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Abstract: Hydrogen addition can improve the performance and extend the lean burn limit of gasoline
engines. Different hydrogen injection strategies lead to different types of hydrogen mixture distri-
bution (HMD), which affects the engine performance. Therefore, the present study experimentally
investigated the effects of hydrogen injection strategy on the combustion and emissions of a hydro-
gen/gasoline dual-fuel port-injection engine under lean-burn conditions. Four different hydrogen
injection strategies were explored: hydrogen direct injection (HDI), forming a stratified hydrogen
mixture distribution (SHMD); hydrogen intake port injection, forming a premixed hydrogen mixture
distribution (PHMD); split hydrogen direct injection (SHDI), forming a partially premixed hydrogen
mixture distribution (PPHMD); and no hydrogen addition (NHMD). The results showed that 20%
hydrogen addition could extend the lean burn limit from 1.5 to 2.8. With the increase in the excess air
ratio, the optimum HMD changed from PPHMD to SHMD. The maximum brake thermal efficiency
was obtained with an excess air ratio of 1.5 with PPHMD. The coefficient of variation (COV) with
NHMD was higher than that with hydrogen addition, since the hydrogen enhanced the stability
of ignition and combustion. The engine presented the lowest emissions with PHMD. There were
almost no carbon monoxide (CO) and nitrogen oxides (NOx) emissions when the excess air ratio was,
respectively, more than 1.4 and 2.0.

Keywords: dual-fuel engine; hydrogen injection strategy; lean burn limit; hydrogen mixture distribu-
tion; combustion; emissions

1. Introduction

With the aggravation of the energy crisis and global warming, reducing the use of fossil
fuels has become a tough problem. From 2014 to 2020, China’s hydrogen production rose
from 16 million tons to 25 million tons. Hydrogen, as a promising renewable energy carrier
and carbon-free fuel, has significant and unique physical and chemical properties [1–3].

The burning velocity of hydrogen is much higher than other fuels, such as gasoline;
therefore, it is an alternative engine fuel that could effectively enhance combustion in and
improve the efficiency of internal combustion engines [4–6]. As a carbon-free fuel, fueling
engines with hydrogen can significantly reduce their emissions. There is no doubt that
higher combustion temperatures lead to higher NOx emissions [7–10]. Nevertheless, due to
the greater flammability limit of hydrogen, hydrogen-fueled engines can work under lean-
burn conditions, resulting in the reduction of NOx emissions. As a result, hydrogen-fueled
engines can achieve lower emissions and higher efficiency [11]. However, there are also
many challenges for hydrogen-fueled engines. Firstly, due to the low ignition energy of
hydrogen, such engines are more prone to backfire [12]. Fortunately, supercharger systems
can increase the intake pressure to limit backfire [13–15]. Secondly, hydrogen has low
density and small molecules, so it is very easy for it to escape through the shell of the
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storage device. Therefore, the storage of hydrogen is the key problem that must be properly
solved in the development of hydrogen-fueled engines [16].

To fully utilize its advantages for combustion and avoid its disadvantages regarding
storage, researchers have considered mixing hydrogen with fossil fuels to form blending
fuel [17]. Numerous studies on hydrogen blending fuel have been conducted.

Since the combustion rate of diesel is relatively slow, it can be effectively improved by
adding hydrogen, which has significant implications for diesel engines [18,19]. With the
addition of 10% hydrogen, efficiency increased and emissions decreased [20,21]. Moreover,
a reactivity controlled compression ignition (RCCI) mode has been used to increase the
efficiency of diesel/hydrogen engines [22]. With hydrogen direct injection, pre-ignition
in diesel engines can be attenuated, improving their limitations and emissions. Since
mixing hydrogen and natural gas before injection into the cylinder can simplify the fuel
injection system, there are many studies about hydrogen/natural gas engines [23–26]. The
combustion rate of natural gas is worse than that of gasoline. Hydrogen has been found to
help natural gas by increasing the combustion rate and decreasing the cyclic variation [27],
especially under lean-burn conditions [28]. Studies have found that, with the addition of
hydrogen, the combustion rate clearly increased, leading to higher efficiency and low cyclic
variation [29]; combustion became more complete, leading to less emissions [30]; and the
combustion temperature rose, leading to more NOX emissions [31].

With regard to gasoline engines, hydrogen can be injected into such engines in two
ways: hydrogen intake port injection (HPFI) and HDI. Ji et al. have published several
studies on HPFI [32–34]. Hydrogen addition was found to improve engine efficiency,
decrease emissions, extend the lean burn limit [32], speed up the cold-starting process [33]
and reduce the idle speed [34]. Yu et al. have mainly focused their research on HDI [35–43].
Compared with a pure gasoline engine, HDI resulted in a quicker combustion rate and
higher combustion temperature [35,36], which led to higher efficiency and fewer emis-
sions [37]. The hydrogen in HDI is not homogeneous but stratified, which is controlled by
the injection strategy [38]. With better stratification of hydrogen distribution, combustion
was found to occur faster and more quickly led to lower cyclic variations and higher effi-
ciency [39]. Furthermore, stratified hydrogen distribution is more suitable for lean-burn
conditions [40–42]. Exhaust gas recirculation (EGR) systems and water injection systems
can help reduce the NOX emissions in hydrogen engines [43–45].

The hydrogen distribution in the cylinder is the main factor differentiating HPFI and
HDI [45,46], and Li et al. indicated that the hydrogen mixture distribution (HMD) is the
key effect in hydrogen/gasoline engines [46–50]. SHDI has been proposed to organize the
HMD, as it can improve the efficiency and reduce the emissions of hydrogen/gasoline
engines [49,50].

Engines show great performance under lean-burn conditions, and hydrogen addi-
tion can contribute to speeding up the combustion rate and stabilizing the ignition. The
hydrogen injection strategy can significantly affect combustion through the formation of
different HMDs [51]. Therefore, engine lean-burn performance can be improved using
hydrogen addition and a suitable hydrogen injection strategy. However, there is little
research on this topic, especially on the lean burn limits of different hydrogen injection
strategies. To improve lean-burn performance and explore suitable hydrogen injection
strategies for the lean burn condition, we conducted an experimental study on the effects
of the hydrogen injection strategy for a hydrogen/gasoline spark ignition (SI) engine under
lean-burn conditions. Four kinds of HMDs and hydrogen injection strategies were studied:
HDI, forming an SHMD; hydrogen intake port injection, forming a PHMD; SHDI, forming
a PPHMD; and no hydrogen addition (NHMD).

2. Materials and Methods

A schematic diagram of the test engine is shown in Figure 1. The experimental
prototype was the EA888 engine from Volkswagen Automotive Company Limited, and the
engine specifications are listed in Table 1.
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Figure 1. Schematic diagram of the test engine.

Table 1. Engine specifications.

Engine type
Four cylinders

Naturally aspirated
Spark ignition

Bore × stroke (mm) 82.5 × 92.8
Compression ratio 9.6

Displaced volume (L) 2

The measurement instruments and the experimental condition are illustrated in
Tables 2 and 3, respectively. The dynamometer used was a CW160 hydraulic dynamome-
ter. The experiment was carried out under these conditions since the hydrogen would
obviously improve the engine. The excess air ratio was set at 1 to 2.8. When the excess
air ratio was 2.8, the COV of the engine was more than 5%. Therefore, the excess air ratio
of 2.8 was considered as the lean burn limit. The energy fraction of the hydrogen was
set to 20%. Previous studies have shown that addition of a small proportion of hydrogen
in an engine can significantly improve the performance, while continuing to increase the
hydrogen ratio has little effect on the engine performance [41]. As split injection was used,
too small a volume fraction for the hydrogen would have led to too short an injection
duration. Therefore, a 20% energy fraction for the hydrogen was selected. The energy
fraction of hydrogen is defined as follows:

ϕ =
QH2

QH2 + Qgasoline
(1)

where ϕ is the energy fraction of the hydrogen, QH2 is the energy of the hydrogen and
Qgasoline is the energy of the gasoline.

Table 2. Information on measurement instruments.

Item Error Measurement Instrument

Gasoline consumption ≤±0.01 g/s Ono Sokki DF−2420
Crank angle (CA) position ≤±0.01 ◦CA Ono Sokki DS 9028

Cylinder pressure ≤±0.3 bar Ono Sokki DS 9028
Speed ≤±1 rpm CW160

Brake power ≤±0.4% CW160
Hydrogen consumption ≤±0.2% DMF−1−1AB

Emissions ≤±0.1% AVL DICOM 4000
Excess air ratio ≤±0.15 LSU4.2 oxygen sensor
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Table 3. Experimental conditions.

HMD NHMD SHMD PHMD PPHMD

Speed (r/min) 1200

Throttle opening (%) 10

Excess air ratio 1 to 2.8

Ignition timing (◦CA BTDC) Best

Hydrogen fraction 0% 20%

Direct injection pressure (MPa) / 5

Second injection timing (◦CA BTDC) / Best / Best

First injection proportion / / / Best

First injection timing (◦CA BTDC) / / 300 300

To demonstrate the differences between injection strategies clearly, the injection pa-
rameters and ignition timing were set to the best values on the basis of efficiency.

Figures 2 and 3 show the best injection parameters for the SHMD and the PPHMD.
With the increase in the excess air ratio, the best hydrogen injection timing for the SHMD
and the best second hydrogen injection timing for the PPHMD were delayed. Moreover, the
fuel in the engine became thinner and harder to ignite. Delayed hydrogen injection made
more hydrogen concentrate around the spark plug, and the engine ignition performance
was improved. Therefore, the engine worked more steadily and efficiently. The best second
hydrogen injection timing for the PPHMD was later than that for the SHMD. Due to the two
injections with the PPHMD, the amount of hydrogen in the second hydrogen injection is
less than that of the SHMD, so a greater hydrogen concentration area is needed to promote
the ignition stability. The amount of hydrogen around the spark plug was the key to ensure
the engine ignition performance. Since ignition became more difficult with the increase in
the excess air ratio, the best first hydrogen injection proportion for the PPHMD decreased
from 33% to 25%.
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3. Results and Discussions

Figure 4 shows the effects of the HMD on the brake thermal efficiency. With the
NHMD, the lean burn limit of the engine was the excess air ratio of 1.5. Since the lean burn
limit of hydrogen was much greater with hydrogen addition, the lean-burn performance
was greatly improved and the excess air ratio could reach 2.8.
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Since the oxygen content increased with the increase in the excess air ratio, combustion
was more complete and the power capacity of the engine was also enhanced. Moreover,
the combustion speed of the engine was reduced and the ignition performance deteri-
orated. Therefore, with the increase in the excess air ratio, the brake thermal efficiency
of the engine first increased and then decreased. With the NHMD, the maximum brake
thermal efficiency appeared at the excess air ratio of 1.2. The lean-burn performance was
significantly improved by adding hydrogen. With the PPHMD, when the excess air ratio
was 1.5, the maximum brake thermal efficiency appeared at 26.86%. The efficiencies of the
SHMD and the PPHMD were relatively higher. This may have been due to the fact that
the stratified hydrogen made the engine more efficient. The stratified hydrogen formed a
hydrogen concentration zone around the engine spark plug, making the engine ignition
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process faster and more stable. Therefore, the efficiency of the stratified hydrogen was
higher. With the increase in the excess air ratio, the best HMD changed from the PPHMD to
the SHMD, and the engine ignition performance became the key for the engine efficiency.
The hydrogen in the SHMD was injected into the engine cylinder at one time and the
hydrogen concentration was the highest.

Figure 5 shows the effects of the HMD on the cylinder pressure. With the increase in
the excess air ratio, since the quantity of fuel in the engine decreased, the maximal cylinder
pressure (Pmax) and the combustion speed decreased continuously. As the best ignition
timing was adopted, the level of the maximal cylinder pressure was kept within a certain
range. With the increase in the excess air ratio, the combustion of the engine became slower,
the ignition timing advanced and the combustion duration increased. The engine cylinder
pressure with the NHMD was higher, as the best ignition timing with the NHMD was
earlier than that with hydrogen addition.
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(D) PPHMD.

Figures 6 and 7 indicate the effects of the HMD on the Pmax and its corresponding
position. With the increase in the excess air ratio, the total amount of fuel in the engine
decreased, resulting in a continuous decrease in the Pmax of the engine. However, by
adjusting the ignition time, the position of the Pmax could be kept within a certain range.
The maximal cylinder pressure under the excess air ratio of 2.8 decreased by 46.19%
on average compared to that with the excess air ratio of 1.0. The increased excess air
ratio resulted in the best HMD (in terms of the Pmax) changing from the PPHMD to the
SHMD. This result further verified that the engine ignition performance was the key to
lean combustion efficiency.
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Figure 7. Effects of the HMD on the position of the Pmax.

Figure 8 shows the effects of the HMD on the coefficient of variation. The stability
of the ignition decreased with the increase in the excess air ratio, which reduced the
combustion speed and increased the COV of the engine. It was noted that the COV with
the NHMD was higher than that with hydrogen addition. In this study, hydrogen addition
increased the ignition and combustion stability of the engine significantly, so that the lean
burn limit extended from an excess air ratio of 1.5 to 2.8.
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Figure 9 displays the effects of the HMD on the CO emissions. When the excess air
ratio increased, the reduction in the fuel and the increase in the oxygen concentration in
the engine contributed to a sharp decrease in CO emissions. It can be seen from the figure
that, when the excess air ratio was greater than 1.4, the CO emissions in the engine were
almost zero. Moreover, the different hydrogen injection modes showed notable effects on
the engine CO emissions under the equivalent ratio conditions, while the effects decreased
rapidly with the increase in the excess air ratio. Since the gasoline was reduced by 20%, the
CO emissions with hydrogen addition were 24.72% lower than with the NHMD.
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Figure 9. Effects of the HMD on the CO emissions.

Figure 10 shows the effects of the HMD on the hydrocarbon (HC) emissions. It was
noted that the HC emissions showed a trend of decreasing first and then increasing. The
oxygen concentration increased with the increase in the excess air ratio, resulting in lower
HC emissions. However, with the further increase in the excess air ratio, especially when it
was close to the lean burn limit, the HC emissions of the engine increased sharply because
of the extreme deterioration of combustion and misfire. With the SHMD, the lowest HC
emissions appeared at the excess air ratio of 1.6. In terms of different HMDs, the HC
emissions with the NHMD were the greatest and those with the PHMD were the lowest.
The engine combustion was more complete with hydrogen addition because of the decrease
in the wall quenching distance, which meant that the HC emissions could be effectively
reduced. The hydrogen concentration affected the HC emissions significantly. The HC
emissions with the PHMD were, on average, 4.01% lower than with the PPHMD, 14.07%
lower than with the SHMD and 51.96% lower than with the NHMD.
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Figure 11 illustrates the effects of the HMD on the NOx emissions. The NOx emissions
increased first and then decreased with the increase in the excess air ratio. The conditions
for the generation of NOx emissions were high temperature and high oxygen concentration.
When the excess air ratio increased, the temperature in the engine was reduced, while
the oxygen concentration in the engine kept increasing; therefore, the NOx emissions first
increased. With the further increase in the excess air ratio, the combustion deteriorated and
the temperature gradually decreased, resulting in a sharp drop in the NOx emissions. For
the NHMD, the highest NOx emissions occurred with the excess air ratio of 1.1, and they
increased by 10.60% when the excess air ratio was 1.0 and by 446.09% when the excess air
ratio was 1.5. With an excess air ratio greater than 2.0, there were almost no NOx emissions
because of the low temperature. The NOx emissions were the lowest with the NHMD. The
stratified hydrogen in the SHMD enhanced the ignition and combustion, thus resulting
in the highest NOx emissions. The NOx emissions with the NHMD were 42.22% lower
than with the PHMD, 45.08% lower than with the PPHMD and 47.21% lower than with
the SHMD.
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4. Conclusions

The effects of hydrogen injection strategies for a gasoline/hydrogen engine with
various excess air ratios were investigated. The main conclusions of this research are
summarized as follows:

1. The lean-burn performance could be improved with hydrogen addition. In this study,
the lean burn limit with the NHMD was the excess air ratio of 1.5, while with 20%
hydrogen addition, it was the excess air ratio of 2.8;

2. With the increase in the excess air ratio, the brake thermal efficiency of the engine
first increased and then decreased. Moreover, hydrogen addition improved the brake
thermal efficiency. With the NHMD, the maximum brake thermal efficiency (23.83%)
appeared at the excess air ratio of 1.2, while with the PPHMD, the maximum brake
thermal efficiency increased to 26.86% at the excess air ratio of 1.5;

3. With the increase in the excess air ratio, the best HMD changed from the PPHMD to the
SHMD. Since the engine ignition became the key factor under lean-burn conditions,
the hydrogen concentration around the spark plug was the highest with the SHMD;

4. The COV of the engine increased with the increase in the excess air ratio, since the en-
gine ignition became unstable and the engine combustion was slower under lean-burn
conditions. The COV with the NHMD was higher than that with hydrogen addition,
which was because hydrogen addition improved the ignition and combustion stability;

5. The HC emissions first decreased and then increased with the increase in the excess
air ratio because the increase in oxygen concentration led to the deterioration of
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combustion. The HC emissions were the highest with the NHMD and the lowest with
the PHMD. The hydrogen concentration affected the HC emissions significantly. The
HC emissions with the PHMD were, on average, 4.01% lower than with the PPHMD,
14.07% lower than with the SHMD and 51.96% lower than with the NHMD;

6. The NOx emissions first increased and then decreased with the increase in the excess
air ratio since the engine temperature was reduced and the oxygen concentration
increased. When the excess air ratio was greater than 2.0, there were almost no NOx
emissions. The NOx emissions were the lowest with the NHMD and the highest with
the SHMD. The NOx emissions with the NHMD were, on average, 42.22% lower than
with the PHMD, 45.08% lower than with the PPHMD and 47.21% lower than that
with SHMD.
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Abbreviations

Nomenclature
ϕ energy fraction of hydrogen
QH2 the energy of hydrogen (J)
Qgasoline the energy of gasoline (J)
Abbreviation
SI Spark Ignition
HMD Hydrogen Mixture Distribution
SHMD Stratified Hydrogen Mixture Distribution
PHMD Premixed Hydrogen Mixture Distribution
PPHMD Partially Premixed Hydrogen Mixture Distribution
NHMD No Hydrogen Mixture Distribution
CO Carbon Monoxide
HC Hydrocarbon
NOx Nitrogen Oxides
RCCI Reactivity Controlled Compression Ignition
COV Coefficient of Variation
HDI Hydrogen Direct Injection
SHDI Split Hydrogen Direct Injection
EGR Exhaust Gas Recirculation
CA Crank Angle
BTDC before Top Dead Center
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