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Abstract: The Naive Bayesian classifier (NBC) is a well-known classification model that has a sim-
ple structure, low training complexity, excellent scalability, and good classification performances.
However, the NBC has two key limitations: (1) it is built upon the strong assumption that condition
attributes are independent, which often does not hold in real-life, and (2) the NBC does not handle
continuous attributes well. To overcome these limitations, this paper presents a novel approach
for NBC construction, called mixed-attribute fusion-based NBC (MAF-NBC). It alleviates the two
aforementioned limitations by relying on a mixed-attribute fusion mechanism with an improved au-
toencoder neural network for NBC construction. MAF-NBC transforms the original mixed attributes
of a data set into a series of encoded attributes with maximum independence as a pre-processing step.
To guarantee the generation of useful encoded attributes, an efficient objective function is designed to
optimize the weights of the autoencoder neural network by considering both the encoding error and
the attribute’s dependence. A series of persuasive experiments was conducted to validate the feasi-
bility, rationality, and effectiveness of the designed MAF-NBC approach. Results demonstrate that
MAF-NBC has superior classification performance than eight state-of-the-art Bayesian algorithms,
namely the discretization-based NBC (Dis-NBC), flexible naive Bayes (FNB), tree-augmented naive
(TAN) Bayes, averaged one-dependent estimator (AODE), hidden naive Bayes (HNB), deep feature
weighting for NBC (DFW-NBC), correlation-based feature weighting filter for NBC (CFW-NBC), and
independent component analysis-based NBC (ICA-NBC).

Keywords: naive Bayesian classifier; attribute independence assumption; mixed-attribute classification;
conditional probability; Bayesian network; attribute transformation

1. Introduction

As one of the top 10 algorithms in the fields of data mining and machine learning [1],
the naive Bayesian classifier (NBC) has been used in numerous domains. The main advan-
tage of the NBC is its simple model structure that makes it easy to implement and its good
theoretical interpretability. In recent years, the NBC also received much attention from
the industry and academia since it can be easily deployed in distributed environments to
process big data. Despite possessing several desirable properties, the NBC is built upon
a strong assumption, called the attribute independence assumption, which states that
condition attributes must be mutually independent with respect to the decision attribute.
This assumption simplifies the calculation of posterior probabilities (the probabilities that
attribute values of a sample are all observed for a given class). Rather than computing a
posterior probability as a joint probability of condition attributes, the NBC calculates it as
the product of multiple marginal probabilities. This makes the computation of NBC very
efficient and allows the estimation of probabilities even with small data sets. However,
the attribute independence assumption does not hold in many real-life data sets, which
substantially limits the prediction performance of the NBC. Recent studies on the NBC
mainly focused on finding ways to relax the independence assumption so as to further
improve its generalization performance. There are two main approaches for improving the
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testing ability of the NBC [2]: (1) improving the structure of models and (2) performing
data transformations. The former approach introduces complex Bayesian network struc-
tures to model attribute dependencies, while the latter applies feature selection or feature
extraction methods to select independent attributes. Some representative studies of these
two approaches are described next.

Model structure-oriented improvement methods use different estimation strategies
(e.g., density estimation, Bayesian network, and attribute weighting) to estimate the condi-
tional probability that a sample’s attribute values are observed given its class. The flexible
naive Bayes (FNB) [3] relies on kernel density estimations to determine a class’s conditional
probabilities. However, FNB can only handle continuous attributes and does not offer a
solution to relax the attribute independence assumption. The tree-augmented naive (TAN)
Bayes [4] algorithm is a semi-naïve Bayesian learning method that relaxes the attribute
independence assumption by employing a tree structure, where each condition attribute
only depends on the decision attribute and at most one condition attribute. The averaged
one-dependent estimator (AODE) [5] is an ensemble classifier that applies an attribute
selection algorithm to construct a series of one-dependent classifiers. Each classifier is a
simple Bayesian network that is obtained by averaging all one-dependence classifiers. The
hidden naive Bayes (HNB) classifier [6] uses the weighted sum of two-attribute dependen-
cies to represent multiple-attribute dependence, where the weights are determined based
on the mutual information between two condition attributes. The deep feature weighting
for NBC (DFW-NBC) [7] technique and correlation-based feature weighting filter for NBC
(CFW-NBC) [8] are two attribute weighting-based NBCs. DFW-NBC estimates each condi-
tional probability of the NBC by deeply computing attribute weighted frequencies from
training data while CFW-NBC weights the condition attributes by considering both the
mutual relevance and the average mutual redundancy.

Data transformation-oriented improvement methods focus on the deep exploration
of the training data to avoid complex and time-consuming structure learning. The NBCs
obtained by this approach still rely on the independence assumption; thus, the performance
may be degraded if the training data do not satisfy that assumption. Feature extraction
techniques are the most commonly used to transform data with attribute dependencies
into data that have no dependencies. Bressan and Vitria [9] applied class-conditional
independent component analysis (CC-ICA) to improve the classification performance of the
NBC. Qin et al. [10] proposed an ICA-based NBC (ICA-NBC) to improve the classification
performance of the NBC. Fan and Poh [11] evaluated the classification performance of the
NBC built using three feature extraction methods, namely principal component analysis
(PCA), ICA, and CC-ICA. Experimental results have shown that PCA, ICA, and CC-ICA
can slightly increase the testing accuracies of the NBC on the selected data sets. Jayanthi
and Sasikala [12] trained an NBC based on website attributes extracted by PCA to perform
web link spam detection. Zhang et al. [13] applied PCA to extract key attributes in network
data and then trained the NBC to conduct network intrusion detection.

Although the aforementioned methods can improve the classification performance of
the NBC for specific application scenarios, these methods do not provide a good solution
for handling mixed attributes (continuous and categorical attributes). Some studies [14,15]
revealed that the discretization of continuous attributes can lead to losing precious infor-
mation about the original data set, while the determination of an optimal Bayesian network
structure is an NP-hard problem [16]. To address the above limitations, this paper proposes
a new strategy to enhance the generalization capability of the NBC for the mixed-attribute
classification problem. The proposed approach not only retains as much information as
possible about the original data but also keeps the model structure as simple as possible.
The contributions of this paper are summarized as follows. A new mixed attribute fusion-
based NBC (MAF-NBC) is proposed for mixed-attribute classification problems. To relax
the attribute independence assumption, an autoencoder neural network (ANN) based on
the minimization of both encoding error and attribute dependence is iteratively trained
to transform the original mixed attributes into a series of independent and encoded at-
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tributes. Extensive experiments conducted on multiple data sets demonstrate the feasibility,
rationality, and effectiveness of the MAF-NBC.

The remainder of this paper is organized as follows. Section 2 reviews the principles
of the NBC. Section 3 presents the proposed MAF-NBC. Section 4 reports results from
experiments to assess the performance of MAF-NBC. Finally, Section 5 concludes this paper
and describes future studies.

2. Naive Bayesian Classifier for Mixed-Attribute Classification

Let there be a classification data set D =
M⋃

m=1
D(m) containingN samples. Each sample

has D condition attributes including D1 discrete attributes and D2 continuous attributes.
Moreover, all samples are divided intoM different classes, where Nm denotes the number
of samples that belong to the m-th (m = 1, 2, · · · ,M) class.

D(m) =

{ (
x(m)

n , y(m)
n

)∣∣∣x(m)
n =

(
a(m)

n1 , · · · , a(m)
nD1

, b(m)
n1 , · · · , b(m)

nD2

)
,

y(m)
n = wm, n = 1, 2, · · · ,Nm

}
, (1)

M
∑

m=1
Nm = N , D1 +D2 = D, a(m)

ni , i ∈ {1, 2, · · · ,D1} is the i-th discrete attribute value,

b(m)
nj , j ∈ {1, 2, · · · ,D2} is the j-th continuous attribute value, and {w1, w2, · · · , wM} is the

class label set. The next paragraphs explain the principles of the naive Bayesian classifier
(NBC) for the mixed-attribute classification problem on data set D.

Assume that there is a new sample x =
(
a1, · · · , aD1 , b1, · · · , bD2

)
. The NBC deter-

mines its class label by using this equation:

y = arg max
m=1,2,··· ,M

P(wm|x )

= arg max
m=1,2,··· ,M

P(x|wm )P(wm)

P(x)

∝ arg max
m=1,2,··· ,M

P(x|wm )P(wm)

, (2)

where P(wm|x ) is the posterior probability, P(wm) is the prior probability, and P(x|wm )
is the conditional probability. Generally, the prior probability in Equation (1) can be
calculated as follows.

P(wm) =
Nm

N . (3)

The key of training an NBC for the mixed-attribute classification problem is to calculate
the conditional probability based on the independent attribute assumption as follows.

P(x|wm ) = P
(
a1, · · · , aD1 , b1, · · · , bD2 |wm

)
=

[
D1

∏
i=1

P(ai|wm )

][
D2

∏
j=1

P
(
bj|wm

)]. (4)

Conditional probability P(ai|wm ) corresponding to a discrete attribute value ai is
calculated as follows:

P(ai|wm ) =

Nm
∑

n=1
I
(

ai, a(m)
ni

)
Nm

, (5)

where

I(u, v) =
{

1, if u = v
0, if u 6= v

(6)
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is an indicator function that is used to count the frequency of ai in the i-th continuous
attribute values a(m)

1i , a(m)
2i , · · · , a(m)

Nm ,j corresponding to samples belonging to the m-th class.
John and Langley [3] constructed a flexible NBC (FNBC), which used the kernel density
estimation technique [17] to calculate the term of P

(
bj|wm

)
for the continuous attribute

value in Equation (3) as follows:

P
(
bj|wm

)
∝ p
(
bj|wm

)
=

1
Nm

Nm

∑
n=1

1√
2πhj

exp

−1
2

 bj − b(m)
nj

hj

2
 (7)

where p
(
bj|wm

)
is the estimated probability density function (p.d.f.) value of bj based on

the j-th continuous attribute values b(m)
1j , b(m)

2j , · · · , b(m)
Nm ,j corresponding to samples from

the m-th class, and hj > 0 (hj = 1√
Nm

in [3]) is the bandwidth parameter. In addition,

continuous attribute discretization can also be used to determine p
(
bj|wm

)
as follows:

P
(
bj|wm

)
= P

(
cj|wm

)
=

Nm
∑

n=1
I
(

cj, c(m)
nj

)
Nm

(8)

by transforming the continuous attribute values bj, b(m)
1j , b(m)

2j , · · · , b(m)
Nm ,j into the discrete

attribute values cj, c(m)
1j , c(m)

2j , · · · , c(m)
Nm ,j. This form of discretization-based NBC is called

dis-NBC in this study.

3. Mixed-Attribute Fusion-Based Naive Bayesian Classifier

As stated in the introduction, continuous attribute discretization and the attribute
independence assumption limit the generalization performance of the NBC for the con-
tinuous attribute classification problem. To cope with these issues, recent studies either
introduced complex structures to represent attribute dependencies or applied discretization
techniques to transform mixed-attribute values into discrete attribute values [18–20]. This
section presents a novel solution to the NBC-based mixed-attribute classification problem
by considering attribute dependence and mixed-attribute transformation simultaneously.
A mixed-attribute fusion strategy is designed to construct an NBC that can be trained based
on the transformed continuous attributes with the minimum attribute dependence.

For discrete attributes of an original mixed-attribute (OMA) data set D, the one-hot
encoding technique [21] is applied to transform them into 0-1 numerical attributes; i.e.,
a(m)

ni , i = 1, 2, · · · ,D1 is encoded as
(

e(mi)
n1 , · · · , e(mi)

nKi

)
for the discrete attribute value of the

n-th sample x(mi)
n , n = 1, 2, · · · ,Nm, where the following is the case:

e(m)
nk =

{
1, if a(m)

ni = A(i)
k

0, if a(m)
ni 6= A(i)

k

(9)

and
{

A(i)
1 , A(i)

2 , · · · , A(i)
Ki

}
is Ki categorical values corresponding to the i-th discrete at-

tribute. Then, the one-hot encoded form of the original sample x(m)
n can be expressed

as follows.

x(m)
n =

(
e(m1)

n1 , · · · , e(m1)
nK1

, · · · , e(mD1)
n1 , · · · , e(mD1)

nKD1
, b(m)

n1 , · · · , b(m)
nD2

)
. (10)
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In fact, the one-hot encoding technique causes attribute redundancy when extending
a discrete attribute into multiple 0-1 numerical attributes. For example, the essence of the
following transformation  A1

A1
A2

→
 1 0

1 0
0 1

 (11)

is to represent a discrete attribute using two “repetitive” numerical attributes. The main
role of one-hot encoding is to transform the discrete attribute values into numbers. The
attribute independence assumption is not alleviated when constructing an NBC based on a
one-hot encoded attribute (OHEA) data set.

X =
[

x(1)1 · · · x(1)N1
x(2)1 · · · x(2)N2

· · · x(M)
1 · · · x(M)

NM

]T
. (12)

Thus, an autoencoder neural network (ANN) is meticulously designed to solve the
problems of attribute redundancy and attribute dependence mentioned above.

An ANN is a special single hidden-layer feed-forward neural network that has the
same input matrix and output matrix. The main purpose of training an ANN is to find the
optimal input layer weight matrix α = (αrl)R×L =

[
α1 α2 · · · αL

]
and output layer

matrix β = (βlr)L×R so that the practical output matrix X′ approximates the true output

matrix X as closely as possible, whereR =
D1
∑

i=1
Ki +D2 is the number of input layer nodes

of the ANN and L is the number of hidden layer nodes of the ANN.
The following objective function for ANN is designed to transform one-hot encoded

attributes into independent encoded attributes:

L
(
X, α, β

)
= λL1

(
X, α, β

)
+ (1− λ)L2

(
X, α, β

)
, (13)

where λ ∈ (0, 1) is a balance factor. Optimal weight matrices α and β are determined by
minimizing the objective function as follows:

α, β = argmax
αrl ,βlr∈<

r=1,2,··· ,R;l=1,2,··· ,L

{
L
(
X, α, β

)}
. (14)

Here, it is worthwhile to note that the original intention of using an autoencoder
neural network is to fuse the mixed attributes and to relax the attribute independence
assumption rather than exploring the usage of deep learning technology. When a shallow
learning can already meet the requirement of good NBC construction, it is unnecessary to
resort to complex and time-consuming deep learning. The excessive attention on attribute
transformation with deep learning is out of the scope of this study. Interested readers can
refer to specialized studies on the combination of deep learning and supervised learning
for more details on such approaches, e.g., deep support vector machine [22], deep decision
tree [23], and deep nearest neighbor [24].

The first term of the objective function is the encoding error, which is used to mea-
sure the error between the practical output matrix X′ and the true output matrix X. It is
defined as follows:

L1
(
X, α, β

)
=
∥∥∥X′ − X

∥∥∥2

2
=
∥∥[sigmoid

(
Xα
)]

β− X
∥∥2

2 (15)

where
X = sigmoid

(
Xα
)
=
[

x(1)1 · · · x(1)N1
· · · x(M)

1 · · · x(M)
NM

]T
(16)
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is a N ×L hidden-layer output matrix that is a class-independent encoded-attribute (IEA)

data set, such that x(m)
n =

(
x(m)

n1 , · · · , x(m)
nL

)
=
(

sigmoid
(

x(m)
n α1

)
, · · · , sigmoid

(
x(m)

n αL
))

is the independent encoded form of the original sample x(m)
n and

sigmoid(s) =
1

1 + exp(−s)
, s ∈ (−∞,+∞) (17)

is the sigmoid activation function. To minimize attribute dependence, the attribute depen-
dence term in the objective function is defined as follows:

L2
(
X, α, β

)
=

2
L(L− 1)

L
∑
i=1

L
∑
j=1
j 6=i

I(hi, hj), (18)

where

hi =
(

x(1)1i , · · · , x(1)N1,i, · · · , x(M)
1i , · · · , x(M)

NM,i

)T
(19)

is the i-th independent encoded attribute, and I(hi, hj) is the mutual information between
independent encoded attributes hi and hj and i, j ∈ {1, 2, · · · ,L} and i 6= j.

The updating rules of αrl and βlr are derived as follows. The second term of the
objective function is unrelated to the output-layer weights. Thus, the updating rule mainly
depends on the encoding error. The gradient descent method is used to determine the
updating rule of βlr. The partial derivative of L

(
X, α, β

)
with respect to βlr is calculated

as follows:

∆βlr =
∂L
(
X, α, β

)
∂βlr

= λ
∂L1
(
X, α, β

)
∂βlr

(20)

and then the updating rule of βlr is given as follows

βlr ← βlr − ξ × ∆βlr, (21)

where ξ > 0 is the learning rate. For the input-layer weight αrl , the updating rule cannot
be derived by using the gradient descent method because of the existence of mutual
information terms. Here, a new updating strategy based on the Monte Carlo method [25] is
designed as follows:

αrl ← αrl − ζ × ∆αrl , (22)

where ζ > 0 is the learning rate and

∆αrl =
1
N

M
∑

m=1

Nm

∑
n=1

L
(

x(m)
n , α, β

)
(23)

is the approximation of the gradient
∂L(X,α,β)

∂αrl
.

Based on the IEA data set, mixed-attribute fusion-based NBC (MAF-NBC) determines
the class label for a given new sample x =

(
a1, · · · , aD1 , b1, · · · , bD2

)
as follows. First, the

one-hot encoded form of x is expressed as follows:

x =
(

e(1)1 , · · · , e(1)K1
, · · · , e(D1)

1 , · · · , e(D1)
KD1

, b1, · · · , bD2

)
, (24)

where the following.

e(i)k =

{
1, if ai = A(i)

k
0, if ai 6= A(i)

k

, k = 1, 2, · · · ,Ki, i = 1, 2, · · · ,D1. (25)
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Second, x is transformed into the following independent encoded expression:

x =
(

x1, x2, · · · , xL
)
= (sigmoid(xα1), sigmoid(xα2), · · · , sigmoid(xαL)) (26)

based on the trained ANN with input weight matrix α = (αrl)R×L. Third, the class label of
x is determined according to Equation (1), where the conditional probability is calculated
as follows:

P(x|wm ) = P(x|wm ) = P
(
x|wm

)
=
L
∏
l=1

P(x̄l |wm ) =
L
∏
l=1

∫ xl

−∞
p(s|wm )

, (27)

where p(s|wm ) is approximated with a normal p.d.f.

f (m)
l (s) =

1
√

2πσ
(m)
l

exp

−1
2

(
s− µ

(m)
l

σ
(m)
l

)2,

s ∈ (−∞,+∞), m = 1, 2, · · · ,M, l = 1, 2, · · · ,L

(28)

with the mean value

µ
(m)
l =

1
Nm

Nm

∑
n=1

¯̄x(m)
nl (29)

and standard deviation (std).

σ
(m)
l =

√√√√ 1
Nm − 1

Nm

∑
n=1

[
¯̄x(m)
nl − µ

(m)
l

]2
. (30)

Here, an in-depth discussion regarding the normal p.d.f. f (m)
l (•) is given. The sigmoid

activation function is used in the designed ANN; thus, the outputs corresponding to each
hidden layer’s nodes obey a quasi-normal probability distribution. A visual comparison
of the sigmoid activation function and normal probability distribution functions with
standard deviations 0.1, 0.5, 1.0, and 2.0, as shown in Figure 1, clearly demonstrates this
empirical conclusion.

(a) (b)

Figure 1. Graphical comparison between sigmoid activation and normal distribution. (a) Sigmoid
activation function. (b) Normal probability distribution functions.

For independent attributes, the joint probability distribution is the normal probability
distribution if marginal probability distributions are normal probability distributions.
Thus, the joint probability P

(
x|wm

)
can be modeled as the product of multiple marginal

probabilities P
(
xl |wm

)
, l = 1, 2, · · · ,L. For the sake of simplicity, hidden-layer biases

are not used in the constructed ANN. The role of hidden-layer biases is to control the
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bias between the hidden layer’s input and the original point of the sigmoid function.
When conducting classification or regression tasks, hidden-layer biases are helpful for the
generation of high-performance learners. In MAF-NBC, the ANN is designed to transform
one-hot encoded attributes into independent encoded attributes that are expected to have
minimum dependence. The reasonable objective function shown in Equation (11) is able
to guarantee the generation of independent encoded attributes even though hidden-layer
biases are not used in ANN. The following experiments will support the aforementioned
discussion and conclusion.

4. Experimental Settings and Results

A series of experiments are conducted in this section to validate the feasibility, ra-
tionality, and effectiveness of the proposed mixed-attribute fusion-based naive Bayesian
classifier (MAF-NBC). Experiments were conducted using 20 KEEL [26] mixed-attribute
data sets. Their characteristics are listed in Table 1, where the Arabic numerals in paren-
theses represent the numbers of avaliable categorical values corresponding to the discrete
attributes. The data processing strategy proposed by Helal and Otero [27] was used to
generate the mixed attributes for the data sets marked without ’*’ in Table 1. Then, the
equal width discretization method was used to transform the continuous attributes into
discrete attributes. All data sets as shown in Table 1 can be downloaded from our BaiDuPan
or GitHub online storage space. The experiments were run on a PC equipped with an
Intel(R) Quadcore 3.00 GHz i5-9400 CPU and 16 GB of RAM.

Table 1. Details of 20 mixed-attribute data sets.

Data sets Abalone_3_4 Abalone_9_10 Adult * Band *
Number of samples 423 1073 5000 540

Number of continuous attributes 6 6 9 18
Number of discrete attributes 2 (2, 4) 2 (2, 4) 5 (5, 7, 5, 4, 2) 5 (3, 5, 2, 3, 3)

Number of classes 2 2 2 2

data sets Bd Bp Heart Ionosphere
Number of samples 569 198 270 351

Number of continuous attributes 23 25 9 25
Number of discrete attributes 7 (4, 6, 5, 3, 2, 4, 3) 8 (6, 3, 5, 4, 5, 3, 4, 2) 4 (4, 3, 3, 4) 7 (4, 6, 5, 3, 4, 3, 5)

Number of classes 2 2 2 2

Data sets Libras Page blocks Parkinsons Ring
Number of samples 360 547 195 500

Number of continuous attributes 85 7 17 15
Number of discrete attributes 15 (4, 5, 7, 5, 8, 4, 5, 6, 4, 5, 6, 7, 3, 4, 5) 3 (3, 5, 4) 5 (4, 5, 6, 5, 3) 5 (3, 4, 5, 3, 4)

Number of classes 15 5 2 2

Data sets Segment Sonar SPECTF Vehicle
Number of samples 2310 208 267 846

Number of continuous attributes 14 50 36 6
Number of discrete attributes 5 (3, 6, 5, 4, 3) 10 (6, 4, 3, 5, 6, 7, 5, 3, 4, 6) 8 (4, 6, 5, 5, 3, 6, 7, 4) 2 (4, 3)

Number of classes 7 2 2 4

Data sets Vowel Wine WineQR WineQW
Number of samples 528 178 1599 489

Number of continuous attributes 7 10 8 8
Number of discrete attributes 3 (3, 3, 4) 3 (4, 5, 4) 3 (4, 4, 3) 3 (3, 3, 3)

Number of classes 11 3 6 6

4.1. Feasibility Validation of MAF-NBC

A first experiment was performed to validate the feasibility of the MAF-NBC method
by checking the convergence of ANN weights by the iterative update process. This ex-
periment was conducted on the representative Vowel data set, which has three discrete
attributes and seven continuous attributes. The experimental results are the average values
corresponding to 10 independent ANN training. Ten ANNs with 50 hidden-layer nodes
were constructed with random weights in the [−1, 1] range, a balance factor λ = 0.50,
and learning rates ξ = ζ = 0.01. Figure 2 depicts the variation trends of the 1-norms
for the input layer and output layer weights as the iteration number increased. Figure 3
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presents the variation trends of encoding error and attribute dependence as the iteration
number increased.

(a) (b)

Figure 2. Convergence of the ANN’s weights. (a) Input-layer weights. (b) Output-layer weights.

(a) (b)

Figure 3. Convergence of the ANN’s objective function. (a) Encoding error. (b) Attribute dependence.

Figure 2 shows that the sums of absolute values corresponding to the input layer
and output-layer weights become more and more stable with the number of iterations.
In addition, Figure 3 shows that the encoding error and attribute dependence decrease
gradually and then remain unchanged. These experimental results reveal that the updating
rules of Equations (15) and (16) are effective for the determination of optimal ANN weights.

In fact, Equation (17) is the approximation of the expected loss EX

[
∂L(X ,α,β)

∂αrl

]
, where X is

the domain of the objective function L(•, α, β). Although the gradient of input layer weights
cannot be analytically calculated due to the existence of the attribute dependence term,
Equation (17) uses the mean of the objective function values corresponding to all samples
in the one-hot encoded attribute data set to approximate the gradient. The convergence
of output layer weights guarantees the convergence of input layer weights, because the
update of αrl depends on the update of βlr. This experiment demonstrates the feasibility of
transforming the one-hot encoded attributes into independent encoded attributes.

4.2. Rationality Validation of MAF-NBC

A second experiment was carried out to evaluate the rationality of MAF-NBC in
terms of whether the designed ANN can transform the one-hot encoded attributes corre-
sponding to the original mixed attributes into independent encoded attributes. On the
representative Page_small data set, an ANN with 50 hidden-layer nodes was constructed
with random weights in the [−1,1] interval, a balance factor λ = 0.50, and learning rates
ξ = ζ = 0.01. Ten representative encoded attributes were selected from the hidden-layer
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outputs of ANN. The dependence between the two encoded attributes was measured with
the mutual information, which is calculated with sklearn.metrics.mutual_info_score (https:
//scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html, ac-
cessed on 14 October 2022) package of the scikit-learn machine learning library.

Figure 4 displays a series of heatmaps corresponding to iterations #1, #50, #100, and
#150. These heatmaps show the change in attribute dependence as the iteration number
increases during the ANN’s training. It can be clearly seen that the dependence between
encoded attribute gradually decreases as ANN weights are updated. It indicates that
independent attributes can be obtained by transforming the original mixed attributes into
the encoded attributes. The experimental results shown in Figure 4 are consistent with
the experimental results shown in Figure 3b, where the attribute dependence gradually
decreases with the increase in iteration number. This experiment demonstrated that the
ANN is able to transform the original mixed attributes into independent encoded attributes
for NBC construction.

(a) Iteration #1 (b) Iteration #50

(c) Iteration #100 (d) Iteration #150

Figure 4. Dependence change of the encoded continuous attributes.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html
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4.3. Effectiveness Validation of MAF-NBC

A third experiment was performed to evaluate the effectiveness of MAF-NBC. This
was performed by comparing the classification performances of MAF-NBC with Dis-
NBC, FNBC [3], TAN [4], AODE [5], HNB [6], DFW-NBC [7], CFW-NBC [8], and ICA-
NBC [10]. All Bayesian algorithms were implemented using the Python programming
language. Twenty KEEL mixed-attribute data sets (described in Table 1) were selected
to test the training and testing accuracies of the compared algorithms. For each data set,
independent training and testing were conducted 10 times with random data set partitions,
i.e., 70% samples to train the different Bayes algorithms and 30% to test their generalization
capabilities. All ANNs were constructed with 2L hidden-layer nodes, initialized with
random weights in the [−1, 1] range, and setup with the learning parameters λ = 0.50 and
ξ = ζ = 0.01. The mean and standard derivation of the 10 training and testing accuracies
are listed for each algorithm in Tables 2 and 3, respectively.

The training and testing performances of MAF-NBC were statistically validated by
comparing with eight other Bayes algorithms on the 20 data sets. For the given significance
level of 0.05, the critical difference (CD) value [28] is calculated as follows:

CD = 3.102×

√
9× (9 + 1)

6× 20
≈ 2.686, (31)

where the number of compared algorithms is nine, and the number of data sets is 20. In
Figure 5, an interval of one CD value can be observed to the left and right of the average
rank of MAF-NBC. Any algorithm with a rank outside this area is significantly different
from MAF-NBC. It is found that the ranks of MAF-NBC corresponding to the training
and testing accuracies are obviously smaller than the other algorithms. In addition, the
number of wins for MAF-NBC on 20 data sets is at least 20

2 + 1.96×
√

20
2 ≈ 14 for the

significance level of 0.05. Furthermore, it can be said that MAF-NBC has significantly
improved testing accuracies than Dis-NBC (20 wins), FNBC (20 wins), TAN (20 wins),
AODE (20 wins), HNB (20 wins), DFW-NBC (19 wins), CFW-NBC (19 wins), and ICA-NBC
(18 wins) under a significance level of 0.10. This indicates that MAF-NBC is significantly
better for classification than the other algorithms on the selected data sets. The experimental
results and statistical analyses demonstrate the effectiveness of MAF-NBC and indicate
that MAF-NBC is a viable method to handle mixed-attribute classification tasks. MAF-NBC
does not modify the simple model structure of the NBC and preserves the amount of
information of the original mixed-attribute data set as much as possible, because the ANN
transforms the original mixed attributes into encoded attributes rather than selecting or
extracting independent attributes from the original mixed attributes.
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Table 2. Comparison of the training accuracies of MAF-NBC, Dis-NBC, FNB, TAN, AODE, HNB, DFW-NBC, CFW-NBC, and ICA-NBC.

Data Set MAF-NBC Dis-NBC FNBC TAN AODE HNB DFW-NBC CFW-NBC ICA-NBC

Abalone_3_4 0.803 ± 0.036 0.721 ± 0.032 0.736 ± 0.026 0.767 ± 0.038 0.755 ± 0.032 0.744 ± 0.029 0.747 ± 0.018 0.755 ± 0.017 0.781 ± 0.045

Abalone_9_10 0.607 ± 0.029 0.597 ± 0.012 0.592 ± 0.021 0.595 ± 0.025 0.596 ± 0.024 0.587 ± 0.041 0.617 ± 0.008 0.605 ± 0.014 0.619 ± 0.017

Adult 0.870 ± 0.013 0.782 ± 0.014 0.792 ± 0.015 0.807 ± 0.013 0.829 ± 0.008 0.811 ± 0.017 0.805 ± 0.011 0.813 ± 0.006 0.851 ± 0.015

Band 0.718 ± 0.027 0.669 ± 0.028 0.637 ± 0.034 0.671 ± 0.035 0.663 ± 0.024 0.681 ± 0.028 0.703 ± 0.015 0.718 ± 0.017 0.714 ± 0.016

Bd 0.991 ± 0.002 0.919 ± 0.004 0.938 ± 0.010 0.961 ± 0.009 0.959 ± 0.008 0.953 ± 0.011 0.959 ± 0.007 0.970 ± 0.004 0.983 ± 0.007

Bp 0.852 ± 0.022 0.788 ± 0.023 0.793 ± 0.027 0.803 ± 0.029 0.801 ± 0.034 0.791 ± 0.041 0.841 ± 0.036 0.824 ± 0.033 0.837 ± 0.027

Heart 0.924 ± 0.014 0.699 ± 0.013 0.824 ± 0.017 0.858 ± 0.015 0.849 ± 0.021 0.867 ± 0.029 0.886 ± 0.013 0.905 ± 0.015 0.901 ± 0.017

Ionosphere 0.981 ± 0.005 0.901 ± 0.006 0.917 ± 0.011 0.934 ± 0.009 0.932 ± 0.013 0.926 ± 0.021 0.928 ± 0.012 0.941 ± 0.015 0.974 ± 0.004

Libras 0.905 ± 0.007 0.938 ± 0.015 0.857 ± 0.019 0.899 ± 0.015 0.847 ± 0.016 0.864 ± 0.015 0.911 ± 0.016 0.910 ± 0.015 0.908 ± 0.011

Page_small 0.952 ± 0.010 0.915 ± 0.005 0.911 ± 0.007 0.909 ± 0.018 0.919 ± 0.014 0.914 ± 0.017 0.931 ± 0.006 0.933 ± 0.008 0.937 ± 0.007

Parkinsons 0.872 ± 0.029 0.782 ± 0.021 0.801 ± 0.022 0.808 ± 0.025 0.814 ± 0.027 0.821 ± 0.021 0.827 ± 0.022 0.841 ± 0.025 0.852 ± 0.024

Ring 0.937 ± 0.015 0.801 ± 0.017 0.836 ± 0.015 0.855 ± 0.028 0.869 ± 0.024 0.858 ± 0.027 0.916 ± 0.010 0.948 ± 0.006 0.956 ± 0.008

Segment 0.940 ± 0.007 0.878 ± 0.010 0.889 ± 0.019 0.897 ± 0.016 0.895 ± 0.014 0.901 ± 0.016 0.928 ± 0.006 0.945 ± 0.009 0.959 ± 0.005

Sonar 0.865 ± 0.019 0.823 ± 0.029 0.834 ± 0.027 0.839 ± 0.025 0.844 ± 0.018 0.840 ± 0.025 0.841 ± 0.027 0.847 ± 0.029 0.851 ± 0.024

Spectf 0.908 ± 0.011 0.768 ± 0.023 0.771 ± 0.017 0.783 ± 0.019 0.779 ± 0.015 0.756 ± 0.029 0.779 ± 0.016 0.789 ± 0.014 0.883 ± 0.019

Vehicle 0.771 ± 0.016 0.537 ± 0.005 0.544 ± 0.011 0.576 ± 0.016 0.589 ± 0.019 0.567 ± 0.026 0.604 ± 0.022 0.611 ± 0.021 0.705 ± 0.017

Vowel 0.869 ± 0.017 0.829 ± 0.021 0.839 ± 0.017 0.836 ± 0.019 0.840 ± 0.016 0.847 ± 0.019 0.843 ± 0.021 0.848 ± 0.016 0.833 ± 0.023

Wine 0.999 ± 0.001 0.963 ± 0.021 0.967 ± 0.017 0.975 ± 0.006 0.981 ± 0.004 0.968 ± 0.007 0.999 ± 0.001 0.999 ± 0.001 0.968 ± 0.019

WineQR 0.738 ± 0.023 0.563 ± 0.014 0.578 ± 0.034 0.580 ± 0.033 0.591 ± 0.031 0.602 ± 0.037 0.638 ± 0.020 0.717 ± 0.019 0.688 ± 0.036

WineQW 0.584 ± 0.028 0.487 ± 0.014 0.524 ± 0.016 0.537 ± 0.024 0.533 ± 0.016 0.541 ± 0.021 0.551 ± 0.028 0.561 ± 0.025 0.577 ± 0.021

Average 0.854 ± 0.017 0.768 ± 0.016 0.779 ± 0.019 0.795 ± 0.021 0.794 ± 0.016 0.792 ± 0.024 0.813 ± 0.016 0.824 ± 0.015 0.839 ± 0.018
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Table 3. Comparison of the testing accuracies of MAF-NBC, Dis-NBC, FNB, TAN, AODE, HNB, DFW-NBC, CFW-NBC, and ICA-NBC.

Data Set MAF-NBC Dis-NBC FNBC TAN AODE HNB DFW-NBC CFW-NBC ICA-NBC

Abalone_3_4 0.759 ± 0.030 0.685 ± 0.042 0.701 ± 0.049 0.742 ± 0.032 0.733 ± 0.037 0.728 ± 0.029 0.723 ± 0.031 0.751 ± 0.027 0.755 ± 0.043

Abalone_9_10 0.603 ± 0.028 0.587 ± 0.024 0.588 ± 0.026 0.587 ± 0.027 0.589 ± 0.028 0.581 ± 0.030 0.589 ± 0.031 0.582 ± 0.031 0.602 ± 0.032

Adult 0.842 ± 0.014 0.795 ± 0.011 0.788 ± 0.019 0.801 ± 0.025 0.817 ± 0.012 0.807 ± 0.027 0.804 ± 0.012 0.811 ± 0.014 0.824 ± 0.009

Band 0.647 ± 0.045 0.606 ± 0.028 0.601 ± 0.028 0.626 ± 0.036 0.618 ± 0.038 0.609 ± 0.031 0.619 ± 0.034 0.630 ± 0.036 0.619 ± 0.041

Bd 0.973 ± 0.011 0.915 ± 0.017 0.921 ± 0.013 0.956 ± 0.012 0.950 ± 0.010 0.946 ± 0.014 0.933 ± 0.015 0.944 ± 0.016 0.948 ± 0.014

Bp 0.764 ± 0.040 0.739 ± 0.047 0.746 ± 0.039 0.740 ± 0.057 0.739 ± 0.052 0.737 ± 0.065 0.755 ± 0.036 0.747 ± 0.041 0.746 ± 0.049

Heart 0.876 ± 0.028 0.703 ± 0.022 0.711 ± 0.025 0.739 ± 0.037 0.728 ± 0.034 0.789 ± 0.039 0.859 ± 0.032 0.864 ± 0.035 0.851 ± 0.038

Ionosphere 0.947 ± 0.027 0.894 ± 0.024 0.906 ± 0.021 0.917 ± 0.017 0.907 ± 0.025 0.901 ± 0.027 0.923 ± 0.029 0.927 ± 0.020 0.931 ± 0.026

Libras 0.778 ± 0.039 0.743 ± 0.047 0.756 ± 0.058 0.751 ± 0.021 0.749 ± 0.048 0.748 ± 0.039 0.759 ± 0.036 0.764 ± 0.039 0.759 ± 0.038

Page_small 0.901 ± 0.019 0.896 ± 0.015 0.889 ± 0.013 0.891 ± 0.016 0.881 ± 0.019 0.898 ± 0.017 0.912 ± 0.015 0.913 ± 0.011 0.899 ± 0.012

Parkinsons 0.826 ± 0.042 0.756 ± 0.043 0.769 ± 0.049 0.779 ± 0.059 0.771 ± 0.047 0.782 ± 0.039 0.786 ± 0.034 0.807 ± 0.044 0.779 ± 0.030

Ring 0.928 ± 0.017 0.781 ± 0.041 0.831 ± 0.038 0.849 ± 0.049 0.834 ± 0.041 0.879 ± 0.049 0.870 ± 0.028 0.910 ± 0.011 0.925 ± 0.016

Segment 0.913 ± 0.016 0.869 ± 0.019 0.874 ± 0.014 0.886 ± 0.018 0.895 ± 0.016 0.889 ± 0.020 0.899 ± 0.015 0.906 ± 0.013 0.922 ± 0.010

Sonar 0.816 ± 0.036 0.758 ± 0.046 0.769 ± 0.053 0.779 ± 0.038 0.806 ± 0.034 0.787 ± 0.023 0.796 ± 0.036 0.801 ± 0.042 0.837 ± 0.029

Spectf 0.823 ± 0.023 0.716 ± 0.037 0.727 ± 0.027 0.778 ± 0.041 0.794 ± 0.030 0.757 ± 0.041 0.748 ± 0.035 0.757 ± 0.030 0.801 ± 0.029

Vehicle 0.611 ± 0.029 0.483 ± 0.037 0.506 ± 0.039 0.529 ± 0.032 0.520 ± 0.049 0.518 ± 0.054 0.537 ± 0.029 0.549 ± 0.032 0.589 ± 0.028

Vowel 0.859 ± 0.023 0.781 ± 0.057 0.781 ± 0.052 0.799 ± 0.058 0.795 ± 0.057 0.801 ± 0.033 0.811 ± 0.029 0.821 ± 0.024 0.816 ± 0.027

Wine 0.961 ± 0.019 0.928 ± 0.024 0.926 ± 0.029 0.937 ± 0.027 0.946 ± 0.021 0.939 ± 0.026 0.958 ± 0.017 0.945 ± 0.022 0.931 ± 0.016

WineQR 0.637 ± 0.018 0.489 ± 0.025 0.509 ± 0.038 0.519 ± 0.037 0.528 ± 0.034 0.524 ± 0.031 0.563 ± 0.028 0.587 ± 0.030 0.559 ± 0.041

WineQW 0.534 ± 0.036 0.477 ± 0.043 0.503 ± 0.033 0.508 ± 0.038 0.501 ± 0.041 0.509 ± 0.029 0.508 ± 0.041 0.515 ± 0.028 0.529 ± 0.039

Average 0.800 ± 0.027 0.730 ± 0.032 0.740 ± 0.033 0.756 ± 0.034 0.755 ± 0.034 0.756 ± 0.033 0.768 ± 0.027 0.777 ± 0.027 0.781 ± 0.028
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(a)

(b)

Figure 5. CD diagrams corresponding to comparisons in Tables 2 and 3. (a) CD diagram of training
accuracies. (b) CD diagram of testing accuracies.

5. Conclusions and Future Works

This paper presented a novel NBC training method for the mixed-attribute data classi-
fication problem without continuous attribute discretization and complex Bayesian network
structure learning. The original mixed attributes were transformed into a series of continu-
ous attributes with minimum dependence using an autoencoder neural network. To obtain
optimal network weights, an effective objective function was designed, and correspond-
ing weight updating rules were derived. The experimental results finally demonstrated
improved classification performance for the novel Bayes model in comparison with eight
state-of-the-art Bayesian algorithms. The technical advantages of MAF-NBC are four-fold:

• Preserving the information. The autoencoder neural network transforms mixed at-
tributes into independent encoded attributes, which can also be decoded to restore
the original mixed attributes. Thus, useful information from the original data set is
conserved as much as possible.

• Simple model structure. MAF-NBC effectively handles the attribute dependence prob-
lem between discrete attributes and continuous attributes by transforming original
attributes into encoded attributes. The simple structure of the NBC was not modified
by providing a data transformation-oriented preprocessing strategy.

• Stable training process. The efficient weight updating strategy guarantees the conver-
gence of the autoencoder neural network and thus provided stable data transformation
results. In addition, the quasi-normal distribution of independent encoded attributes
provided accurate calculations for the joint conditional probability in the NBC.

• Low computation complexity. A single hidden-layer encoder neural network was
used to fuse the original mixed attributes. Training to find optimal network weights
has a low computational complexity. As mentioned in Section 3, a shallow learning
mechanism was able to satisfy the demand of NBC construction. Hence, it is unnec-
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essary to explore the availability of deep learning for data transformation-oriented
NBC training.

In future studies, we plan (1) to implement MAF-NBC in a distributed environment so
that it can be used to deal with large-scale mixed-attribute data-classification problems and
(2) to utilize the autoencoder neural network to transform mixed attributes into dependent
continuous attributes to construct a non-naive Bayesian classifier [29] based on the joint
probability density function estimation technique.
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