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Abstract: The airport network is a highly dynamic and complex network connected by air routes,
and it is difficult to study the impact of delays at one airport on another airport by means of human
intervention. Due to the delay propagation law contained in the delay time series, some studies
have used Granger causality and transfer entropy to explore whether there is a causal relationship
between any two airports. However, no research has yet established a delay causal network from the
perspective of the airport network as a whole. To this end, an attention mechanism is introduced
into the deep convolutional network architecture, and a deep temporal convolution prediction model
considering the attention mechanism is proposed, so as to establish the relationship between different
airport delay time series under the same network architecture. According to the attention factor score,
the delay propagation causality between airports is preliminarily screened, and the direct causality is
verified based on a t-test and propagation delay analysis. Taking China’s civil airport network as
an example, the method proposed in this paper can not only discover the causal relationship of delays
between airports but also characterize the strength of the relationship. Further analysis found that
each airport is affected by an average of six airports, and airports with small delays are more likely to
be affected by other airports.

Keywords: airport network; delay propagation causality; deep learning; attention mechanism; deep
temporal convolution

1. Introduction

With the rapid development of the civil aviation transportation industry, the contradic-
tion between flight slot demand and airspace resources has become increasingly prominent.
This has resulted in congested airspace, especially at some large airports, and flight delays
have become the norm [1]. Flight delays have many negative impacts on passengers,
airlines, and the civil aviation industry. For passengers, flight delays disrupt their itinerary
and bring great inconvenience to them. For airlines, on the one hand, flight delays affect
the travel experience of passengers, and passengers may choose other airlines or modes of
transportation, resulting in a drop in passenger flow and huge economic losses to airlines.
On the other hand, each aircraft is scheduled to fly multiple segments every day, and the
arrival delay of the previous segment has a certain impact on the departure and arrival of
the subsequent segment. In the long run, flight delays will affect the development of the
civil aviation industry. For example, in China, with the rapid development of high-speed
railways, some short-distance passengers gradually flow to railway transportation, which
makes civil aviation transportation gradually lose its advantages. In the past two decades,
a large number of researchers have studied the problem of flight delays, and have also pro-
posed many effective methods and measures to solve the problem of delay [2,3]. However,
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due to the rapid development of the civil aviation industry and the rapid increase in the
number of flights, many of the methods previously proposed are no longer applicable [4].
For example, flight slot optimization methods at the strategic level and flight scheduling
methods at the tactical level can reduce flight delays to a certain extent, but these methods
may not work when the number of flights increases to a certain extent [5,6]. Therefore,
in the development process of the civil aviation industry, flight delay has always been
a difficult problem that needs to be challenged.

The reasons for initial flight delays are attributed to five categories: air carrier delays,
extreme weather delays, the national aviation system, aircraft late arrival, and safety [7].
Since airports are connected by air routes and have connectivity in resources, initial flight
delays may cause flight delays at the destination airport, and delays may spread to other
associated airports, spreading throughout the airport network from the time that the initial
delay is caused. According to different research objects, the research on delay propagation
is divided into the perspective of aircraft and the perspective of airports [8]. From the
perspective of aircraft, the main study is how delays are propagated between different
segments when a single aircraft is flying multiple segments. These studies provide decision
support for airline fleet arrangements [9]. From the airport’s point of view, the main study
object is how delays are propagated in the airport network [1,10–13]. For example, flight
delays at an airport will affect related airports and which airports are key nodes in the
airport network. Research on these issues will help air traffic management to reduce
congestion from the perspective of the entire airport network, while improving operational
efficiency and reducing flight delays. This paper focuses on the study of flight delay
propagation mechanisms from the perspective of airports. The main goal is to find the
causal relationship between airports and the magnitude of the impact, so as to control the
level of delay from the perspective of the overall airport network.

At present, researchers mainly analyze airport delay propagation from the aspects of
simulating the delay propagation process, airport delay propagation mechanism, and delay
propagation causality [13–15]. The delay propagation process mainly refers to the study
of delay propagation from the perspective of a dynamic process [3,14,16–18]. In terms of
simulating the delay propagation process, Ciruelos et al. [19] established an agent-based
data-driven model to simulate the delay propagation process. Liu et al. [20] constructed
a mathematical delay propagation model and a Bayesian network-based arrival delay
model according to the relationship between flights to study the relationship between
arrival delays. They consider arrival delays as a source of other delays. Among related
flights, the spread of arrival delays can exacerbate departure delays at busy hub airports.
Delays can be reduced by the availability of scheduled flight schedules, thereby reducing
delay propagation. Severe weather can cause huge delays. Fleurquin et al. [21] used a
data-driven model to reproduce the delay propagation dynamics in the US airport network.
The model focuses on the day of a major storm in the United States. Therefore, it is con-
cluded that bad weather may cause network system congestion, which can be addressed by
considering different interventions. After that, Fleurquin et al. defined a metric capable of
quantifying the level of network congestion, and found that even under normal operating
conditions, there is a nonnegligible risk of system instability. At the same time, they also
argue that the connectivity between passengers and crew is the most relevant internal factor
for delay propagation [22]. Baspinar et al. [8] analyzed delay propagation from different
perspectives, and established two different types of new delay propagation models using
the epidemic propagation process. These two types of models are flight-based propagation
models and airport-based propagation models. On this basis, they validated the model
using European historical track data. Campanelli et al. [23] used two different agent-based
models (a first-come-first-served model and an ATFM-based time-planning-first-served
model) to simulate delay propagation and assess the impact of network disruptions in the
US and European airport networks, and found that a first-come-first-served model resulted
in greater delay propagation. Wu et al. [24] used a Bayesian network to build an airline
network delay propagation model. The model considers multiple connectivity sources
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for airlines, including aircraft, crew connections, and passenger connections, which can
identify weak links in the flight network based on past flight data. Dai et al. [25] built
a heterogeneous network model according to the different connections of departing flights.
Departing flights are divided into different clusters according to the connections between
them, and the evolution of these clusters in multistage scheduling shows a propagation
mechanism. Wu et al. [26] proposed an airport sector network delay model suitable for
flight delay estimation in the air transportation network. The model was applied to the
21 busiest airports in China, and by comparing the real delay data with the data esti-
mated by the network delay model, it can be found that the model could well simulate
the situation that the airport or airspace may become a delay in the air transportation
system [26]. Unlike traditional studies on flight delays, Chen et al. [1]. study the trend of
flight delay transmission in a region and show the relationship between delays occurring at
multiple airports.

The delay propagation mechanism mainly includes the generation form and propagation
mode of delay [3,16,17]. In terms of the delay propagation mechanism, Ahmad Beygi et al. [27]
and Ahmad Beygi et al. [13] reallocated existing idle resources to those flights most prone
to delay transmission, reducing the impact of the next phase of delays on the airport with-
out changing the personnel and cost of the original plan. Pyrgiotis et al. [10] construct
an analytical queuing and network decomposition model to study the complex phe-
nomenon of delay propagation in large airport networks. The stochastic dynamic queuing
model treats each airport in the network as a single-server queuing system whose arrival
rate obeys negative exponential distribution and service rate obeys Erlang distribution
to calculate delays. Approximate network delay models are computationally fast, able to
quickly calculate delays due to localized congestion at individual airports and capture the
“ripple effects” of delay propagation. Applying the model to a network of 34 of the busiest
airports in the United States shows that delay propagation tends to “smooth out” daily
airport demand and push more demand into late night hours. Kim et al. [28] displayed
the generated delays and the propagated delays on a two-dimensional graph and grouped
airports/routes according to the delay characteristics. Ivanov et al. [29] considered con-
trolling the distribution of ATFM delays to minimize the likelihood of delays propagating
to subsequent flights. Therefore, they propose a two-layer mixed-integer optimization
model to solve the unbalanced problem of route demand and capacity. Minimizing de-
lay propagation by solving the demand and capacity imbalance problem of routes is the
first level, and increasing the connectivity of flight slots without increasing delays is the
second level.

In recent years, the research community has begun to analyze the delay propagation
mechanism from the aspect of airport delay propagation causality mining [15]. Airport
delay propagation causality can describe the degree of the direct impact of delays at one
airport on another airport. Building an airport delay propagation causal network will help
managers understand key nodes in the airport network so that targeted measures can be
taken in advance to alleviate air traffic congestion. In addition, the current delay prediction
model based on correlation cannot guarantee the robustness of the model. Constructing
delay prediction models based on causality is more interpretable and can predict which
factors are responsible for the results and when the prediction model will stop working,
resulting in more robust predictions.

As the airport network is a highly complex dynamic network, it is difficult to study
the impact of one airport’s delay on other airports by means of human intervention. Fortu-
nately, the delay time series implies the law of delay propagation causality, which has been
preliminarily explored by some researchers. Some researchers use Granger causality [30] to
construct the airport delay propagation network. Zamin et al. [15] regarded the Chinese
airport network as a complex network, and used the method of Granger causality tests to
study the delay time series between two airport pairs. If the delay time series of airport
A is more helpful to predict the delay time series of airport B than the delay time series
of airport B itself, it is considered that the delay of airport A is the cause of the delay
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of airport B. Similarly, Du et al. [31] also established a delay causal network based on
Granger causality, and studied the airport delay propagation mechanism by analyzing
the topological properties of the network. The causal mining of airport delay propaga-
tion based on the Granger causality method can only capture the linear dependence of
two airport delay time series. Zhang et al. [32] used transfer entropy to analyze the causal
relationship between two airport delay time series, and then quantitatively expressed the
degree of influence of one airport’s delay on another airport’s delay. Causal relationship
mining based on transfer entropy belongs to a class of nonparametric models that can
discover linear and nonlinear dependencies, but cannot handle nonstationary time series.

The airport network is a network composed of a large number of airports passing
through the airline network. Due to the dynamic changes of flight information and envi-
ronmental information, and the nonlinear interaction between airports, the airport network
can be regarded as a dynamic and nonlinear complex network system. Given the powerful
nonlinear representation ability of deep learning methods, they have been widely used in
transportation [33–35], energy [36,37], economics [38,39], medical [40,41], and other fields.
Recently, in the research on nontemporal causality discovery, the research community
has proposed some deep learning models, such as causal effect estimation based on vari-
ational autoencoders [42], functional causal model learning based on causal generative
neural networks [43], and reconstruction of causal graphs based on structure-independent
models [44]. Causal relationship mining methods can be divided into experimental-based
methods and observation-based methods.

As the airport network is dynamic and complex, it is not feasible to intervene in the
actual operation of the airport. Since the delay time series contains the causal law of delay
propagation, this paper will study the construction of an airport delay causality network
from the perspective of data-driven and airport networks. It is well known that deep
convolutional neural networks can characterize the delay time series of a single airport
very well. Therefore, under the framework of a deep convolutional network, this paper
integrates the delay time series of different airports by introducing an attention mechanism,
and establishes a deep convolutional network based on the attention mechanism. The
attention mechanism score parameter, like the convolutional network parameter, is learned
from the data and can quantitatively characterize the impact of one airport’s delay on
another airport. Further, according to the characteristics of the strength of the airport,
the score of the attention mechanism can be used to preliminarily screen the airport pairs
with delay propagation causality. Finally, direct causality is verified based on a t-test
and propagation delay analysis. The causality of delay propagation in China’s airport
network is analyzed, and the experimental results obtained are consistent with some
mainstream experiences.

The rest of this paper is organized as follows: Section 2 elaborates on the problem
of delay propagation causality; the proposed method will be introduced in Section 3, in-
cluding a delay prediction model based on deep convolutional networks and causality
verification based on the attention mechanism and t-test. Section 4 discusses the propa-
gation mechanism of airport network delays by case. Finally, Section 5 summarizes the
content of this paper.

2. Problem Formulation

The causal mining of airport delay propagation is to find the delay influence rela-
tionship between airports and to depict the extent to which delays at one airport lead to
delays at another airport. Specifically, if delays at one airport come first, delays at the other
airport come after. At the same time, the first delayed airport has an impact on the later
delayed airport and the later delayed airport changes with the first delayed airport. It is
considered that there is a delay causal relationship between the two airports, and the delay
at the former airport is the cause of the delay at the latter airport. Recently, researchers
have given a definition of causality between pairs of airports, that is, if the current and
previous delay information of one airport helps explain the delay of another airport at
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a certain time in the future, then there is a causal relationship between them [15,31,32]. As
shown in Figure 1, delay causality between airports can be summarized into four forms: no
causation, direct causation, indirect causation, and both direct and indirect causation.

Figure 1. Airport delay propagation causality. (a) No causation; (b) Direct causation; (c) Indirect
causation; (d) Both direct and indirect causation.

Figure 1 shows four forms of airport delay propagation causality. In Figure 1a,
a delay at airport A will not affect airport B. In Figure 1b, there is a direct causal rela-
tionship between airport A and airport B without intermediary airports, and the delay
propagation path is A→ B. In Figure 1c, there is an indirect causal relationship between
airport A and airport B as an intermediate airport C, and the delay propagation path
is A→ C→ B. It is important to note that there may be multiple indirect causal paths
between two airports. In Figure 1d, there are both direct causal paths A→ B and indirect
causal paths A→ C→ B between airport A and airport B.

Since the airport network is a network connected by air routes, there may be multiple
indirect causal paths between any two airports. Direct causation involves a relationship
between two airports, while indirect causation involves three or more airports. From the
perspective of air traffic managers, direct causality to guide traffic control is more intuitive
and easier to implement than indirect causality. Therefore, this section mainly focuses on
the direct causality in the propagation of airport delays, that is, the direct impact of delays
at one airport on delays at other airports, which does not consider the indirect effects of
delay propagation on subsequent airports.

In order to better represent the causal relationship of an airport network, a weighted
directed graph is used to represent the causal relationship network of airport delay prop-
agation. Suppose there are N airports in the airport network. Denote G = (V, E, D) as
the airport delay propagation causality network; V = {vi}i=1:N represents the airport
set, where vi represents the feature vector of the airport I; E =

{
eij
}

i,j=1:N represents the
set of edges in the airport network. If there is a direct causal relationship between the
airport i→ j , that is, the airport i has an edge pointing to j, then eij = 1; otherwise, eij= 0.
D =

{
dij
}

i,j=1:N represents the weight set of edges, where dij represents the weight of
edge eij, which means the degree of influence of the airport i on the airport j. Figure 2 is
a schematic diagram of the direct causality network of airport delay propagation, in which
the arrows point to the direction of delay propagation, and the delay and the degree of
influence are given above the arrow. For any two airports, the delay propagation between
them can be divided into three cases: there is no delay propagation, the delay propaga-
tion is one-way, and the delay propagation is two-way. As shown in Figure 2, the delay
propagation between airport i and airport 1 is one-way, between airport i and airport j it is
two-way, and there is no delay propagation between airport 1 and airport j.
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Figure 2. Direct causal network of airport delay propagation. The delay of airport vi is transmitted
unidirectionally to airport v1, while there is a bidirectional delay propagation relationship between vi

and vj.

To construct the direct causality network of airport delay propagation as shown in
Figure 2, the biggest challenge is how to distinguish direct causality from correlation,
indirect causation, and confounding causality:

(a) How to distinguish causality from correlation. The correlation is a mutual relationship
between the delays of two airports, which means that the delay of one airport changes
and the other airport also changes. It can be a positive correlation or a negative
correlation. The “cause” airport and the “effect” airport in the causal relationship
pair of airport delay propagation often show correlation, which can be regarded as
a special kind of correlation. Cause and effect are directional, and changes to the
cause affect the outcome. Therefore, in order to distinguish the causal relationship
from the correlation relationship, it is necessary to observe the delay changes of the
“effect” airport after a certain period of time by controlling the delay changes of the
“cause” airport.

(b) How to distinguish direct causation from indirect causation. As shown in Figure 2,
the delay at the airport will not directly cause the delay at airport 1, but the delay
may be propagated to airport 1 through airport i, so there is an indirect causal rela-
tionship between airport N and airport 1. Recently, some researchers used Granger
causality [15,31] and transfer entropy [32] to judge whether there is a causal relation-
ship between airport pairs and build an airport delay causality network according to
the causal relationship between airport pairs. Since the airport network is not treated
as a whole when judging causality, it is difficult to find indirect causality. Therefore,
in order to better distinguish direct and indirect causality, it is necessary to take all
airports into consideration when constructing a causal relationship mining model.

(c) How to measure the influence degree and propagation delay time of multiple “cause”
airports on the same “effect” airport. Delays at an airport are often the result of the
combined action of multiple airports, including delays at the airport itself. Therefore,
this causality is also called confounding causation. Figure 3 is a schematic diagram
of multiple airports acting on the same airport. If the delays of airport A, airport B,
and airport C are propagated to airport Z simultaneously, then airport A, airport B,
and airport C are the “cause” airports of airport Z. It should be noted that due to
the specific differences between the three “cause” airports and the “effect” airport
Z, there will be differences in the delay time of delay propagation. For example, if
the distance from airport A to airport Z is farther than the distance from airport B to
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airport Z, then delays from airport A will take longer to propagate to airport Z than
delays from airport B will take to propagate to airport Z. In Figure 3, there is a closed
loop at airport Z, which means delays in past time periods at airport Z itself affect
subsequent time periods.

Figure 3. Diagram of confounding causality. Airport A, airport B, and airport C are the “cause”
airports of airport Z.

3. Methodology
3.1. Method Overview

The general definition of causality contains the following two characteristics [45]:
(a) temporal precedence: the cause occurs before and the effect occurs after, and the
chronological order of cause and effect cannot be reversed; (b) physical influence: changing
the cause will affect the result, that is, the change in the result caused by the state change in
the cause is objective. In view of the characteristic of time sequence, it is easier to take it
into account when constructing the causal relationship mining of airport delay propagation
based on time series. For example, when constructing the input and output of the model,
the delay status information of the “cause” airport and “effect” airport is used as input
and output, respectively, but the delay status information of the “effect” airport is later
than that of “cause” airport. The difficulty with causality discovery is how to take physical
effects into account when building a model.

For the causal discovery of airport delay propagation, the mainstream mining algo-
rithms are divided into two stages: prediction and causality analysis [15,31]. In the first
stage, a model that uses the delay time series of the “cause” airport to predict the delay
of the “effect” airport is built. However, historical and current delays at one airport help
predict future delays at another airport, and there may be a correlation. Therefore, in
the second stage, it is necessary to use some criteria to judge the true causal relationship
between the airport pairs based on the prediction model. Like the mainstream causality
mining algorithm, this paper adopts a two-stage mining idea, as shown in Figure 4. The
difference from the existing mainstream methods is that because the airport is a dynamic
and complex network, this section builds a model directly from the perspective of the
airport network, and establishes a deep temporal convolution network (DTCN) airport
delay prediction model. The model takes the delay time series of all airports as model input,
which can better capture the interaction between airports. In order to measure the degree
of influence of all airports on the target airport, an attention mechanism is introduced into
the model, and the degree of influence is quantitatively measured by attention parameters.
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Figure 4. The general idea of causality mining of airport delay propagation.

In general, the attention parameter measures the strength of the delay correlation
between two airports. A large value of the attention parameter indicates a strong correlation;
conversely, a small value of the attention parameter indicates a weak correlation. Therefore,
when causality is performed in the second stage, the airport pairs with weak correlation are
first eliminated according to the value of the attention parameter. On this basis, a candidate
causality screening based on attention score is proposed, and the airport pairs with strong
correlation are reserved as the candidate causality set. Since the temporal order between
airport pairs has been considered in the first stage, in order to judge whether the causal
relationship pairs in the candidate causal relationship set are true causal relationships,
a true causality verification based on a t-test is proposed. By intervening on delays at
“cause” airports, the time series of “cause” airports are randomly permuted and fed into
the learned prediction model. The t-test method is used to judge the significance level
of the “effect” airport prediction error before and after the sequence rearrangement, and
further according to the significance level to judge whether it belongs to the real causal
relationship, and finally the airport delay propagation causal relationship set is obtained.
Finally, we propose a direct causality verification method based on time-lapse analysis to
distinguish direct causality from indirect causality.

3.2. Delay Prediction Model Based on Deep Convolutional Network

This section first expounds on the problem of delay propagation in airport networks
and then describes the model architecture for causality mining based on deep convolu-
tional neural networks. Further, this section describes how to train a deep convolutional
neural network model and obtain the causal relationship between airports based on the
trained model.

3.2.1. Delay Time Series

According to the official definition of a flight delay, the time when the actual execution
time of the flight is 15 min after the planned execution time is the flight delay time. This
paper studies the delay propagation law between airports. As with other methods of
studying this problem, the difference between the actual flight execution time and the
planned execution time is used as the flight delay time. Assuming that the airport network
contains N airports, with ∆t as the time step, a day can be divided into T time intervals. For
the time step setting, some researchers take 15 min [10,32], and some researchers set it to
60 min [15,31]. Here, 15 min is taken as the time step and divide the day into 96 time
intervals. According to the definition of a single flight delay, the average departure delay
time series Xi = [x1

i , x2
i , · · · , xT

i ] of the airport i is constructed, in which xt
i represents the

average delay of all flights in the time period t at the airport i. According to the first-come-
first-served operation rule, the canceled flight usually does not occupy the resources of
the current airport and may not impact the operation of subsequent flights at the current
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airport, but may have an impact on the destination airport [46]. Therefore, when calculating
the average departure delay, canceled flights are considered and they are equivalent to
a delay of 180 min [31].

3.2.2. Attention-Based Time Series Prediction Architecture

The goal of airport delay propagation causality discovery is to find directly correlated
airports that help predict delays at the target airport. Whether it is the Granger causality
test used in the literature [15,31] to find the causality of delayed propagation, or the transfer
entropy used in the literature [32], the prediction is essentially the evaluation. These
methods are used to examine the variation of delay time series at one airport and whether
it is helpful to predict future delays at another airport. However, these methods only
mine causal relationships between pairs of airports, without considering the whole airport
network, and the mining results may have indirect or confounding causal relationships.
This section will comprehensively consider the airport network perspective, and introduce
an attention mechanism into the deep time series convolutional network (DTCN). The
delay time series of all airports are used as the input of DTCN, and the delay time series of
a single airport is used as the output to the airport network. A DTCN prediction model is
constructed for each airport, as shown in Figure 5. The processing flow from left to right is
to input the delay time series {X1, X2 · · · , XN} of all airports, perform attention mechanism
processing on them (obtain the sequence

{
X′1, X′2, · · · , X′N

}
), and perform single-channel

depth convolution on each time series (obtain the sequence
{

X′′1 , X′′2 , · · · , X′′N
}

), and point
convolution (output delay prediction vector Xj of target airport j).

Figure 5. The DTCN prediction model architecture based on the attention mechanism.

In order to predict the delay in the t-th time interval of the airport, a prediction
network is trained for each airport with the delay information of all airports in the τmax

periods before the t-period as input. Let X(t−1)
j =

[
xt−τmax

j , xt−τmax+1
j , · · · , xt−1

j

]
represent

the delay time subsequence of the airport j in the time interval [t− τmax, t− 1], and the
delay prediction model based on the deep time domain convolutional network is expressed
as follows: 

xt
1

xt
2
...

xt
N

 = DTCN
(

X(t−1)
1 , X(t−1)

2 , · · · , X(t−1)
N

)
, (1)

where DTCN(·) represents a deep convolutional network model that needs to be learned.
Equation (1) is a general model and cannot distinguish the influence of input vari-

ables on output variables. In order to find the directly related airports that help to pre-
dict the delay of the target airport, the input variables need to be separated for model



Appl. Sci. 2022, 12, 10433 10 of 25

training. N airports need to train N deep time domain convolution prediction models
{DTCN1(·), DTCN2(·), · · · , DTCNN(·)}, then Equation (1) can be written as:

xt
1 = DTCN1(X(t−1)

1 , X(t−1)
2 , · · · , X(t−1)

N )
...

xt
j = DTCNj(X(t−1)

1 , X(t−1)
2 , · · · , X(t−1)

N )
...

xt
N = DTCNN(X(t−1)

1 , X(t−1)
2 , · · · , X(t−1)

N ).

(2)

Further, an attention mechanism is introduced to measure the impact of delays at
different airports on the target airport. For any target airport j, an N-dimensional vector
wj = [w1j, w2j, · · · , wNj] is introduced to perform point-by-point multiplication with the
input time series of N airports. Call wj the attention score vector (or contribution vector)
of all airports (including the target airport itself) to the target airport. When the neural
network based on the attention mechanism processes a large amount of input information,
it will select a part of the key information for processing, and ignore the information that is
irrelevant to the output. By visualizing input and output attention, the intuitiveness and
interpretability of the network can be improved. This will become an active area in the
research community, partly compensating for the lack of interpretability of deep learning.

By introducing the attention mechanism, Equation (2) is rewritten as:

xt
1 = DTCN1(w11 � X(t−1)

1 , w21 � X(t−1)
2 , · · · , wN1 � X(t−1)

N )
...

xt
j = DTCNj(w1j � X(t−1)

1 , w2j � X(t−1)
2 , · · · , wNj � X(t−1)

N )
...

xt
N = DTCNN(w1N � X(t−1)

1 , w2N � X(t−1)
2 , · · · , wNN � X(t−1)

N ).

(3)

Note that the prediction target’s own time series and other airport time series are
used as input at the same time, so that under the same network architecture, self-causal
relationships and exogenous causality can be found at the same time. Through the attention
score, the contribution of each airport’s historical delay time series in predicting the target
airport delay can be measured.

3.2.3. Depthwise Separable Convolution

The next question is how to implement the convolution of time series. In this paper, with
the help of the depthwise separable convolution idea proposed in reference [47], the convolu-
tion process is divided into channelwise depthwise convolution and pointwise convolution.

Channel-by-channel depthwise convolution is a convolution kernel responsible for
a delay time series, that is, a delay time series is convolved by a convolution kernel. After
channel-by-channel convolution processing, the number of output feature sequences is the
same as the number of input time series. As shown in Figure 5, N delay time series are
convolved with different convolution kernels, respectively. The depth convolution is to use
different convolution kernels to convolve each input channel, so as to separate the input N
airport delay time series and study the impact of each airport delay on the target airport
delay time series. As shown in Figure 5, for each input channel, the contribution parameter
is multiplied by the input sequence to obtain a new input sequence, and the new input
sequence is subjected to hole convolution with different convolution kernels to obtain the
time series. Residual connections obtain the output sequence. Compared with ordinary
convolution kernels, atrous convolution greatly increases the receptive field by reducing
the number of layers and reducing computational complexity. Residual connections make
it easier to optimize networks with multiple convolutional layers during backpropagation,
reducing network errors and improving model performance. Figure 6 shows a schematic
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diagram of a three-layer atrous convolution module for the channel j (airport j). The
bottom layer is the input layer, the middle contains two hidden convolution layers, and
the top layer is the output layer. The size of the convolution kernel is k = 3, the expansion
coefficient of the convolution kernel is 2, and the stride size of the convolution kernel is d,
from top to bottom, from the output layer to the input layer. To predict the output layer,
the atrous convolution obtains the first 15 receptive fields of the input layer by inserting “0”
into the convolution kernel. Compared with the traditional convolution, which can only
obtain the first seven receptive fields of the input layer, the atrous convolution expands
the receptive field without increasing the number of layers, and obtains more information
from the input layer, thereby improving the prediction accuracy.

Figure 6. Single-channel depthwise convolution.

The convolution budget of pointwise convolution is similar to that of regular convo-
lution. Layer-by-layer convolution is mainly to linearly combine the output information
of channelwise convolution. The information from different channels is fused together
by merging the outputs of the channelwise convolution layers. As shown in Figure 7, by
performing ordinary 1× 1 convolution on the output of the time series convolution, the N
outputs are combined into one output, and the influence of the delay characteristics of the
N airports on the target airport is also considered. Figure 7 shows that the time series X′′i
undergoes a depthwise convolution and then carries out point-to-point convolution and
outputs Xj, that is, the predicted delay time series of the target airport.

Figure 7. Depthwise separable convolution.
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3.2.4. Model Training

In the training phase of the prediction model, the delay time series of all airports are
used as input, and the delay time series of a single target airport is used as output. Table 1
shows the training steps of the deep temporal prediction model.

Table 1. Training steps of the deep time-domain prediction model.

Input data:
All airport delay time series: X1, · · ·Xi, · · · , XN
Predicting target airport delay time series: Xj

Parameter: Hidden layer number L; training times Epochs; learning rate learning-rate;
convolution kernel size k; expansion coefficient d; initialization attention factor W; optimizer
Outputs:

Predicting target airport delay time series

Training steps:
Step 1: Read in data: including all airport delay time series and target airport delay time

series.
Step 2: The network initialization parameters are sampled from a normal distribution with a

mean of 0 and
a standard deviation of 0.1. Predict the target airport delay time series based on all the input
airport delay time series.

Step 3: Calculate the distance between the predicted value of the network and the real target
airport delay time series according to the MSE error function.

Step 4: Backpropagation is performed to calculate the gradient value of the loss function for
the network parameters. Zero the gradient values in the optimizer before backpropagation.

Step 5: Modify the network parameters according to the gradient value and the definition of
the optimizer, so that the distance between the predicted value of the network and the real value
becomes smaller and smaller.

Step 6: Repeat steps 3–5 until the number of model training times is reached.

3.3. Causality Verification

This section will introduce how to obtain the candidate causality set according to the
attention score, and then mine the true causality from the candidate causality set based
on the t-test. Finally, the direct causality verification based on propagation delay analysis
is introduced.

3.3.1. Candidate Causality Filtering Based on Attention Scores

In Section 3.2, we propose an airport delay prediction model integrating an attention
mechanism by introducing the attention mechanism from the perspective of the airport
network. In the model training phase, the attention score is used as a parameter of the
prediction model, which is trained simultaneously with the convolution parameters. After
training the model, the attention score ranges between −∞ and +∞. In order to make
the attention score reflect the influence degree of the airport more intuitively, the fol-
lowing semi-binarization function is used to process the arbitrary attention score vector
wj = [w1j, w2j, · · · , wNj]:

mij =

{
ewij

∑N
i ewij if wij ≥ w0

0, if wij < w0
, (4)

where represents the attention score threshold. If mij = 0, it is considered that the delayed
airport i will not affect the delay of the airport j; if mij > 0, it is considered that delayed
airport i will affect the airport j, and the degree of influence can be objectively measured by
the value of mij.

It should be noted that the selection of the threshold w0 is intuitive and important. If
the value w0 is too small, it will lead to too many causal relationship pairs of candidate
airport delay propagation, which makes the constructed causal relationship network too
complicated and inconvenient for analysis and utilization. Conversely, if the value w0 is
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too large, although the number of candidate causal relationship pairs is reduced, which is
beneficial to subsequent analysis and application, some real causal relationships will be
filtered out. Since the purpose of excavating the causal relationship of delay propagation
between airports is to provide a scientific basis for air traffic managers to implement flow
management, too many causal relationship pairs are inconvenient to operate in practice. Too
few causal relationship pairs ignores some key airport pairs, resulting in poor regulation.
To this end, this paper will select a certain number of candidate causal relationship pairs
corresponding to the number of threshold parameters as threshold parameters by taking
different values through experiments.

3.3.2. True Causality Verification Based on t-Test

All the candidate causal relationships screened according to the attention score have
satisfied the time sequence of the causal relationship, and the attention score can reflect
the degree of influence of the “cause” airport on the “effect” airport. In order to verify
that each candidate causal airport pair is a true direct causal relationship, we control
the candidate “cause” airports in the candidate causal relationship pair and observe the
changes of the candidate “effect” airports. If a change in the candidate “cause” airport
affects the candidate “effect” airport, then there is a true causal relationship between the
pair of airports; otherwise, there is no causal relationship.

Since the airport network is a dynamic and highly complex network, it is impossible
to judge the impact on another airport by actually controlling the delays at an airport.
Therefore, in a random way, the delay time series of the “cause” airport is rearranged,
so that the new sequence is not time-sequential, and the rearranged sequence is further
input into the trained model to re-predict the “effect” airport delay. A potential causal
relationship pair is considered a true causal relationship if the prediction error varies widely.
We employ permutation importance and t-tests to determine whether candidate causality
is true causality.

For any candidate causality Xi → Xj , we assume that the original delay
time series dataset of the “cause” airport i is rearranged as DI

i . The datasets
DO = {D1, · · · , Di−1, Di, Di+1, · · ·DN} and DI =

{
D1, · · · , Di−1, DI

i , Di+1, · · ·DN
}

are
respectively input into the prediction model, resulting in two delay time prediction error
sets EO and EI about the “effect” airport j. If it is a true causal relationship of Xi → Xj ,
then the value of EI is significantly greater than that of EO. Conversely, if the value of EI
is not significantly greater than EO, then there is no true causality because the timing of
the airport i is not exploited when predicting delays at the airport j. Assuming that K days
of data are utilized, the dataset contains K delay time series. For a model trained with
this data, computing the forecast error for each time series can be viewed as a different
sample from the same distribution. Through the statistics of delay prediction error, it is
found that it obeys the t distribution with K-1 degrees of freedom. Therefore, we judged
the significance of the increase in delay prediction error by a t-test.

For each delay time series, calculate the forecast errors EO and EI . Let error(EO)i and
error(EI)i be the prediction errors of the k-th delayed time series of datasets EO and EI ,
respectively. The t-statistic is calculated according to the following formula:

t =
µ(EI)− µ(EO)√
var(EI − EO)/K

. (5)

Among them,

µ(EI) =
1
K ∑K

i error(EI)i, µ(EO) =
1
K ∑K

i error(EO)i, (6)

var(EI − EO) =
1
K ∑K

i=1[error(EI)i − error(EO)i − (µ(EI)− µ(EO))]
2. (7)
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In order to judge the significance level of EO and EI , the significance level σ is selected.
Since each value in EI is greater than or equal to the value in EO, it belongs to a class of
one-tailed t-distributions (see Figure 8). From the t-distribution table, the critical value
z corresponding to the degree of freedom K-1 and the significance level O are found. If
t > z, the value of t falls in the rejection domain, meaning that the hypothesis that the mean
values of EO and EI are the same can be rejected. It can thus be asserted that the prediction
error EO is significantly larger than the prediction error EI .

Figure 8. One-tailed t-distribution.

3.3.3. Direct Causality Verification Based on Propagation Delay Analysis

In order to construct a delayed propagation direct causality network, it is necessary
to further distinguish direct causality and indirect causality. As shown in Figure 1d, there
are two causal paths, A→ B and A→ C→ B, from the “cause” airport A to the “effect”
airport B. The next question is how to judge that the path A→ B is a direct causal path.
Obviously, if the propagation delays of paths A→ C and C→ B are smaller than the
propagation delays of A→ B, then the causal path A→ B can be ruled out as a direct
causal relationship. This is because, if there is a direct causal relationship, then the delay
time of airport A’s delay propagating to airport B must be less than the delay time of airport
A’s delay propagating to B after the third airport C. For example, the delay propagation
from airport A to airport C is 90 min, and the delay propagation from airport C to airport
B is 100 min. While the propagation delay from airport A to B is 200 min, it is certain
that A→ B is not a direct causal relationship. Furthermore, the delay time for delay
propagation is proportional to the flight time. If the delay propagation delay time between
two airports is too long, then it can be concluded that the airport causality pair is not
direct causality. For example, if the flight time from airport A to airport B is 70 min, and
the average airport delay time is 30 min, then the delay propagation delay time cannot
exceed 100 min. Based on the above ideas, the following judgments are made on the direct
causality and the indirect causality based on the propagation delay. Figure 9 is a flow
diagram of direct causality verification based on propagation delay analysis.
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Figure 9. Flow chart of direct causality verification based on propagation delay analysis.

Let P be the set of airport delay propagation causal relationship pairs. First, delete
causal relationship pairs whose delayed propagation delay time is greater than a given
threshold, and obtain a set of candidate direct causal relationship pairs P. The specific
judgment basis is: for any causal relationship pair vi → vj in P, compare the delayed
propagation delay time d(vi → vj) with the given threshold d0(vi → vj) .

• If d(vi → vj) ≥ d0(vi → vj) , then vi → vj is not a direct causal path and should be
removed from P;

• if d(vi → vj) < d0(vi → vj) , then vi → vj is a candidate direct causality path, which
needs to be further verified.

The setting of the delay time threshold d0 depends on the “cause” airport delay and
the flight time between airports.

Further, the causal relationship pairs in the set P need to be verified, that is, a direct
causal relationship network of candidate delay propagation is constructed based on the set
P. The edges in the network are further removed according to the delay time, and the final
delay propagation direct causality network is obtained. The basic idea of deleting edges
according to the delay time is: for any edge vi → vj in the network, search all paths with vi
as the starting point and vj as the ending point. If the delay time of vi → vj is the smallest,
then vi → vj is a direct causal relationship; otherwise, it is not a direct causal relationship.
The verification according to this idea belongs to a kind of exhaustive method, and the
calculation efficiency is relatively low. In fact, as long as the path with the minimum delay
time is found, if this path is the edge itself that needs to be verified, a judgment can be
made. In order to improve the computational efficiency, the delay time is regarded as the
path length of the edge in the network, and the Dijkstra algorithm is used to search for the
shortest path between the starting point vi and the ending point vj. If the shortest path is
vi → vj itself, then the candidate direct causality vi → vj is the true direct causality.
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4. Case Study

In this section, the model proposed is used to analyze the causal network of airport
delay propagation in China. The data are described and preprocessed first, and then the
parameters involved in the model are discussed experimentally. Finally, the performance
of the causal network is analyzed, and the topological properties are analyzed by using
complex network metrics.

4.1. Data

This paper takes the historical flight operation data of 219 airports in China in Novem-
ber and December 2018 as a case and uses the method proposed in this paper for analysis.
The location distribution of each airport is shown in Figure 10. Each data attribute includes
operation day, departure airport, arrival airport, planned departure time, actual departure
time, planned arrival time, actual arrival time, etc. According to the planned departure time
and the actual departure time, the flight that leaves the airport in advance is considered
to have a delay time of 0, and the delay of a flight with a delay of more than 180 min is
considered to be 180 min. At the same time, it is necessary to delete the canceled flights
at each airport, because the cancelation of flights only affects the waste of related airport
resources, and will not cause delays at the related airports, and the delay propagation effect
on the airport network can be ignored. Generally, it takes three hours to spread to related
airports after an airport is delayed. Therefore, this paper constructs delay time series with
an hour as the time interval [32]. At 60 min intervals, there are 24 time periods in a day, and
the average departure delay for each time period at each airport is calculated for 61 days.
Each airport constitutes a delay time series with a length of 61×24 to represent the delay
characteristics of the airport. A prediction model is trained using the delay time series for
each airport as input data.

Figure 10. Location distribution map of 219 major airports in China.



Appl. Sci. 2022, 12, 10433 17 of 25

4.2. Sensitivity Analysis of Model Parameters

The parameters involved in the causality mining method include deep time-domain
convolution prediction model parameters and causality identification parameters. The
parameters of the deep temporal convolution prediction model include the learning rate,
the number of training times, the number of convolution layers, and the size of the convo-
lution kernel. The causality identification parameter includes the value of the candidate
causality identification.

For the parameters of the deep time-domain convolution prediction model, the learn-
ing rate and the number of training times have little effect on the performance of the
model and are set with general values. In this model, the learning rate is set to 0.01, and
the number of training times is 500. The number of convolution layers and the size of
the convolution kernel will have a great impact on the performance of the model, which
depends on the size of the data, and they are the two most important parameters which
are set through experiments. Considering the size of the experimental data, if the number
of convolution layers exceeds 6 and the convolution kernel exceeds 8, the model will
be overfitted. To this end, the number of convolutional layers is selected from the set
{1, 2, ..., 6}, and the size of the convolution kernel is selected from the set {2, ..., 7, 8}. The
performance of the models constructed with different parameter combinations is analyzed,
and the parameter combination with the best model performance is selected from them. In
this section, MSE error is used to measure the impact of different convolution layers and
convolution kernel sizes on model performance. Experiments show that when the number
of convolution layers is 6 and the size of the convolution kernel is 6, the model performance
is optimal.

After the optimal combination of the number of convolution layers and the size of
the convolution kernel is determined, the sensitivity analysis is carried out. One of the
parameters is unchanged, and the influence of the other parameters on the model error is
analyzed. Figure 11 is a graph of model error versus kernel size and convolution layers. As
the number of convolutional layers increases and the convolution kernel becomes larger,
the error becomes smaller and smaller. In Figure 11a, when the number of convolutional
layers is fixed at 6 and the convolution kernel size is 2, the model prediction error is 9.
The reason for the large error is that the convolution kernel is too small, so the receptive
field of the input layer is too small, and there is insufficient ability to predict the target
airport delay time series. When the size of the convolution kernel is 6, the model prediction
error is 2. If the convolution kernel continues to increase, the rate of error decline becomes
lower. In addition, if the convolution kernel is too large, it easily causes the model to be too
complex and overfit and increases the operation time. In Figure 11b, when the size of the
convolution kernel is 6, the effect of the change in the number of convolutional layers on
the performance of the model is analyzed. When the number of convolutional layers is 1,
the error is 9, and the neural network is too simple, resulting in insufficient abstraction for
many input time series, and it cannot predict the target time series well. When the number
of convolutional layers is 6, the error is reduced to 2, the model has sufficient ability to
represent the input time series information, and the model performance is optimal.

The causality identification parameters include the parameter. The parameter is related
to the number of candidate causal pairs identified based on the attention score. Too many
causal pairs will make the delay propagation causal network too complex, which is not
conducive to airport coordination and decision-making. If the number of causal relationship
pairs is too small, some important delay propagation causal relationships will be ignored,
and delay propagation cannot be reduced to a large extent. Therefore, the parameter is
set experimentally.
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Figure 11. Influence of the number of convolution layers and the size of convolution kernel on model
error. (a) The influence of the size of the convolution kernel, (b) the number of convolutional layers
on the model error.

Figure 12a is a plot of the number of potential causality pairs as a function of the
value of w0. As the value of w0 increases, the number of potential causal pairs decreases
rapidly. When the w0 value is 1.1, the number of potential causal relationship pairs is the
largest, about 9000. When the w0 value is greater than 1.7, the number of potential causal
relationship pairs is almost 0, indicating that there is no delay propagation relationship
between airports. The identification of potential causal relationships is based on the
attention factor score, and the attention factor score does not change after the prediction
model training is completed. It is considered that the airport with an attention factor score
greater than the w0 value is the candidate cause set of the target airport, so when the
w0 value is the smallest, the number of candidate causal relations is the largest, and the
candidate causal relation set with the large w0 value is included. In addition, most airports
have attention factor scores of 1.1–1.4, so when the w0 value is greater than 1.4, the number
of potential causalities declines more slowly. Figure 12b is a line graph of the number of
true causal airport pairs as a function of the value of w0. As w0 increases, the true causality
has a decreasing trend to the quantity. When W is 1.1, the number of true causality pairs
is the largest. When w0 is greater than 1.7, the number of true causal relationship pairs is
almost 0, that is, there is no delay propagation relationship between airports. In order to
facilitate the decision-making of airport control, w0 is set to 1.3 here.

Figure 12. Graph of the number of candidate causality pairs and true causality pairs as a function of
w0. (a) The relationship between the number of potential causality pairs and w0; (b) the relationship
between the number of true causality pairs and w0.
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4.3. Result Analysis

If delays at one airport lead to delays at another airport, the two airports are connected
to build a delay causality network diagram. The following is a comparative analysis of the
causal relationship network, the causal relationship network with an in-degree greater than
10, and the causal relationship network with an out-degree greater than 10.

Figure 13a is a directed network graph of delay propagation causality at Chinese
airports, containing 219 nodes and 1266 edges. Larger nodes indicate more severe airport
delays. A directed edge indicates that there is a causal relationship between the two airports,
from the airport where the delay occurred to the airport affected by it. The darker the color
of the edge, the greater the strength of the causal relationship between the two airports.
The strength of the causal relationship indicates the credibility of the causal relationship
between the two airports. The greater the strength, the greater the credibility of the causal
relationship. There are 925 directed edges with a causal relationship strength of 1.3–1.5,
297 directed edges with a strength of 1.5–1.8, and 18 directed edges with a strength of
1.8–2.2. Directed edges with strengths greater than 1.8 are much smaller than directed edges
with strengths less than 1.8. This is because it is rarely the case that delays at one airport
are definitely caused by delays at another airport, often due to a variety of reasons such as
weather and airlines. Among the 18 sides with the greatest intensity, Yulin Yuyang Airport
(ZLYL) and Xichang Qingshan Airport (ZUXC) caused delays at many airports, ZLYL’s
delays caused delays at 38 other airports, and ZUXC’s delays caused delays at another
27 airports. ZLYL has an average of 29 departure flights per day, and ZUXC has
an average of 11 departure flights per day, which is far less than the average daily de-
parture flight volume of Beijing Capital International Airport (ZBAA) of 860. It can be seen
that airports with small flight volumes are more likely to affect other airports and cause
delays. Figure 13b is a histogram that further refines the number of edges corresponding
to different causality strengths, with a step size of 0.1, and statistical strengths for causal
relationship pairs in each interval between 1.3 and 2.3. There are 561 pairs of airports with
strengths 1.3–1.4, the most causal pairs. In addition, the greater the strength, the smaller
the number of causality pairs. The number of sides with a strength of 1.9–2 is almost equal
to the number of sides with a strength of 2–2.1. The number of edges with strength from
2.1–2.2 is only one.

Figure 13. Real delay propagation causal network diagram. (a) Causality network (b) Number of
airport pairs with different strength.

Figure 14a is a causal network diagram with an in-degree greater than 10. There are
32 airports with an in-degree greater than 10, and 369 causal pairs. The analysis found that
airports with small delays are more likely to be affected by other airports. Figure 14b is
a histogram of the number of edges corresponding to different intensities in a causal
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network with an in-degree greater than 10, showing the same law as Figure 13b. Figure 15a
is a causal relationship network diagram with an out-degree greater than 10, in which there
are 47 airports with an out-degree greater than 10, and 797 causal relationship pairs. In
a strong causal relationship, flights with moderate delays are more likely to affect other
airports. Figure 15b is a histogram of the number of sides corresponding to different
intensities in a causal relationship with an out-degree greater than 10, showing the same
law as Figure 13.

Figure 14. Delayed propagation causality network with in-degree greater than 10. (a) Causality
network (b) Number of airport pairs with different strength.

Figure 15. Delayed propagation causality network with an out-degree greater than 10. (a) Causality
network (b) Number of airport pairs with different strength.

4.4. Topological Property Analysis

Topological properties are properties that remain unchanged after a graph changes
shape continuously. The topological property analysis of the airport delay propagation
causality network is helpful to understand the invariance of the entire delay propagation
causality network.

The degree of a node is an important method to describe the structure of a complex
network, it represents the number of edges connected to the node in the network. The
causal relationship network in this paper belongs to the directed graph network, and
the degree is divided into in-degree and out-degree. This experiment discusses the in-
degree distribution and out-degree distribution of the network and analyzes how many
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other airports’ delays will be affected by the delay of one airport. Figure 16a shows the
distribution of in-degree, out-degree, and degree of an airport with a boxplot. The degree
of an airport is equal to the sum of out-degree and in-degree. The average in-degree is
equal to the average out-degree, which is 5.74, indicating that an airport will be affected by
another six airports on average, and will also affect another six airports on average. For
the in-degree, the minimum value is 0, indicating that the delays at these airports are not
caused by the delays of other airports, but are caused by the weather and other reasons.
Most airports have in-degree values of 3 to 8. Although the airport will be affected by
other airports, it will not be affected by too many other airports’ delays (the number of
other airports will not be too large). The maximum in-degree value of an airport is 16.
This airport is Baoshan Yunrui Airport (ZPBS). The airport has an average daily departure
flight of 16. The same conclusion as in Section 4.3 is obtained: an airport with a small
flight volume is easily affected by many other airports. For out-degrees, 25% of the airports
have out-degree values of 0, indicating that delays at these airports will not affect delays at
other airports. Except for Yulin Yuyang Airport (ZLYL), the out-degree value is 38, which
affects many airports. Seventy-five percent of the airports have an out-degree value below
9, which will only affect the normal operation of the airport that is most closely related to it.

Figure 16. Degree distribution. (a) Box plot of out-degree, in-degree, and degree, (b) Number of
airports with different in-degree and out-degree.

The maximum in-degree in Figure 16a is 16. To compare the similarities and differences
in the number of airports when the in-degree and out-degree are equal, Figure 16b plots the
number of airports in the network with degrees from 1 to 17 in the entire causal network.
There are eight airports with an in-degree of 1, and 24 airports with an out-degree of 1.
The number of airports decreases with the increase in in-degree and out-degree. When
the in-degree and out-degree take the same value of less than 12, the number of in-degree
airports is greater than the number of out-degree airports. Especially when the in-degree
and out-degree values are 3, the difference in the number of airports is 32. When the
in-degree and out-degree take the same value greater than 13, the number of airports is
almost the same, with an average of 3, and the number of airports that affect many other
airports and are affected by delays of many other airports is small. Figure 17 is a scatterplot
of the in-degree and out-degree relationships for each airport. The airport with the largest
in-degree is Baoshan Yunrui Airport, but the corresponding out-degree is not the largest.
The airport with the largest out-degree has an in-degree of 10. However, on the whole,
airports with large in-degrees generally have large out-degrees.
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Figure 17. Relationship between airport in-degree and out-degree.

Figure 18a shows the relationship between the average daily departure flight volume
and degree, that is, the delay caused by airports with different flight volumes is affected
by how many airports are delayed and how many airports are affected by delays. There
are 6 airports with a small number of flights, but the out-degree is greater than 25. There
are 8 airports with a large number of flights, but the in-degree and out-degree are small.
In general, most airports have 0–300 departure flights, and 0–10 inbound and outbound
flights. These airports are susceptible to being influenced by other airports, and at the
same time, they are also easily influenced by other airports. Airports with more than
300 flights have small in-degrees and are not easily affected by other airports. They have
a strong ability to absorb delays. From here, it can also be seen that the airport with the
smallest number of flights has the largest in-degree and out-degree. Figure 18b shows
the relationship between the average delay of departure and the degree value for each
airport. The relationship between airport delay level and out-degree value is similar to the
relationship between airport flight volume and out-degree value. The smaller the average
delay time, the easier it is to affect other airports. There is no obvious relationship between
the in-degree and the average delay time of the airport. It does not mean that the airport
with a smaller delay is more easily affected by other airports, and it does not mean that the
airport with greater delay is more easily affected by other airports.

Figure 18. Relationship between 20 degrees and departure flight volume and average delay time.
(a) Degree value vs average daily departures, (b) Degree value vs average dalsy.
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Table 2 gives the values of connection density, interaction parameter, aggregation
coefficient, and connection density ld to represent the degree of tightness of network
connection, which is defined as the ratio of the number of edges of the network to the
number of possible edges of all nodes, and the value range is between [0, 1]. The larger the
value of ld, the tighter the network connection is, and the more easily the delay propagates
in the network. The connection density of this causal relationship network is 0.0266, which
is related to the choice of model parameters so that the network connection is not tight,
and the delay propagation can be blocked by certain measures in the airport network. The
interaction parameter indicates whether the delay propagation between airport pairs is
bidirectional. Delays at the airport i will affect delays at airport j, and delays at airport j
will also affect delays at the airport i. The interaction parameters were calculated using the
method provided in [31]. The average R of 1000 random networks with the same number
of nodes and edges generated by the network randomization technique is 0.17. Compared
with this value, the interaction parameter of the causal network is much smaller than R,
so the number of airport pairs in the network where delays propagate and influence each
other is considered to be very small. If the delay of one airport leads to the delay of other
airports, then other airports are called neighbor airports. The ratio of the actual causal
relationship between these neighboring airports and the possible causal relationship is
called the aggregation coefficient, which reflects the aggregation degree of the airport.
For directed networks, the clustering coefficient is calculated using the method provided
in [17,19]. The overall clustering coefficient of this causal network is 0.1405, which is larger
than that of the random network (0.092). It shows the clustering trend among airports in
the delay causality network, and delay causality often exists between the other two airports
affected by the delay of one airport.

Table 2. Delay propagation causality network metric values.

Metrics Value

connection density (ld) 0.0266
interaction parameter 0.0018
clustering coefficient 0.1405

5. Conclusions

This paper proposes a deep time series convolutional neural network causality dis-
covery method, which considers the entire airport network at the same time, and correctly
discovers the delay propagation causality of the airport network. This method includes
two parts: a deep time series convolutional network prediction model and causal relation-
ship analysis. The deep time series convolutional network prediction model takes the delay
time series of all airports as input and the time series of a single target airport as output and
introduces an attention mechanism to better discover and explain the contribution of each
input airport to the target airport. The causal relationship analysis includes the potential
causality analysis based on the attention mechanism, and then from the potential causality,
the direct causality is verified based on the permutation importance test. According to
the verified causal relationship, the network is constructed, the performance and topology
properties of the network are analyzed, and the delay propagation mechanism of the airport
network is studied.

Applying this method to the research on the delay propagation mechanism of China’s
airport network, an airport is affected by six airports on average, and it will also affect
six airports at the same time. Airports with small flight volumes and airports with moderate
delays are more likely to affect other airports, and airports with small delays are more likely
to be affected by other airports. The research results of this paper can provide a theoretical
basis for delay control. This paper takes the Chinese airport network as a case. Further
research will try to apply the method in this paper to other countries to compare whether
there are differences in airport delay networks in different countries.
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