
Citation: Bu, Z.; Sun, C.; Wang, P.

Semantic Lidar-Inertial SLAM for

Dynamic Scenes. Appl. Sci. 2022, 12,

10497. https://doi.org/10.3390/

app122010497

Academic Editors: Hang Guo,

Marcin Uradzinski and You Li

Received: 5 July 2022

Accepted: 12 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Semantic Lidar-Inertial SLAM for Dynamic Scenes
Zean Bu , Changku Sun and Peng Wang *

State Key Lab of Precision Measuring Technology and Instruments, Tianjin University, Weijin Road,
Tianjin 300072, China
* Correspondence: wang_peng@tju.edu.cn

Featured Application: This work is used for estimating ego-motion and mapping in dynamic scene.

Abstract: Over the past few years, many impressive lidar-inertial SLAM systems have been developed
and perform well under static scenes. However, most tasks are under dynamic environments in real
life, and the determination of a method to improve accuracy and robustness poses a challenge. In
this paper, we propose a semantic lidar-inertial SLAM approach with the combination of a point
cloud semantic segmentation network and lidar-inertial SLAM LIO mapping for dynamic scenes. We
import an attention mechanism to the PointConv network to build an attention weight function to
improve the capacity to predict details. The semantic segmentation results of the point clouds from
lidar enable us to obtain point-wise labels for each lidar frame. After filtering the dynamic objects, the
refined global map of the lidar-inertial SLAM sytem is clearer, and the estimated trajectory can achieve
a higher precision. We conduct experiments on an UrbanNav dataset, whose challenging highway
sequences have a large number of moving cars and pedestrians. The results demonstrate that,
compared with other SLAM systems, the accuracy of trajectory can be improved to different degrees.

Keywords: lidar-inertial SLAM; semantic SLAM; semantic segmentation; dynamic scene

1. Introduction

Simultaneous localization and mapping (SLAM) [1,2] is of crucial significance for
mobile robot navigation, micro aerial vehicles (MAVs), virtual reality (VR), and augmented
reality (AR) since accurate pose estimation is fundamental for machine operation. In recent
years, studies have proliferated regarding the theme of the fusion of inertial measurement
units (IMU) with a single perceptual sensor. When the sensor is a lidar sensor, the system is
called a lidar-inertial SLAM system [3]. Compared with other SLAM systems, the lidar-
inertial SLAM system can acquire accurate ego-motion estimation and dense point cloud
maps since the lidar sensor is invariant to changes in illumination and can provide distance
measurements of the surrounding environments.

Over the past few years, many impressive lidar-inertial SLAM systems [4–9] have
been developed and continue to perform well, such as LIO-mapping [6], LIO-SAM [8],
SuMa [9], and so on. However, traditional lidar-inertial SLAM systems operate on the
assumption that the scene is static. Most scenes in real-life, especially outdoor scenes,
consist of dynamic environments. The feature points of the dynamic object are unstable,
which affects the accuracy of localization and mapping. Furthermore, the typical lidar-
inertial SLAM builds a map only with geometric information (points, lines, and planes),
and lacks the semantic information of the surrounding scene that is needed by the robot to
complete some advanced tasks.

In this paper, we focus on avoiding the moving objects in dynamic scenes by combining
point cloud semantic segmentation with lidar-inertial SLAM. We propose a point cloud
semantic segmentation network that imports an attention mechanism to the PointConv [10]
network to improve the capacity to predict details. We define a graph constructed from
reference points and their neighbors and input the relative coordinates of the neighbors

Appl. Sci. 2022, 12, 10497. https://doi.org/10.3390/app122010497 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010497
https://doi.org/10.3390/app122010497
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8019-8405
https://doi.org/10.3390/app122010497
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010497?type=check_update&version=1

Appl. Sci. 2022, 12, 10497 2 of 13

combined with their features. We build attention weight functions to dynamically distribute
the weights of neighbors. After filtering the points belonging to moving objects through
a semantic segmentation network, stable static feature points are extracted, and a static
local map is built. Then, joint non-linear optimization is adopted within a sliding window
to obtain the final state of the system. We conduct experiments on the SemanticKITTI
dataset [11] and UrbanNav dataset [12]. The results demonstrate that, compared with
other SLAM systems, the accuracy of the estimated trajectory can be improved to different
degrees compared with other methods, and the global map of our system is refined,
becoming clearer.

2. Related Works
2.1. Lidar-Inertial SLAM

Lidar-inertial SLAM can be categorized into two methods: loosely-coupled methods
and tightly-coupled methods. LOAM [4] is a classical loosely coupled algorithm that opti-
mizes a large number of variables simultaneously in two frequencies. The high frequency
part estimates the velocity of the lidar with a low fidelity. The low frequency part completes
the point cloud matching and registration. LeGO-LOAM [5] optimizes based on LOAM.
It is lighter in weight and leverages the presence of a ground plane in its segmentation
and optimization steps. Tightly coupled algorithms are entering the mainstream for their
high accuracy and strong robustness. LIO mapping [6] proposes a rotation-constrained
refinement algorithm to align the lidar poses with a global map and performs well with
an acceptable drift after long-term experiments. LINS [7] designs an iterated error-state
Kalman filter (ESKF) to correct the estimated state recursively by generating new feature
correspondences in each iteration. LIO-SAM [8] formulates lidar-inertial SLAM atop a
factor graph, allowing for a multitude of relative and absolute measurements, including
loop closures, to be incorporated from different sources as factors into the system.

2.2. Semantic SLAM

With the development of deep learning, many works have introduced semantic seg-
mentation into visual-based or lidar-based SLAM systems. DS-SLAM [13] combines a
semantic segmentation network with a moving consistency check method to reduce the
impact of dynamic objects; thus, the localization accuracy is improved in dynamic envi-
ronments. Berta et al. present a visual SLAM system (DynaSLAM) [14] that is built on
ORB-SLAM2 [15]. It adds the capabilities of dynamic object detection and background
inpainting, and DynaSLAM is robust in dynamic scenarios for monocular, stereo, and
RGB-D configurations. SuMa++ [16] is an extension of SuMa [9] that consists of integrating
semantic information to facilitate the mapping process. SA-LOAM [17] is a semantic-aided
LiDAR SLAM with loop closure based on LOAM, which leverages semantics in odometry
as well as loop closure detection. Wang et al. propose lidar-based SLAM under semantic
constraints in dynamic environments [18]. They used a spatial attention network (SANet)
to achieve the semantic segmentation of point clouds.

3. Our Method

In this paper, we define the transformation from frame a to frame b as Tb
a ∈ SE(3).

The transformation contains translation vector pb
a ∈ R3 and rotation matrix Rb

a ∈ SO(3). In
addition, the quaternion qb

a is another expression of rotation for calculation. Feature points
Fa in frame a can be transformed into frame b as feature points Fb

a.

3.1. System Overview

The framework of the proposed semantic lidar-inertial SLAM system is illustrated in
Figure 1. Our system is based on LIO-mapping system. IMU measurements Ii,j are applied

to predict the state of body
~
T

Lj

Lj′ , which is utilized to de-skew the raw point clouds Sj of lidar
data. At the same time, we use IMU pre-integration to obtain pre-integration terms ∆pij,

Appl. Sci. 2022, 12, 10497 3 of 13

∆vij, and ∆qij for joint non-linear optimization. Then, de-skewed lidar frame Sj is input into
the semantic segmentation network, and we can obtain static point cloud S̃j after filtering

out moving objects. After that, feature points FLp
Lγ are extracted from several consecutive

frames and they are utilized to build local map MLp
Lo,i. At last, we use joint non-linear

optimization to obtain the final estimation of the states X within a local sliding window.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 14

3.1. System Overview

The framework of the proposed semantic lidar-inertial SLAM system is illustrated in

Figure 1. Our system is based on LIO-mapping system. IMU measurements ,i jI are ap-

plied to predict the state of body '

Lj

LjT , which is utilized to de-skew the raw point clouds

jS of lidar data. At the same time, we use IMU pre-integration to obtain pre-integration

terms ijp , ijv , and ijq for joint non-linear optimization. Then, de-skewed lidar

frame jS is input into the semantic segmentation network, and we can obtain static point

cloud jS after filtering out moving objects. After that, feature points Lp

LF are extracted

from several consecutive frames and they are utilized to build local map ,

Lp

Lo iM . At last,

we use joint non-linear optimization to obtain the final estimation of the states X within a

local sliding window.

De-skewing

State

prediction

Pre-integration
Joint

optimization

Feature

extraction

Semantic

segmentation

Local map

management

Sj Sj̄
 Sj

~

TLjˈ

~ Lj

TLjˈ

~ W
FL

Lp
γ

Si,j ∆pi,j,∆vi,j,∆qi,j X

Lp
MLo,i

Figure 1. Overall framework of the proposed semantic lidar-inertial SLAM.

3.2. State Prediction and Pre-Integration

There are several IMU frames between two consecutive lidar frames. Within a short

time, the state of body can be updated by:

()

()

()

1
2 2

1
2

1 1

1 1
ˆ

2 2

ˆ

1
ˆ

2

1

k

k

k

j
W

j i k k k a

k i

j
W

j i ij k k a

k i

j j
k g

j i k i
k i k i

t t t

t t

t
q q q q

−

=

−

=

− −

= =

= + + + −

= + + −

 − = =

R

R

p p v g a b

v v g a b

b

(1)

where p, v, and q are the position, velocity, and orientation of the IMU body. ab and gb

denote acceleration bias and gyroscope bias, respectively. ˆ
ka and ˆ

k are the raw meas-

urements of IMU at timestamp k.

The raw lidar data jS are skewed because of the lidar sensor’s motion during scan-

ning. So, we de-skew each lidar frame jS by linear interpolation of
'

Lj

LjT and obtain de-

skewed point cloud jS .

At the same time, the raw IMU outputs ˆ
ka and ˆ

k can be converted to pre-integra-

tion measurements (ijp , ijv , and ijq) by:

Figure 1. Overall framework of the proposed semantic lidar-inertial SLAM.

3.2. State Prediction and Pre-Integration

There are several IMU frames between two consecutive lidar frames. Within a short
time, the state of body can be updated by:

pj = pi +
j−1
∑

k=i

[
vk∆t + 1

2 gW∆t2 + 1
2 Rk

(
âk − bak

)
∆t2
]

vj = vi + gW∆tij
2 +

j−1
∑

k=i
Rk
(
âk − bak

)
∆t

qj = qi ⊗
j−1
∏
k=i

δqk = qi ⊗
j−1
∏
k=i

[1
2 ∆t
(
ω̂k − bgk

)
1

] (1)

where p, v, and q are the position, velocity, and orientation of the IMU body. ba and bg de-
note acceleration bias and gyroscope bias, respectively. âk and ω̂k are the raw measurements
of IMU at timestamp k.

The raw lidar data Sj are skewed because of the lidar sensor’s motion during scanning.

So, we de-skew each lidar frame Sj by linear interpolation of
~
T

Lj

Lj′ and obtain de-skewed
point cloud Sj.

At the same time, the raw IMU outputs âk and ω̂k can be converted to pre-integration
measurements (∆pij, ∆vij, and ∆qij) by:

∆pij = RT
i

(
pj − pi − vi∆tij − 1

2 gW∆t2
ij

)
=

j−1
∑

k=i

[
vik∆t + 1

2 R(∆qik)
(
âk − bak

)
∆t2
]

∆vij = RT
i

(
vj − vi − gW∆tij

)
=

j−1
∑

k=i

[
R(∆qik)

(
âk − bak

)
∆t
]

∆qij = q−1
i ⊗ qj =

j−1
∏
k=i

δqk =
j−1
∏
k=i

[1
2 ∆t
(
ω̂k − bgk

)
1

] (2)

The pre-integration measurements are used for joint optimization.

Appl. Sci. 2022, 12, 10497 4 of 13

3.3. Semantic Segmentation Network

We input Sj into sematic segmentation network to classify it point by point. The
semantic segmentation network in our SLAM system is based on PointConv network. The
network defines a 3D convolution operation called PointConv:

PointConv(S, W, F)xyz =
y

(δx ,δy ,δz)∈G

S
(
δx, δy, δz

)
W
(
δx, δy, δz

)
F
(
x + δx, y + δy, z + δz

)
dδxδyδz (3)

where p = (x, y, z) is coordinate of reference point.
(
δx, δy, δz

)
is the relative coordi-

nate of any neighbor point from p. S
(
δx, δy, δz

)
is the inverse density of point

(
δx, δy, δz

)
.

W
(
δx, δy, δz

)
is the weight function. In addition, F

(
x + δx, y + δy, z + δz

)
is the feature of

point
(
δx, δy, δz

)
. The main idea of PointConv is using the relative coordinates of K neighbor

points to simulate weight function by multi-layer perceptron (MLP). However, it does not
take the features of these neighbor points into consideration.

We import an attention mechanism to PointConv and build a graph G = (V, E) as
shown in Figure 2. Given a local point set P = {p0, p1, . . . , pK}, (f = { f0, f1, . . . , fK}
represents the feature of each point), V ∈ 0, 1, 2, . . . , K and E ∈ |V| × |V| denote the vertices
and edges of the graph, respectively. For each point i, the weight between point i and its
neighbor point j can be computed by multilayer perceptron:

ãij = MLP
([

∆pij
∣∣∣∣∆ fij

])
(4)

where ∆pij = pj − pi, ∆ fij = MLPg
(

f j
)
−MLPg(fi), and MLPg is also a multilayer percep-

tron, whose function is mapping a feature from one dimension to another. || denotes the
concatenation operation.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 14

()()

() ()()

()

1
2 2

1

1 1
1

1 1
ˆ

2 2

ˆ

1
ˆ

2

1

k

k

k

j
T W

ij i j i i ij ij ik ik k a

k i

j
T W

ij i j i ij ik k a

k i

j j
k g

ij i j k
k i k i

t t t q t

t q t

t
q q q q

−

=

−

=

− −
−

= =

 = − − − = + −

 = − − = −

 − = = =

R R

R R

p p p v g v a b

v v v g a b

b

(2)

The pre-integration measurements are used for joint optimization.

3.3. Semantic Segmentation Network

We input jS into sematic segmentation network to classify it point by point. The

semantic segmentation network in our SLAM system is based on PointConv network. The

network defines a 3D convolution operation called PointConv:

() () () ()
(), ,

, , , , , , , ,

x y z

x y z x y z x y z x y zxyz

G

PointConv S W F S W F x y z d

= + + +
(3)

where (), ,p x y z= is coordinate of reference point. (), ,x y z is the relative coordinate

of any neighbor point from p. (), ,x y zS is the inverse density of point (), ,x y z .

(), ,x y zW is the weight function. In addition, (), ,x y zF x y z + + + is the feature of

point (), ,x y z . The main idea of PointConv is using the relative coordinates of K neigh-

bor points to simulate weight function by multi-layer perceptron (MLP). However, it does

not take the features of these neighbor points into consideration.

We import an attention mechanism to PointConv and build a graph (),G V E= as

shown in Figure 2. Given a local point set 0 1, ,..., KP p p p= , (0 1, ,..., Kf f f f= represents

the feature of each point), 0,1, 2,...,V K and E V V denote the vertices and edges

of the graph, respectively. For each point i, the weight between point i and its neighbor

point j can be computed by multilayer perceptron:

()||ij ij ija MLP p f = (4)

where ij j ip p p = − , () ()ij g j g if MLP f MLP f = − , and gMLP is also a multilayer percep-

tron, whose function is mapping a feature from one dimension to another. || denotes the

concatenation operation.

p1

p3

p2

pK

p0

a01

a03

a00

a0K

a02

p1

p0

p3

p2

pK

Figure 2. Illustration of attention mechanism on a reference point. The weight function is a weighted

combination of the neighbors.

Figure 2. Illustration of attention mechanism on a reference point. The weight function is a weighted
combination of the neighbors.

Therefore, attention weight of the n-th feature channel between point i and its neighbor
point j can be computed by:

aij,n =
exp

(
ãij,n

)
K
∑

l=0
exp(ãil,n)

(5)

The attention feature of point i can be described as:

fi
′ =

K

∑
j=0

aij ∗Mg
(

f j
)
+ bi (6)

where aij, Mg, and bi are learnable. ∗ denotes the element-wise production.
So, for a given local point set P = {p0, p1, p2, . . . , pK}, we can obtain the attention

features through Equation (4). Let Cin and C′ in be the number of channels of input feature fi
and output feature fi

′. PointConv only takes the relative coordinate of each point (pi − p0)
as inputs to approximate weight function. We extend PointConv by concatenating attention

Appl. Sci. 2022, 12, 10497 5 of 13

feature fi
′ with (pi − p0), and adopt MLP1 to simulate attention weight function W, as

shown in Figure 3. Therefore, the network can focus on the most relevant part of the
neighbors to learn features. The entire process of attention PointConv network is shown in
Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 14

Therefore, attention weight of the n-th feature channel between point i and its neigh-

bor point j can be computed by:

()

()

,

,

,

0

exp

exp

ij n

ij n K

il n

l

a
a

a
=

=

(5)

The attention feature of point i can be described as:

()
0

K

i ij g j i

j

f a M f b
=

 = + (6)

where ija , gM , and ib are learnable. * denotes the element-wise production.

So, for a given local point set 0 1 2, , ,..., KP p p p p= , we can obtain the attention fea-

tures through Equation (4). Let inC and inC be the number of channels of input feature

if and output feature
if
 . PointConv only takes the relative coordinate of each point

()0ip p− as inputs to approximate weight function. We extend PointConv by concatenat-

ing attention feature
if
 with ()0ip p− , and adopt MLP1 to simulate attention weight

function W, as shown in Figure 3. Therefore, the network can focus on the most relevant

part of the neighbors to learn features. The entire process of attention PointConv network

is shown in Figure 3.

Attention
feature:

f1'

f2'

fk'

..
.

Density:
d1

d2

dk

..
.

K×Cmid

MLP3

MLP4

S:

tile

K×1 K×Cin

Attention

Weight:

Fin:

f1

f2

fk

..
.

K×Cin

1×(Cin×Cmid)
Fin:

1×Cout

Fout:

K×1

+ element-wise productsummation

..
.

concatenate

Fin:
f1

f2

fk

..
. MLP1

 F:
M(f1)

..
.

M(f2)

M(fk)

 f1

..
.

K×Cin

 f2

 fk

 P1

 P2

 Pk

 P:

MLP2

Plocal:

P1

P2

Pk

..
.

K×3

×

× matrix multiplication

Conv

Figure 3. The whole process of attention PointConv network.

3.4. Feature Extraction and Local Map Management

De-skewed point cloud is segmented through attention PointConv network, and the

points belonging to dynamic objects are removed. Then, we adopt lidar feature extraction

[19] to select planar feature points, which are most likely on a plane.

Since one single lidar frame is too sparse for feature matching, we build a local map

that consists of feature points of several lidar frames , , , ,o p i , where o, p, and i are

the first frame, the reference frame, and the last frame in the sliding window, respectively,

as shown in Figure 4. For , ,o i , feature points LF are projected to reference

frame p as Lp

LF and all projected features in the sliding window build a local map ,

Lp

Lo iM .

Figure 3. The whole process of attention PointConv network.

3.4. Feature Extraction and Local Map Management

De-skewed point cloud is segmented through attention PointConv network, and the
points belonging to dynamic objects are removed. Then, we adopt lidar feature extrac-
tion [19] to select planar feature points, which are most likely on a plane.

Since one single lidar frame is too sparse for feature matching, we build a local map
that consists of feature points of several lidar frames {o, · · · , p, · · · , i}, where o, p, and i are
the first frame, the reference frame, and the last frame in the sliding window, respectively,
as shown in Figure 4. For γ ∈ {o, · · · , i}, feature points FLγ are projected to reference frame

p as FLp
Lγ and all projected features in the sliding window build a local map MLp

Lo,i. The

frames before p are already optimized. For each point xLp ∈ FLp
Lα (α ∈ {p + 1, · · · , i, j}), we

adopt KNN algorithm to find its K nearest points π
(
xLp) in MLp

Lo,i. Since these K points are
most likely on the same plane, they have the plane constraint:

nTx + d = 0, x ∈ π
(

xLp
)

(7)

where we denote m = [x, n, d] ∈ mLα. In this way, we formulate a relative constraint
between the reference frame (n and d are defined in frame p) and the following frames (x is
defined in reference α).

Appl. Sci. 2022, 12, 10497 6 of 13

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 14

The frames before p are already optimized. For each point Lp Lp

LFx (1, , ,p i j +),

we adopt KNN algorithm to find its K nearest points ()Lp x in ,

Lp

Lo iM . Since these K

points are most likely on the same plane, they have the plane constraint:

()0, T Lpd + = n x x x (7)

where we denote , , Lm d = mx n . In this way, we formulate a relative constraint be-

tween the reference frame (n and d are defined in frame p) and the following frames (x is

defined in reference α).

Imu measurements

Lidar frames

Features

XBo XBo+1 XBp XBp+1

...
XBi XBj

...

Imu preintegration constraints

Project all features to reference frame p,

and get local map MLo,i

...

...

...

...

FLo FLo+1 FLp FLp+1 FLi FLj

Lp

Lidar states

Plane constraints

Figure 4. Illustration of sliding window and local map.

3.5. Joint Optimization

Equation (7) provides the constraints between the state of reference frame and the

states of following frames. The transformation from the frames to be optimized (

 1, , ,p i j +) to the reference frame p is computed by the chain rule:

1 1

0 1

Lp Lp

Lp B W W B L L

L L B Bp L

− −

= =

R
T T T T T

p
 (8)

where B

LT denotes the extrinsic parameters from lidar to IMU. W

BT and W

BpT are the

states of the body in frames α and p.

As the window slides, the reference frame also changes. For each 1, , ,p i j +

and , , Lm d = mx n , the residual of Equation (7) can be represented by the distance

from point to plane:

() ()1 , , ,W W B T Lp Lp

Lp L L L Lr m d = + +T T T Rn x p (9)

To obtain the states from frame p to frame j, we adopt a joint non-linear optimization

and marginalization strategy. As shown in Figure 4, the number of states to be estimated

is fixed in the window from W

BpX to W

BjX . If new constraints appear, the window will in-

clude new states and marginalize old states. The entirety of the states in the window can

be defined as:

 , , ,W W B

Bp Bj L=X X X T (10)

State X can be estimated by minimizing the whole cost function:

Figure 4. Illustration of sliding window and local map.

3.5. Joint Optimization

Equation (7) provides the constraints between the state of reference frame and the states of
following frames. The transformation from the frames to be optimized (α ∈ {p + 1, · · · , i, j})
to the reference frame p is computed by the chain rule:

TLp
Lα = TB

LTW
BαTW

Bp
−1TB

L
−1 =

[
RLp

Lα pLp
Lα

0 1

]
(8)

where TB
L denotes the extrinsic parameters from lidar to IMU. TW

Bα and TW
Bp are the states of

the body in frames α and p.
As the window slides, the reference frame also changes. For each α ∈ {p + 1, · · · , i, j}

and m = [x, n, d] ∈ mLα, the residual of Equation (7) can be represented by the distance
from point to plane:

r1

(
m, TW

Lp, TW
Lα, TB

L

)
= nT

(
RLp

Lαx + pLp
Lα

)
+ d (9)

To obtain the states from frame p to frame j, we adopt a joint non-linear optimization
and marginalization strategy. As shown in Figure 4, the number of states to be estimated is
fixed in the window from XW

Bp to XW
Bj. If new constraints appear, the window will include

new states and marginalize old states. The entirety of the states in the window can be
defined as:

X =
{

XW
Bp, · · · , XW

Bj, TB
L

}
(10)

State X can be estimated by minimizing the whole cost function:

min
X

1
2

 ∑
m∈mLα

α∈{p+1,··· ,j}

‖r1(m, X)‖2
+ ‖r2(X)‖2 + ∑

β∈{p,··· ,j−1}
‖r3

(
zβ

β+1, X
)
‖

2

 (11)

where r1(m, X), r2(X), and r3

(
zβ

β+1, X
)

represent the residual for point-to-plane constraints,
marginalization, and IMU pre-integration constraints, respectively. The Gauss–Newton
method is used to solve the function above. ‖r2(X)‖2 is calculated by Schur complement,
which is described in [6], and r3

(
zβ

β+1, X
)

is computed from the states and IMU pre-
integration in [20].

Appl. Sci. 2022, 12, 10497 7 of 13

4. Experiments
4.1. Semantic Segmentation Network Training

We use the SemanticKITTI dataset to train our attention PointConv network. The
semanticKITTI dataset is a large-scale dataset based on the KITTI Vision Benchmark. It
provides dense annotations for each individual scan of sequences from 00–10, which enables
the usage of multiple sequential scans for semantic segmentation. Labels for the test set
(sequences 11–21) are not provided. Figure 5 shows a single lidar frame with semantic
annotations of the SemanticKITTI dataset, and it contains 20 classes including classes
distinguishing non-moving and moving objects.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 14

()

() ()

22 2

1 2 3 1

 , , 1
1, ,

1
min , ,

2
Lm p j

p j

r m r r z

+

 −
 +

+ +

X

m

X X X (11)

where ()1 ,r m X , ()2r X , and ()3 1 ,r z

 + X represent the residual for point-to-plane con-

straints, marginalization, and IMU pre-integration constraints, respectively. The Gauss–

Newton method is used to solve the function above. ()
2

2r X is calculated by Schur com-

plement, which is described in [6], and ()3 1 ,r z

 + X is computed from the states and IMU

pre-integration in [20].

4. Experiments

4.1. Semantic Segmentation Network Training

We use the SemanticKITTI dataset to train our attention PointConv network. The se-

manticKITTI dataset is a large-scale dataset based on the KITTI Vision Benchmark. It pro-

vides dense annotations for each individual scan of sequences from 00–10, which enables

the usage of multiple sequential scans for semantic segmentation. Labels for the test set

(sequences 11–21) are not provided. Figure 5 shows a single lidar frame with semantic

annotations of the SemanticKITTI dataset, and it contains 20 classes including classes dis-

tinguishing non-moving and moving objects.

unlabeled car bicycle motorcycle truck

other-

vehicle
person bicyclist motorcyclist road

parking sidewalk
other-

ground
building fence

vegetation trunk terrain pole
traffic

-sign

Figure 5. A single scan with labels of SemanticKITTI dataset.

We train our attention PointConv network with all the scans of sequences 00–10. In

addition, in the next section, we will show the semantic segmentation results of our

trained network.

4.2. Dynamic Object Removal

We use UrbanNav datasets to test the performance of the dynamic object removal.

UrbanNav datasets are collected by mounting the data collection platform on a Honda Fit.

Figure 5. A single scan with labels of SemanticKITTI dataset.

We train our attention PointConv network with all the scans of sequences 00–10.
In addition, in the next section, we will show the semantic segmentation results of our
trained network.

4.2. Dynamic Object Removal

We use UrbanNav datasets to test the performance of the dynamic object removal.
UrbanNav datasets are collected by mounting the data collection platform on a Honda Fit.
The platform is equipped with Velodyne HDL-32E lidar, an Xsens Mti-10 IMU, a monocular
camera, and a SPAN-CPT (for ground truth). Two lidar scan samples are shown in Figure 6a.
Each lidar frame is input to our attention PointConv network to obtain point-wise labels, as
shown in Figure 6b. Then, we filter out the points belonging to dynamic labels and obtain
static point clouds, as in Figure 6c. From the visualization of the point cloud samples,
we can see that the annotations of the points are basically correct, and the removal of the
dynamic objects is effective.

Appl. Sci. 2022, 12, 10497 8 of 13

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 14

The platform is equipped with Velodyne HDL-32E lidar, an Xsens Mti-10 IMU, a monoc-

ular camera, and a SPAN-CPT (for ground truth). Two lidar scan samples are shown in

Figure 6a. Each lidar frame is input to our attention PointConv network to obtain point-

wise labels, as shown in Figure 6b. Then, we filter out the points belonging to dynamic

labels and obtain static point clouds, as in Figure 6c. From the visualization of the point

cloud samples, we can see that the annotations of the points are basically correct, and the

removal of the dynamic objects is effective.

(a) (b) (c)

Figure 6. (a) the original point clouds; (b) semantic segmentation results with point-wise labels; (c)

point clouds after filtering out dynamic points.

4.3. Pose Estimation Comparison

In this section, we compare the accuracy and robustness of the proposed method with

the current state-of-the-art lidar-inertial SLAM methods, including LIO-mapping, LINS,

and LIO-SAM. LINS is a filter-based tightly coupled method, and LIO-SAM is a tightly

coupled method based on nonlinear optimization.

We also use UrbanNav datasets to compare the performance of different methods.

Specifically, we used the Urban2019 dataset and Urban2020 dataset. The former was gath-

ered in a typical urban canyon of Hong Kong featuring high-rising buildings and numer-

ous dynamic objects in the evening. The latter was gathered in a low-urbanization area in

Hong Kong with some dynamic objects present during in the day, as shown in Figure 7.

(a) (b)

Figure 7. Sample images of datasets: (a) Urban2019 dataset; (b) Urban2020 dataset.

In this experiment, the datasets start and end at the origin. The GPS measurements

of the datasets serve as the ground truth. The estimated trajectories of various methods

applied to the Urban2019 dataset are shown in Figure 8. LIO-mapping performs well at

the beginning of the dataset, but it drifts later in the trajectory and the rotation of LIO-

Figure 6. (a) the original point clouds; (b) semantic segmentation results with point-wise labels;
(c) point clouds after filtering out dynamic points.

4.3. Pose Estimation Comparison

In this section, we compare the accuracy and robustness of the proposed method with
the current state-of-the-art lidar-inertial SLAM methods, including LIO-mapping, LINS,
and LIO-SAM. LINS is a filter-based tightly coupled method, and LIO-SAM is a tightly
coupled method based on nonlinear optimization.

We also use UrbanNav datasets to compare the performance of different methods.
Specifically, we used the Urban2019 dataset and Urban2020 dataset. The former was
gathered in a typical urban canyon of Hong Kong featuring high-rising buildings and
numerous dynamic objects in the evening. The latter was gathered in a low-urbanization
area in Hong Kong with some dynamic objects present during in the day, as shown in
Figure 7.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 14

The platform is equipped with Velodyne HDL-32E lidar, an Xsens Mti-10 IMU, a monoc-

ular camera, and a SPAN-CPT (for ground truth). Two lidar scan samples are shown in

Figure 6a. Each lidar frame is input to our attention PointConv network to obtain point-

wise labels, as shown in Figure 6b. Then, we filter out the points belonging to dynamic

labels and obtain static point clouds, as in Figure 6c. From the visualization of the point

cloud samples, we can see that the annotations of the points are basically correct, and the

removal of the dynamic objects is effective.

(a) (b) (c)

Figure 6. (a) the original point clouds; (b) semantic segmentation results with point-wise labels; (c)

point clouds after filtering out dynamic points.

4.3. Pose Estimation Comparison

In this section, we compare the accuracy and robustness of the proposed method with

the current state-of-the-art lidar-inertial SLAM methods, including LIO-mapping, LINS,

and LIO-SAM. LINS is a filter-based tightly coupled method, and LIO-SAM is a tightly

coupled method based on nonlinear optimization.

We also use UrbanNav datasets to compare the performance of different methods.

Specifically, we used the Urban2019 dataset and Urban2020 dataset. The former was gath-

ered in a typical urban canyon of Hong Kong featuring high-rising buildings and numer-

ous dynamic objects in the evening. The latter was gathered in a low-urbanization area in

Hong Kong with some dynamic objects present during in the day, as shown in Figure 7.

(a) (b)

Figure 7. Sample images of datasets: (a) Urban2019 dataset; (b) Urban2020 dataset.

In this experiment, the datasets start and end at the origin. The GPS measurements

of the datasets serve as the ground truth. The estimated trajectories of various methods

applied to the Urban2019 dataset are shown in Figure 8. LIO-mapping performs well at

the beginning of the dataset, but it drifts later in the trajectory and the rotation of LIO-

Figure 7. Sample images of datasets: (a) Urban2019 dataset; (b) Urban2020 dataset.

In this experiment, the datasets start and end at the origin. The GPS measurements
of the datasets serve as the ground truth. The estimated trajectories of various methods
applied to the Urban2019 dataset are shown in Figure 8. LIO-mapping performs well at the
beginning of the dataset, but it drifts later in the trajectory and the rotation of LIO-mapping
deviates at the curve. This is mainly caused by false feature points belonging to dynamic
objects. The trajectories of LINS and LIO-SAM have a similar degree of misalignment, and
they both have a slight deviation from the start point to the end point. The overall trajectory
of the proposed method performs well.

Appl. Sci. 2022, 12, 10497 9 of 13

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 14

mapping deviates at the curve. This is mainly caused by false feature points belonging to

dynamic objects. The trajectories of LINS and LIO-SAM have a similar degree of misalign-

ment, and they both have a slight deviation from the start point to the end point. The

overall trajectory of the proposed method performs well.

(a) (b) (c) (d)

Figure 8. Estimated trajectories, 3D position errors, and height errors of different methods applied

to Urban2019 dataset: (a) LIO−mapping; (b) LINS; (c) LIO−SAM; (d) our method.

Furthermore, we display the 3D position errors and height errors of the different

methods with respect to time in Figure 8. The 3D position errors and height errors of the

three other methods increase dramatically at one certain point. The 3D position errors of

the LIO-mapping approach reach up to more than 100 m, which means that the algorithm

has totally failed. By contrast, the 3D position error and height error of our method

Figure 8. Estimated trajectories, 3D position errors, and height errors of different methods applied to
Urban2019 dataset: (a) LIO−mapping; (b) LINS; (c) LIO−SAM; (d) our method.

Furthermore, we display the 3D position errors and height errors of the different
methods with respect to time in Figure 8. The 3D position errors and height errors of the
three other methods increase dramatically at one certain point. The 3D position errors of the
LIO-mapping approach reach up to more than 100 m, which means that the algorithm has
totally failed. By contrast, the 3D position error and height error of our method fluctuate
within a certain section since errors accumulate more slowly after moving dynamic objects.

The estimated trajectories of the Urban2020 dataset are demonstrated in Figure 9. As
shown, all the methods perform better than they did for the Urban2019 dataset, as there
are fewer dynamic objects on the road and the distance is shorter. Even so, the proposed

Appl. Sci. 2022, 12, 10497 10 of 13

method performs better than the LIO-mapping approach with respect to the trajectory. In
addition, the 3D position errors and height errors are also lower.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 14

fluctuate within a certain section since errors accumulate more slowly after moving dy-

namic objects.

The estimated trajectories of the Urban2020 dataset are demonstrated in Figure 9. As

shown, all the methods perform better than they did for the Urban2019 dataset, as there

are fewer dynamic objects on the road and the distance is shorter. Even so, the proposed

method performs better than the LIO-mapping approach with respect to the trajectory. In

addition, the 3D position errors and height errors are also lower.

(a) (b) (c) (d)

Figure 9. Estimated trajectories, 3D position errors, and height errors of different methods in Ur-

ban2020 dataset: (a) LIO−mapping; (b) LINS; (c) LIO−SAM; (d) our method.

Table 1 displays the end-to-end translation errors, end-to-end rotation errors, and

RMSE errors with regard to the ground truth. Our method achieves the lowest RMSE error

on both datasets. Furthermore, our method is superior to LIO-mapping with respect to

end-to-end translation and rotation errors.

Table 1. The end-to-end translation errors, end-to-end rotation errors, and RMSE errors of different

methods on both datasets.

Figure 9. Estimated trajectories, 3D position errors, and height errors of different methods in
Urban2020 dataset: (a) LIO−mapping; (b) LINS; (c) LIO−SAM; (d) our method.

Table 1 displays the end-to-end translation errors, end-to-end rotation errors, and
RMSE errors with regard to the ground truth. Our method achieves the lowest RMSE error
on both datasets. Furthermore, our method is superior to LIO-mapping with respect to
end-to-end translation and rotation errors.

Table 1. The end-to-end translation errors, end-to-end rotation errors, and RMSE errors of different
methods on both datasets.

Dataset Error Type LIO-Mapping LINS LIO-SAM Our Method

Urban2019
Translation (m) 95.473 13.258 19.274 5.673

Rotation (degree) 22.829 24.704 16.942 14.554
RMSE (m) 43.018 7.863 13.069 5.543

Urban2020
Translation (m) 5.030 1.276 3.513 3.713

Rotation (degree) 14.626 25.092 6.556 7.670
RMSE (m) 3.107 3.039 2.672 2.625

Appl. Sci. 2022, 12, 10497 11 of 13

4.4. Runtime Performance Evaluation

In this section, we will show the average runtime of each module of our algorithm.
The algorithm was tested with a 2.6-GHz i7-9720H CPU and an Nvidia GeForce GTX 1660
Ti GPU in Ubuntu 18.04. We downsampled the point cloud of each lidar frame by using a
voxelgrid filter whose leaf size is 0.5 m. The average runtime of each module is presented
in Table 2, and all the modules run on different threads.

Table 2. Average runtime of each module (ms).

Dataset Prediction Semantic
Segmentation Odometry Laser Mapping

Urban2019 0.00928 106.8 126.5 201.9
Urban2020 0.01198 122.6 127.9 252.8

4.5. Global Map Comparison

Finally, we test the performance of the global map built using our method. The global
maps of the proposed method applied to the Urban2019 dataset and Urban2020 dataset are
illuminated in Figure 10a,b). It is shown that the global maps of our method are basically
correct. To compare the maps built by the LIO-mapping method and our method, we
focus on several parts of the map in Figure 11. Figure 11a corresponds to LIO mapping
and Figure 11b to our method. The figures demonstrate that our method can eliminate
dynamic objects including vehicles of all kinds, which are meaningless for a global map.
Furthermore, Figure 11a shows many obvious trails of the speeding vehicles on the roads,
while the same roads in Figure 11b are clean, because the points belonging to moving cars
have been filtered out in each lidar frame.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 14

Dataset Error Type LIO-Mapping LINS LIO-SAM Our Method

Urban2019

Translation (m) 95.473 13.258 19.274 5.673

Rotation (degree) 22.829 24.704 16.942 14.554

RMSE (m) 43.018 7.863 13.069 5.543

Urban2020

Translation (m) 5.030 1.276 3.513 3.713

Rotation (degree) 14.626 25.092 6.556 7.670

RMSE (m) 3.107 3.039 2.672 2.625

4.4. Runtime Performance Evaluation

In this section, we will show the average runtime of each module of our algorithm.

The algorithm was tested with a 2.6-GHz i7-9720H CPU and an Nvidia GeForce GTX 1660

Ti GPU in Ubuntu 18.04. We downsampled the point cloud of each lidar frame by using

a voxelgrid filter whose leaf size is 0.5 m. The average runtime of each module is presented

in Table 2, and all the modules run on different threads.

Table 2. Average runtime of each module (ms).

Dataset Prediction Semantic Segmentation Odometry Laser Mapping

Urban2019 0.00928 106.8 126.5 201.9

Urban2020 0.01198 122.6 127.9 252.8

4.5. Global Map Comparison

Finally, we test the performance of the global map built using our method. The global

maps of the proposed method applied to the Urban2019 dataset and Urban2020 dataset

are illuminated in Figure 10a,b). It is shown that the global maps of our method are basi-

cally correct. To compare the maps built by the LIO-mapping method and our method,

we focus on several parts of the map in Figure 11. Figure 11a corresponds to LIO mapping

and Figure 11b to our method. The figures demonstrate that our method can eliminate

dynamic objects including vehicles of all kinds, which are meaningless for a global map.

Furthermore, Figure 11a shows many obvious trails of the speeding vehicles on the roads,

while the same roads in Figure 11b are clean, because the points belonging to moving cars

have been filtered out in each lidar frame.

(a) (b)

Figure 10. Global map built using the proposed method: (a) Urban2019 dataset; (b) Urban2020

dataset.
Figure 10. Global map built using the proposed method: (a) Urban2019 dataset; (b) Urban2020 dataset.

Appl. Sci. 2022, 12, 10497 12 of 13
Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 14

(a) (b)

Figure 11. Detailed parts of global map created using LIO mapping and our method: (a) corresponds

to LIO-mapping method; (b) corresponds to our method.

5. Conclusions

Most SLAM systems work on the assumption that the environment is static. In this

paper, we have proposed a semantic lidar-inertial SLAM system for dynamic scenes. We

imported an attention mechanism to the PointConv network to elevate the feature-learn-

ing capability of the network. The LIO-mapping system was combined with an attention

PointConv semantic segmentation network, and the points belonging to dynamic objects

were removed in each lidar frame. The stable static feature points were extracted, and a

static local map was built to perform ego-motion estimation. The experiments demon-

strate that our method can decrease the errors of the estimated trajectories and build a

clear global map of dynamic scenes.

Author Contributions: Conceptualization, Z.B.; methodology, Z.B.; software, Z.B.; validation, Z.B.;

formal analysis, Z.B.; writing—original draft preparation, Z.B.; writing—review and editing, C.S.

and P.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Figure 11. Detailed parts of global map created using LIO mapping and our method: (a) corresponds
to LIO-mapping method; (b) corresponds to our method.

5. Conclusions

Most SLAM systems work on the assumption that the environment is static. In this
paper, we have proposed a semantic lidar-inertial SLAM system for dynamic scenes. We
imported an attention mechanism to the PointConv network to elevate the feature-learning
capability of the network. The LIO-mapping system was combined with an attention
PointConv semantic segmentation network, and the points belonging to dynamic objects
were removed in each lidar frame. The stable static feature points were extracted, and a
static local map was built to perform ego-motion estimation. The experiments demonstrate
that our method can decrease the errors of the estimated trajectories and build a clear global
map of dynamic scenes.

Author Contributions: Conceptualization, Z.B.; methodology, Z.B.; software, Z.B.; validation, Z.B.;
formal analysis, Z.B.; writing—original draft preparation, Z.B.; writing—review and editing, C.S. and
P.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2022, 12, 10497 13 of 13

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset analyzed during the current study was derived from
SemanticKITTI (http://www.semantic-kitti.org/) (accessed on 1 January 2022) and UrbanNavDataset
(https://github.com/weisongwen/UrbanNavDataset) (accessed on 1 January 2022).

Acknowledgments: The authors thank the authors of the dataset for making it available online.
Furthermore, they would like to thank the anonymous reviewers for their contribution towards
enhancing this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of

Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]
2. Grisetti, G.; Kümmerle, R.; Stachniss, C.; Burgard, W. A Tutorial on Graph-Based SLAM. IEEE Intell. Transp. Syst. Mag. 2010, 2,

31–43. [CrossRef]
3. Ji, K.; Chen, H.; Di, H.; Gong, J.; Xiong, G.; Qi, J.; Yi, T. CPFG-SLAM: A robust simultaneous localization and mapping based

onLIDAR in off-road environment. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China,
26–30 June 2018.

4. Zhang, J.; Singh, S. Loam: Lidar odometry and mapping in real-time. In Proceedings of the 2014 Robotics: Science and Systems,
Berkeley, CA, USA, 12–16 July 2014.

5. Shan, T.; Englot, B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In Proceedings of
the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018.

6. Ye, H.; Chen, Y.; Liu, M. Tightly Coupled 3D Lidar Inertial Odometry and Mapping. In Proceedings of the 2019 IEEE International
Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019.

7. Qin, C.; Ye, H.; Pranata, C.E.; Han, J.; Zhang, S.; Liu, M. LINS: A Lidar-Inertial State Estimator for Robust and Efficient Navigation. In
Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May 2020–31 August 2020.

8. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing
and Mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las
Vegas, NV, USA, 24 October 2020–24 January 2021.

9. Behley, J.; Stachniss, C. Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments. In Proceedings of the
2018 Robotics: Science and Systems, Pittsburgh, PA, USA, 26–30 June 2018.

10. Wu, W.; Qi, Z.; Li, F. PointConv: Deep Convolutional Networks on 3D Point Clouds. In Proceedings of the 2019 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Long Beach, NY, USA, 15–20 June 2019.

11. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A dataset for semantic scene
understanding of LiDAR sequences. arXiv 2020, arXiv:1904.01416.

12. Hsu, L.-T.; Kubo, N.; Wen, W.; Chen, W.; Liu, Z.; Suzuki, T.; Meguro, J. UrbanNav: An Open-Sourced Multisensory Dataset for
Benchmarking Positioning Algorithms Designed for Urban Areas. In Proceedings of the 34th International Technical Meeting of
the Satellite Division of the Institute of Navigation (ION GNSS+), St. Louis, MO, USA, 20–24 September, 2021.

13. Yu, C.; Liu, Z.; Liu, X.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018.

14. Bescos, B.; Fcil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes. IEEE Robot. Autom.
Lett. 2018, 3, 4076–4083. [CrossRef]

15. Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

16. Chen, X.; Milioto, A.; Palazzolo, E.; Giguere, P.; Behley, J.; Stachniss, C. SuMa++: Efficient LiDAR-based semantic SLAM.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China,
3–8 November 2019.

17. Li, L.; Kong, X.; Zhao, X.; Li, W.; Wen, F.; Zhang, H.; Liu, Y. SA-LOAM: Semantic-aided LiDAR SLAM with Loop Closure. arXiv
2021, arXiv:2106.11516.

18. Wang, W.; You, X.; Zhang, X.; Chen, L.; Zhang, L.; Liu, X. LiDAR-Based SLAM under Semantic Constraints in Dynamic
Environments. Remote Sens. 2021, 13, 3651. [CrossRef]

19. Bosse, M.; Zlot, R. Continuous 3d scan-matching with a spinning 2d laser. In Proceedings of the 2009 IEEE International
Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009.

20. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34,
1004–1020. [CrossRef]

http://www.semantic-kitti.org/
https://github.com/weisongwen/UrbanNavDataset
http://doi.org/10.1109/TRO.2016.2624754
http://doi.org/10.1109/MITS.2010.939925
http://doi.org/10.1109/LRA.2018.2860039
http://doi.org/10.1109/TRO.2017.2705103
http://doi.org/10.3390/rs13183651
http://doi.org/10.1109/TRO.2018.2853729

	Introduction
	Related Works
	Lidar-Inertial SLAM
	Semantic SLAM

	Our Method
	System Overview
	State Prediction and Pre-Integration
	Semantic Segmentation Network
	Feature Extraction and Local Map Management
	Joint Optimization

	Experiments
	Semantic Segmentation Network Training
	Dynamic Object Removal
	Pose Estimation Comparison
	Runtime Performance Evaluation
	Global Map Comparison

	Conclusions
	References

