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Abstract: One of the goals of the scientific community is to equip the discipline of spatial planning
with efficient tools to handle huge amounts of data. In this sense, unsupervised machine learning
techniques (UMLT) can help overcome this obstacle to further the study of spatial dynamics. New
machine-learning-based technologies make it possible to simulate the development of urban spa-
tial dynamics and how they may interact with ecosystem services provided by nature. Modeling
information derived from various land cover datasets, satellite earth observation and open resources
such as Volunteered Geographic Information (VGI) represent a key structural step for geospatial
support for land use planning. Sustainability is certainly one of the paradigms on which planning
and the study of past, present and future spatial dynamics must be based. Topics such as Urban
Ecosystem Services have assumed such importance that they have become a prerogative on which to
guide the administration in the difficult process of transformation, taking place not only in the urban
context, but also in the peri-urban one. In this paper, we present an approach aimed at analyzing the
performance of clustering methods to define a standardized system for spatial planning analysis and
the study of associated dynamics. The methodology built ad hoc in this research was tested in the
spatial context of the city of L’Aquila (Abruzzo, Italy) to identify the urbanized and non-urbanized
area with a standardized and automatic method.

Keywords: unsupervised machine learning; UMLT; urban planning; clustering models; machine
learning; mosaic urban pattern

1. Introduction

New planning uses innovative and technologically advanced tools through the con-
tinuous flow of data and simulations of possible scenarios. In this application context,
approaches based on GIS technologies and methodologies play a fundamental role, both
in vulnerability assessment and in supporting decision-making processes as a whole and
in the analysis of risk, impact and consequences [1,2]. In the last years, the scientific com-
munity has focused increasingly on the application implications of the use of GIS-based
technologies, and the need for effective spatial standards and interfaces, spatial analysis
tools and integrated hardware/software platforms (Spatial Data Infrastructure, SDI) have
played a key role in the development of these activities [3–5].

GIS-based models have been used to quantify both the demand and provision of Urban
Ecosystem Services (UES) [6–8]. These models allow, through spatial data such as land
cover and land use (LULC), for the quantification of UESs by associating and comparing
them with vegetation types and other landscape features [9]. Moreover, spatial dynamics
can reveal heterogeneity and trends in the distribution of UESs over urban landscapes,
which can be of importance for urban sustainability planning [10]. Other studies have
quantified spatial variation in UES values using a hedonic price model and have analyzed
spatial relations among biodiversity features to assess habitat supply [11].
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The GIS-based approach to spatial planning allows one to benefit from ICT tech-
nologies. In particular, the new research activities in this area concern the application of
indicators, engineering techniques aimed at identifying appropriate indices able to return
information on the reaction of urban tissues with respect to environmental disturbances
that determine impact/risk scenarios [12,13]. The infrastructures that today aim to collect
and manage the immense amount of information produced by different systems express
their real power in integration and interoperability [5,14]. New applications and innovative
geospatial services are the basis of this research, with reference to spatial analysis and fast
monitoring tools for urban resilience, the redevelopment of sensitive areas to combat hy-
draulic and hydrogeological risk; for the mitigation of climate change; for the improvement
of/increase in ecosystem services; and for the evaluation of the carbon balance. All these
issues are at the basis of the correct application of legislation on the Strategic Environmental
Assessment (SEA), which should normally regulate the effects of urban planning [15,16].
The same procedure is based on the formulation of alternative assessment scenarios and
on the concepts of mitigation and compensation [17]. Therefore, through a technological
and cultural reform, it is possible to make SEA an effective and fundamental tool for
urban planning. In this particularly active context, the experimentation of technologies in
territorial sciences assumes a fundamental importance for the development of the field of
territorial planning.

Indeed, today, Machine learning (ML) has increasingly been used in studies concerning
territorial sciences and urban dynamics [18–21]. Neural networks were introduced in the
1950s, but only recently they have reached advanced processing power and data storage
capabilities to the point that deep learning (DL) algorithms can be used to create new
applications, including satellite imagery analysis [22]. Therefore, experimentation with ML
and DL can only increase the interpretive capabilities of the urban mosaic and can generate
sustainable territorial configurations [23,24].

This work exploits unsupervised machine learning techniques to discriminate urban-
ized from non-urbanized areas, a key step in implementing an urban and peri-urban mosaic
pattern evaluation system.

The innovation of this research is using a shift of the hexagonal grid in order to bypass
the randomized approach of a static grid and to evaluate which result can best approximate
the structure of the urbanized space. The goal is to define the area of highest probability of
intercepting the urbanized tiles through image analysis.

This paper is part of a broader work that aims at defining ecosystem functions inside
and outside urban areas and thus at the design and provision of related ecosystem services.

2. Materials and Methods
2.1. Study Area and Dataset

The study area is represented by the city of L’Aquila, situated in the Abruzzo region
(central Italy) (Figure 1).

This territorial scope includes both the natural system composed by protected areas
(PAs), established at the local and national/international level (Natura 2000 network, local
protected areas, Important Birding Areas, Ramsar areas, etc.), and by the anthropic system,
consisting mostly of artificial areas. However, the latter do not have net defined boundaries
due to the territorial morphology that not only influences aspects of the planning action,
such as the dynamics of urban development and the protection of the natural matrix, but
also contributes to mixing up the functionalities and the intrinsic characteristics of the two
systems, resulting in a more complex pattern [25].
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In this peculiar context, the sustainable development principle entails a fundamental
prerogative for the planning policies, to the point that several projects and plans are
envisaged for this and other neighboring territorial scopes. LIFE IMAGINE is an integrated
LIFE project aimed at sustaining the development of an integrated and unified strategy
for the management of the Natura 2000 network in the Umbria region through actions to
foster the connection, protection and enhancement of agricultural lands, forest habitats and
wetlands, and the conservation of severe animal species [26]. Similarly, the “Sustainability,
resilience, adaptation for the protection of the ecosystems and the physical reconstruction in
central Italy” (SostEn&Re) project that concludes in autumn 2022 represents an important
experience for the Abruzzo, Marche and Umbria regions in the formulation of guidelines
to promote the implementation of the National Strategy for sustainable development [27].
The accomplishment of these projects brings the planning policies to a new level of concern
about the aspects of sustainable development, creating new tools and supporting strategies
to help local administration implement sustainable development goals set by both the
national and international levels [28].

Despite this, on the other hand, municipalities manage territorial transformations with
planning tools drafted, in certain cases, almost fifty years ago, defining threats and/or
pressure on the network formed by all the possible connections between PAs. The city
of L’Aquila does not escape these dynamics, which results in even more complexity if
considered in a territorial scope, for which different thrusts of development subsist. Indeed,
to put in place solutions aimed at enhancing the best planning practices, different projects
and tools set both at the national and EU levels are envisaged; e.g., NextGenerationEU es-
tablished two important instruments with the aim of involving member states in significant
changes both from an environmental and a social point of view (Recovery and Resilience
Facilities and Recovery Assistance for Cohesion and the Territories of Europe) [29]. These
two instruments, aimed at the sustainable development of European Union member coun-
tries and the revitalization of their own economy, were followed up in Italy by the National
Recovery and Resilience Plan (PNRR), which, in its current state, stimulates a series of
interventions for the development of the country [30].
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In the depicted framework, studies such as the current one, aimed at distinguishing
urbanized cells from the natural ones, play a fundamental role as tools to address and
formulate efficient planning policies.

The dataset utilized to perform the analyses is the Urban Atlas (UA), a product from the
Copernicus Land Monitoring Service, in which the categories represent different Functional
Urban Areas (FUA). The year of the utilized UA is 2018, and the spatial resolution is of
0.25 hectares for the first class and of 1 hectare for the other ones (class 2–5), with a minimum
mapping width of 10 m [31]. The European Urban Atlas provides land use patterns of
major European cities, so it is well suited to perform a comparative analysis. Being used in
different kinds of research, these data manage also reveal/highlight important connections
such as human activities and land use [32–34]. For example, UAs were also used to compare
patch perimeter metrics of Lisbon (Portugal), Barcelona (Spain), Rome (Italy) and Athens
(Greece), four large metropolitan regions in southern Europe.

2.2. Grid Generation Procedures

In the present work, a hexagonal mesh grid (cells) was used to discretize the study
area. Currently, rasters in a GIS-based environment often follow a rectangular-shaped grid.
Hence, remotely sensed images should be rectified in hexagonal grids when the objec-
tive/aim is to return a better representation of the neighborhood relations (Figure 2) [35,36].
Compared to the rectangular ones, hexagonal grid cells align along three axes, also having
a more variable shape [37]. Due to the “meet points” set at their edges, hexagonal grid
cells are also less ambiguous. Indeed, rectangular grid lines merge their continuity to the
orthogonal neighbor cells, and, being sensitive to lines parallel to the x or y axes, human
vision becomes distracted by them [38].
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Hence, this work fits into the current of Cellular Automata (CA) model approaches,
performed through hexagonal-shaped grids, a type of geometry already used in various
studies such as the current one [39–41].

First, we created a hexagonal-shapde grid in a GIS-based environment (QGIS software,
version 3.16.3, Hannover, Germany) [42], with the extension of the layer represented by the
UA. The cell size was set according to the peri-urban areas’ perception capacity. The spatial
and structural definitions of such areas are still an open discussion for spatial sciences;
therefore, the area of the single hexagon was set to 2 square km, arbitrarily set based on
doubling the mean urban area values detectable in the 2018 Corine Land Cover dataset [31].

Grid creation in a GIS-based environment is set on the UA extension, so it is not
optimized for the best discretization of urban and nonurban areas. To evaluate the best grid
position for our analysis, we applied a 3-directional shift, resumable with the following
abbreviations (Figure 3):
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S0—Null shift.
S1—Right shift, equal to the radius of the circumscribed circumference of the single

hexagonal cell.
S2—Down shift, equal to the apothem of the hexagonal cell.
S3—Diagonal shift, equal to the radius of the circumscribed circumference of a single

hexagonal cell.
The reason that it was chosen to apply to only these 3 shifts is the redundancy of the

translation. In fact, additional movements made with the specified distances lead to one of
the four initial grid conditions.

The Urban Atlas was reorganized into two datasets for data processing. First, we
considered the division between artificial areas (class 1, 17 urban sub-classes) and non-
artificial areas (classes 2–5, 10 non-urban sub-classes). Then, we performed the same
analyses with the five categories of the UA (Table 1).

Table 1. Urban Atlas (UA) class distinction.

2 UA CLASSES 5 UA CLASSES

1 Artificial areas 1 Artificial areas

2 Non-artificial areas

2 Agricultural areas
3 Natural areas
4 Wetlands
5 Water bodies

After the intersection between the UA and every grid (S0, S1, S2, S3) (Figure 4), the
areas occupied by individual categories in each hexagon were aggregated. It is important
to notice that, for the dataset, only cells with a 2 square km area were used to avoid all
the mosaic tiles that, due to the intersection between the different grids and the UA, could
not be considered like the larger ones. This operation resulted in 606 tiles for the S0 shift;
605 tiles for the S1 shift; 598 tiles for the S2 shift; and 599 tiles for the S3 shift.

Finally, the process from which the grids were obtained was standardized using the
integrated graphical modeler option in QGIS. No specific plugins were used.

2.3. Unsupervised Machine Learning Procedures

Once all the necessary data were obtained, we performed unsupervised machine
learning (UML) analyses to separate the urbanized cells from the natural ones.

The software used for this purpose was GeoDa, an open-source and free program,
developed for those approaching spatial analysis. GeoDa allows for the deepening and
exploration of spatial models and distributions [43]. Particularly, the models used to
perform the analyses of interest were those well deepened/established in the scientific
literature, which belong to the C clustering library and which GeoDa refers to as the follow-
ing [44]: K—Means; K—Medians; K—Medoids (CLARA Algorithm); K—Medoids; (PAM
Algorithm); Spectral K-NN; Spectral Mutual K-NN; Spectral Gaussian; Hierarchical Single
linkage; Hierarchical Ward’s linkage; Hierarchical Complete linkage; and Hierarchical
Average linkage.
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Clustering algorithms allow analysts to create the desired number of clusters, starting
from an input dataset [45]. First, eleven methods were used for this computational task;
then, for each method, the “BSS/TSS” metric was calculated. This value represents the ratio
of the total between-groups sum of squares (BSS) to the total sum of squares (TSS). Higher
values of BSS/TSS entail a better cluster separation [46]. This procedure was executed
for each grid shift, extrapolating, among 88 values (one for every clustering algorithm
(11) performed for each grid shift (4), first considering only urbanized and non-urbanized
areas, then considering all the main categories), the best ones with the belonging method
(Table 1).

No data pre-processing was chosen due to the dataset homogeneity.
The criteria set up for the methods were chosen to verify and reduce the possibility

of a sensible improvement of the BSS/TSS ratio. The initial re-runs (wherever available)
guaranteed an adequate number of reiterations in the choice of the points to be set as cluster
centroids. When available, the Manhattan distance was chosen for the calculation of the
distances between points. Otherwise, the Euclidean distance was chosen (Table 2). Figure 5
summarizes a comprehensive flowchart of the approach adopted.
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Table 2. Criteria of the clustering algorithms. The “/” symbol indicates that the setting is absent for the specified algorithm. The ability of the single algorithms to
form two different clusters (urbanized areas and not-urbanized areas) from the datasets were evaluated through the ratio of the total between-groups sum of squares
(BSS) to the total sum of squares (TSS), or the “BSS/TSS” metric. As the value becomes higher, the cluster separation becomes better.

METHOD CRITERIA

Transformation Initialization
Method

Initialization
Re-Runs

Max.
Iterations

Dist.
Function

N. of Samples/
Iterations Sample Size/Rate Affinity

K—Means Raw Random 150 1000 Euclidean / / /
K—Medians Raw Random 150 1000 Manhattan / / /

K—Medoids (CLARA Algorithm) Raw LAB / / Manhattan 10 200 /
K—Medoids

(PAM Algorithm) Raw LAB / / Manhattan / / /

Spectral K-NN Raw Random 150 300 Manhattan / / K—NN #Neighors = ln(n) + 1

Spectral Mutual K-NN Raw Random 150 300 Manhattan / / Mutual K—NN #Neighors =
second ln(n) +1

Spectral Gaussian Raw Random 150 300 Manhattan / / Sigma =
√

1
p

Hierarchical Single linkage Raw / / / Manhattan / / /
Hierarchical Ward’s linkage Raw / / / Euclidean / / /

Hierarchical Complete linkage Raw / / / Manhattan / / /
Hierarchical Average linkage Raw / / / Manhattan / / /
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3. Results

The results are presented in the following section as follows: First, all the results of the
BSS/TSS metric for two clustering methods are shown. Then, five analyses of UA classes
are compared, focusing on the best one, both for the used number of classes and for the
relative clustering algorithm. Finally, the graphical representations for the best clustering
methods are deepened, extrapolating the threshold values for the urbanized area of the
best one.

3.1. BSS/TSS Metric Results

The analyses of two classes show better BSS/TSS ratios for the K—Means method,
with the best values of 0.660526 for the first shift (S1) and of 0.659399 for the second one
(S2) (Table 3). The variability obtained by shifting the grid with the K—Means method is
basically low but increases considering different methods, indicating that the K—Means
algorithm performs better in separating the dataset into two clusters. Indeed, the second-
best value belonging to the Ward’s Linkage method reports a ratio of 0.63072, indicating a
worse separation.

Table 3. BSS/TSS metric results of the cluster analysis considering, respectively, two and five Urban
Atlas classes. K = 2. The better values for each method are underscored.

METHOD RATIO OF BETWEEN TO TOTAL SUM OF SQUARES (BSS/TSS)

TWO UA CLASSES

S0 S1 S2 S3

K—Means 0.655676 0.660526 0.659399 0.625655
K—Medians 0.457219 0.466214 0.507931 0.51609

K—Medoids (PAM and
CLARA algorithms)

0.450213 (CLARA)
0.450213 (PAM)

0.450298 (CLARA)
0.450298 (PAM)

0.503916 (CLARA)
0.503916 (PAM)

0.530062 (CLARA)
0.531839 (PAM)

Spectral KNN7 0.0431401 0.301221 0.285217 0.369646
Spectral mutual—KNN7 0.0172236 0.0654304 0.025808 0.00357514

Spectral with Gaussian Kernel 0.00069968 0.000470756 0.103149 0.0215007
Hierarchical Single 0.242457 0.170793 0.0865453 0.37389
Hierarchical Ward 0.654512 0.63072 0.656826 0.623812

Hierarchical Complete 0.414637 0.564536 0.606873 0.37389
Hierarchical Average 0.414637 0.564536 0.499687 0.37389

FIVE UA CLASSES

S0 S1 S2 S3

K—Means 0.72593 0.71977 0.7165 0.720882
K—Medians 0.678369 0.66402 0.670743 0.689813

K—Medoids (PAM and
CLARA algorithms)

0.667808 (CLARA)
0.670513 (PAM)

0.670126 (CLARA)
0.670126 (PAM)

0.697807 (CLARA)
0.697807 (PAM)

0.689813 (CLARA)
0.683157 (PAM)

Spectral KNN7 0.319202 0.349396 0.17429 0.334059
Spectral mutual—KNN7 0.0142809 0.164442 0.116453 0.0970793

Spectral with Gaussian Kernel 0.0175808 0.0339564 0.0249459 0.0296962
Hierarchical Single 0.0389586 0.0268354 0.00450728 0.0825486
Hierarchical Ward 0.662854 0.646998 0.7101 0.715121

Hierarchical Complete 0.542857 0.533737 0.707919 0.622929
Hierarchical Average 0.0563574 0.719427 0.700252 0.617819

The cluster analyses of five UA classes return the best ratios for K—Means, respec-
tively, of 0.72593 for the first grid position (S0) and 0.720882 for the third shift (S3) (Table 3).
Regarding the analyses made considering only artificial and non-artificial areas, the vari-
ability of the values calculated for the same K—Means method is low but shows substantial
differences with the first approach.

The analysis performed using five UA classes shows better values for almost all the
methods, but the best ones are still those belonging to the K—Means method. The second
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ones, instead of belonging to only one method (such as Ward’s linkage for the clustering
process performed with two UA classes), belongs to different methods. Referring to the S0
shift, K—Medians has the second-best value, and the S1 shift has this value corresponding
to the K—Medoids (PAM and CLARA algorithms) method. The S2 and S3 shifts return
Ward’s linkage as the second-best clustering method.

3.2. Graphic Elaborations and Cell Recognition Ability Comparison

The two UA class analyses show substantial differences, returning values that diverge
between the two shifts. The same considerations can be made for the five UA class analyses.
It is possible to see how this second approach recognizes a number of urbanized cells
returning a close match compared to the UA urbanized axis (Figure 6).
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Furthermore, it can be observed that both the BSS/TSS ratio values of the analysis
of the five classes are higher than the ones of the two-class approach, indicating a better
cluster separation (Table 3).

Focusing on the urbanized cells classified through the five-classes approach, it is
possible to notice that, although the S0 and S3 shifts have the best BSS/TSS values, they
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are still not able to recognize some cells. These later become urbanized only partially, as
shown in Figure 7, due to the grid translation that leads to a class coverage change.
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3.3. Final Elaboration and Implications

Based on the assumption that the correct definition of the urbanized environment
boundaries passes through the best BSS/TSS values of the grid shifts for the best clustering
method, the resonance concept here is used to fit the purpose.

Indeed, although five-UA-class K—Means method shows higher BSS/TSS ratio values,
none of the single grid translations can return 100% of the urbanized axis.

The shifts can hence be considered as resonance structures. The principle already
consolidated in the scientific literature can help the conceptualization of a similar approach
in territorial sciences. Every single shift represents a resonance structure, namely one of the
possible structures that contributes to defining the real urban boundaries.

In this case, the real conformation of the urbanized axis is identified with the cor-
responding resonance hybrid, which is deemed the average structure between all the
resonance structures, as shown in Figure 8 [47].
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For this, all the urbanized cells from the grid shifts for the five-class K—Means analyses
were dissolved, obtaining a probability space that covers all the extension of the urbanized
axis, representing the black box which defines the boundaries in which it is possible to
perform the desired analyses through hexagonal cell size (Figure 9).
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3.4. Urban Area Threshold Values

The corresponding values for the urbanized cells, with each of them containing differ-
ent UA class densities, allowed us to extrapolate the maximum, minimum and mean values
relative to the K—Means method (Table 4). The pattern of these cells reveals a mixture of
agricultural and artificial areas, accounting on average for 1.4 square km (mean values)
of the single cell. Natural areas are the next prevailing class, followed by water bodies
(Figure 10).
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Table 4. Maximum, minimum and mean class values for each grid shift of the best K—Means method
(considering only urbanized cells).

K—MEANS METHOD,
FIVE CLASSES OF

URBANIZED CELLS
S0 (km2) S1 (km2) S2 (km2) S3 (km2)

Total Mean
(km2)

Artificial areas
Mean 0.366799 0.373849 0.381433 0.365336 0.36606753
Min 0 0 0 0.007381 0.003690363
Max 1.900423 1.945933 1.915146 1.769396 1.834909834

Agricultural areas
Mean 1.024998 1.027607 1.053506 1.064393 1.044695669
Min 0.05609 0.026234 0.080825 0.094188 0.075138679
Max 1.936165 1.954988 1.974852 1.975681 1.955923058

Natural areas
Mean 0.604997 0.595129 0.561606 0.567071 0.586034235
Min 0 0.000774 0.003879 0 0
Max 1.219838 1.230902 1.224494 1.201435 1.210636192

Water bodies
Mean 0.003124 0.003333 0.003372 0.003115 0.003119508
Min 0 0 0 0 0
Max 0.042653 0.046287 0.046287 0.038076 0.040364711
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4. Discussion

Setting up the grid through the map extension allows for the discrimination of
urbanized/non-urbanized cells with a methodology in which the subjectivity of the oper-
ator is limited to the choice of cell dimension. Hence, translations can be used to have a
standardized shift from which the performances of the clustering methods can be evalu-
ated. This choice improves the ability of single cells to delimit the urban and non-urban
environment. Preferring the translation of the cell to random and static positioning ensures
that the operator has higher control and efficiency in the analysis of the single tiles [40].

Grid shifting clearly leads to a rearrangement of the frequencies inside the cells,
resulting in different performances of the clustering algorithms to recognize them as
urbanized/non-urbanized.

Furthermore, the use of the UA dataset poses as a more detailed spatial analysis
through which the sector discipline is moving [39]. Being already preprocessed according
to uniform standards, this dataset allows one to avoid elaborated preprocessing steps for
untrained employees/inexpert users and for a more differentiated result [40].

The choice of the cell dimension of 2 square km supports, contrary to other approaches,
the possibility of detecting neighboring portions of the urbanized area, highlighting the
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connection with the natural one and, above all, the ecotone continuity between these two
systems [48,49].

The cluster analyses performed considering the distinction between urban and non-
urban areas return high values of the BSS/TSS ratio for the K—Means method. Despite
this, the relative graphic elaborations show a classification that does not manage to reflect
the real urbanized axis, as compared to the UA dataset. For this reason, the analyses
with the dataset considering the main five Urban Atlas classes were performed. In this
case, the results show better clusterization values (BSS/TSS ratio). The highest had an
improvement from 0.660526 to 0.72593, also showing closer correspondence with the
developed urban axis from the Urban Atlas dataset. This means that, in this case of
increasing information in the dataset, due to the use of five different classes instead of the
distinction between artificial/non-artificial areas does not lead to a misclassification, but it
improves the analyses and the relative graphic representations.

Nevertheless, despite good separation with a BSS/TSS ratio of 0.72593 for the S0
grid shift, some areas still escape the classification method. Indeed, the S0 and S3 shifts,
returning the best separation values, are not able to detect some of the cells, which, through
the left and down shifts (S1 and S2), become categorized as the urban ones due to a change
in their class coverage. The ability of the algorithms to recognize some tiles as urbanized is
hence conditioned by the grid position, due to its translations involving a change in the
single class coverage inside each cell, leading to a possible different tile classification.

The dissolution of the resulting urbanized cells picked from the best clustering meth-
ods for the single grid shift allow for the consideration of all the possible external boundaries
of the urbanized area.

The analyses performed for the province of L’Aquila also show a prevalence of agri-
cultural areas. As can be seen in Figure 4, the UA dataset for this territorial scope is
characterized by a core artificial area, surrounded by large buffers of agricultural areas.
This correspondence is shown clearly in the final elaborations of the current study, returning
a prevalence of this latter category for the urbanized cells.

It is also important to consider that the emerged threshold values regarding the
urbanized cells only belong to the province of L’Aquila. A different distribution of the
artificial areas (subtended by different planning policies and different urban expansion
dynamics) can likely lead to variations in the UA class frequencies inside the cells, resulting
in variations in the relative threshold values.

Regardless, the latter are a direct consequence of the proposed methodology. By using
this, the recurring problem of the definition of threshold values is outdated, leaving the
operator with the definition of the quantitative aspects [40].

Another important consequence is the simplicity and uniformity of this approach.
Indeed, by using the shifts and the clustering algorithms, the wide variety of data and the
task to reorganize them with specific rules are entrusted to the software rather than to the
operators themselves, who do not need to understand the heterogeneity of methodologies
present in literature, an aspect that can be confusing for those who are approaching these
analyses [39].

5. Conclusions

The methodology adopted in this article is intended to be functional to the definition
of the urbanized tiles of the territorial mosaic compared to the natural ones, independently
to the nature of the territory for which this approach is run. The definition of urban
boundaries is functional to planning actions and allows for important considerations, such
as the study of the dynamics between this system and the surrounding natural areas, as
well as the typification of the urbanized mosaic.

The synergy of the territorial sciences with the other scientific sectors of reference is
expressed in the role of the control and coordination that these, supported by new tech-
nologies, can express the conceptual and technological stitching between urban planning
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and land/city regeneration. The areas of research in this direction can be summarized
as follows:

• The design of indicators aimed at highlighting the relationships between the sustain-
able development of urban transformations, the resilience of settlement systems and
their potential to adapt to different economic and environmental stresses;

• Machine and deep learning have increasingly been used in urban studies; neural
networks were introduced in the 1950s, but only recently they have reached advanced
processing power and data storage capabilities to the point that deep learning algo-
rithms can be used to create new applications, including satellite imagery analysis.
Therefore, experimentation with ML and DL can only increase the interpretive capa-
bilities of the urban mosaic and generate sustainable city configurations;

• New applications and innovative geospatial services are at the basis of an interdis-
ciplinary development of disciplines, with particular reference to tools for spatial
analysis and fast monitoring for urban resilience, the redevelopment of sensitive areas
for the contrast of hydraulic and hydrogeological risk, for the mitigation of climate-
altering effects, for the improvement of/increase in ecosystem services and for the
evaluation of carbon balance.

These applications on the territorial scope represented by the province of L’Aquila
show how a ML and DL approach is useful to create standardized methodologies to
be shared through easy-to-use software, available both for expert and non-expert users
involved in the planning process. This sets a fundamental step toward the comprehension
and definition of urban and peri-urban dynamics, addressing the complex task to which
territorial policies are called, and introducing other essential planning aspects such as
transformation sustainability and emergency/risk management.

It is also clear how, depending on the nature of the settlement dynamics, it is possible to
extrapolate threshold values both at a local and large scale, related to the specific territorial
scope in which this approach is employed.

Among the limitations of this study, one limitation is the typology of data used. In
particular, the Urban Atlas so far is only available for major European cities. This makes
the reproducibility of the study limited only to specific areas. Nevertheless, different data
sources could be used to overcome this issue.

Another limitation concerns the cell size, which, despite being chosen with certain
criteria, may be inadequate to describe different spatial contexts. Therefore, in some cases,
it should be necessary to recalibrate this parameter.

Despite the limitations highlighted, the methodology presented in this paper makes
it possible to overcome different research gaps related to the discretization of the terri-
tory. Indeed, the hexagonal grid and the relative shifts make it possible to overcome the
randomized approach of a static grid, which often proves to be ineffective for an efficient
recognition process.

This proposed work is part of an experimental framework for characterizing urban
settings and assessing relationships with ecosystem services. Future developments are
aimed at a deeper application of the method in urban and peri-urban settings.
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