean (macro-averaging).
Figure 4 shows the schematic diagram of the FFDC method.
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3. Results and Discussion
3.1. Classification Comparison

Contrast experiments were performed for the classification of four pathological sub-
types of GGNs using FFDC and OFDC. To avoid large fluctuations in classification accuracy
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and to ensure that the training process can learn sufficient features, we retained ten cases of
four subtypes in the dataset as the test set, and the rest were used to train and develop the
classification model after implementing SMOTE. The sample distribution in SS is shown in
Table 2.

We input samples in SS into the subspace KNN classifier for pathological subtypes
classification, k = 1, 2, . . . , 20. KNN begins with k nearest labeled neighbors of each sample
to determine the label of any unknown sample. In general, with reference to the integer
value of k, the prediction output of classifier is determined on the basis of the majority vote
cast by the neighbor class [36]. Namely, if any sample XC is assigned to class C1, it must be
the maximum probability of XC belonging to class C1, expressed as

KNN(XC) = maxP(C1, XC). (12)

where P(C1, XC) denotes the probability of XC in class C1. In this paper, the ensemble
method was set as the subspace to improve the classification accuracy of each independent
classifier. KNN was applied to the pathological subtype classification as the learner. A
total of three hyperparameters were included in the training process (i.e., the number of
nearest labeled neighbors k, the number of learners, and the subspace dimension). By
combining grid search and cross validation, we avoid the situation where the selection
of the model and parameter depends greatly on the partition method of the dataset. The
selection interval of the nearest labeled neighbors k and the number of learner parameters
was 1–10 and 1–100, respectively. The number of predictors to sample for each random
subspace learner was specified as a positive integer in the interval 1, . . . p, where p is
the number of predictor variables. For FFDC and OFDC, p is 142 and 680, respectively,
corresponding to the maximum feature dimension after feature selection. The five-fold
cross validation was applied in the training process. The datasets were divided into five
equal parts, using four folds as the training sets and the remaining for validation. The
optimal combination of parameter values was selected by grid search with the aid of the
five-fold cross validation.

The confusion matrix results and the ROC curve for classification Are shown in
Figure 5. Based on the confusion matrix, we calculated the corresponding evaluation
indices. The experiments based on FFDC were: MavA was 72.5%, MavG was 72%, MFM
was 0.75, and AUC value was 0.83. However, the comparative experiments based on
OFDC were as follows: MavA was 67.5%, MavG was 66.2%, MFM was 0.68, and AUC
value was 0.78. These quantitative evaluation metrics showed the same conclusion that
the FFDC method yielded higher classification performance than the OFDC method in
classifying four pathological subtypes of GGNs. This outcome proves that the FFDC
method was effective.
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Additionally, we found that the classification performance of both methods for MIA
was slightly poor. According to the analysis, MIA is the transitional period of pathological
changes between pre-invasive and IA. At this stage, most of the cancer cells grow in a
wall-attached manner, and the maximum diameter of the infiltration area is less than
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0.5 cm. When the infiltration area invades the blood vessels, lymphatic vessels, or adjacent
to the pleura, or when the tumor shedding cells spread to the adjacent alveolar cavity
or small airway, the tumor enters the invasive stage. Therefore, there is a possibility
of overlap between MIA and the two other pathologies, pre-invasive lesions, and IA
pathology. As such, the classification performance of MIA was slightly worse than that of
other pathological subtypes.

To further test the effectiveness of FFDC, we considered another clinically important
three-category classification subtask in distinguishing the IA, MIA, and pre-invasive lesions.
This subtask is urgently needed in clinical practice. The lesions corresponding to pre-
invasive often require conservative treatment, emphasizing long-term follow-up, while
MIA and IA require elective or immediate surgical treatment due to their poorer prognosis
when compared to pre-invasive lesions. The experimental steps are the same as the above
classification of four pathological subtypes; the results are shown in Figure 6.
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We also compared our experiments with other OFDC methods. The results are listed
in Table 5. Compared with the previous literature in which a classifier is trained with
one-time CTI to determine invasiveness, the FFDC method is seen as more effective.
The FFDC classification accuracy was about 15.9% higher than that in [37], 21.33% than
that in [21], 15.1% than that in [38], and 10% than that of the OFDC method trained
with a traditional classifier. In addition, we found that the FFDC method seldom made
misclassifications in discriminating between pre-invasive lesions and MIA in the three-
category subtype classification. Only 1/10 MIA was misclassified as pre-invasive lesions,
and no pre-invasive lesions were misclassified as MIA. It was shown that FFDC can learn
the implicit relationship between the three categories. However, due to the overlap between
MIA and two other pathologies, FFDC would misclassify MIA as IA or pre-invasive lesions.

Table 5. Comparison of studies using different methods to determine the invasiveness.

Year
Number of Classes

Method
Diagnostic

Performance

Pre-Invasive MIA IA Accuracy AUC

2018 [37] 205 316 130 OFDC + DenseSharp 64.1% —
2021 [21] 225 335 180 OFDC + joint deep learning model 58.67% 0.81
2021 [38] 302 349 258 OFDC + 3D multi-task deep learning network 64.9% 0.82

2022 [ours]
52 24 110 OFDC + traditional classifier 70% 0.89
55 29 153 FFDC + traditional classifier 80% 0.88
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3.2. Different Subtypes Development Based on the Follow-Up Radiomics Features

To further explore the development of different four subtypes of GGNs, we illustrate
the statistics of the two-time follow-up features, which were selected from the first three
ones with the lowest p value, as shown in Table 6. After the analysis of variance, multiple
comparisons were used to determine whether there were significant differences between
the follow-up features of each pathological sample.

Table 6. The first three follow-up features with the lowest p value.

Features
Pathology

p Value
IA MIA AIS Benign

wavelet-L_glcm_MaximumProbability 4.15 × 10−5 −1.23 × 10−4 −5.32 × 10−6 2.38 × 10−4 0.00003
log-sigma-5-0-mm-3D_glszm_GrayLevelVariance −8.84 × 10−3 3.95 × 10−2 −1.55 × 10−3 −5.06 × 10−3 0.00008

exponential_glszm_SmallAreaLowGrayLevelEmphasis −6.26 × 10−5 −2.03 × 10−4 −1.09 × 10−4 3.21 × 10−4 0.00010

The variation in the first three features in four pathological stages can be explained
as follows:

(1) ‘wavelet-L_glcm_MaximumProbability’ reflects the probability of the highest fre-
quency of adjacent gray pairs in ROI. The smaller the probability, the more complex
the texture pattern. The texture complexity of GGNs manifested as IA and benign
became uncomplicated over time, and benign changed faster than IA. In contrast, the
texture complexity of GGNs gradually increased in MIA and AIS stage.

(2) ‘log-sigma-5-0-mm-3D_glszm_GrayLevelVariance’ reflects the discreteness of each
pixel gray, relative to the average gray. The greater the value, the greater the image
contrast. Among the four pathological results, only the contrast of GGNs in the
MIA stage was gradually increased, and IA changed the fastest in other gradually
decreasing stages.

(3) ‘exponential_glszm_SmallAreaLowGrayLevelEmphasis’ measures the distribution of
low gray values in small regions of ROI. The larger the value, the more emphasis is
placed on the range of low gray values in small regions. In addition to the gradual
increase in benign eigenvalues, the values of the other three pathological stages
gradually decreased, and the IA stage changed the slowest.

Therefore, we conclude that FFDC has higher accuracy and value for the classification
of pathological subtypes of GGNs than OFDC.

4. Conclusions

This paper presents a new method called FFDC for the classification of four pathologi-
cal subtypes of GGNs. The radiomics tool was used to extract sufficient and quantitative
characteristics. The feature difference of two-time follow-up CTIs was used to find the
development of GGNs in different pathological subtypes. The classification results demon-
strated the following conclusions.

(1) Feature differences between two-time follow-up CTIs are very helpful for building
a more effective classifier after the features of GGN are sufficiently extracted. Based on this,
FFDC can achieve a better classification performance than the existing OFDC methods.

(2) Classification of all four pathological subtypes can be effectively realized, while
most existing research is focused on the limited three-category radiomics classification.

(3) Four pathological subtypes had significant differences along the three extracted
texture characteristics, which proves that the development rate of GGNs can reflect the
corresponding pathological stages to a certain extent.

Although FFDC showed clear advantages over the existing OFDC methods, there
were still limitations as follows.

(1) GGNs were manually segmented and labeled by posterior pathological analysis
reports, but the current focus is machine automatic segmentation and labeling to avoid
the error of manual segmentation. Moreover, in clinical applications, when the lesion
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segmentation is performed by human beings, it has been criticized as time-consuming and
generally introducing bias.

(2) Radiomics features were extracted based on the two-dimensional CTI, and the three-
dimensional information of the entire GGN lesion must be lost. Generally, the diagnosis
model based on three-dimensional GGN segmentation and feature extraction is expected
to provide more accurate and stable classifications for lung diseases.

(3) The used machine learning methods such as data argument, subspace classification
may fail to give an overall comparison with the current DL algorithm due to the lack of
sufficient samples.

How to overcome these problems are our future concerns. For example, the automatic
segmentation of GGN lesions is not the research content in this paper, but it will be the
focus of our future work.
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