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Abstract: In this paper, we propose an intelligent monitoring framework based on the Internet
of Things (IoT) by applying a Recurrent Neural Network (RNN) for the predictive maintenance
of a biobanking system. RNN, which is one of the deep learning models, is used for time series
data. It is called a sequence model because it processes inputs and outputs in sequence units. The
proposed framework measures the internal temperature of the cryogenic freezer and the temperature
of each component simultaneously, monitors the internal temperatures of internal and middle layers
in real time, sends the sensing temperature data to the server, and performs predictive learning.
Thus, it is possible to support the intelligent predictive maintenance of the biobank by performing
a time series data analysis of the temperature sensor using RNN. Among RNN methods, a simple
RNN has a longer-term dependency problem; therefore, Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU), which have higher learning performance, are selected. To support the
intelligent predictive maintenance of the biobank, both the LSTM and GRU models were constructed,
and comparative experiments were performed. The proposed system can ensure the safety of bio-
resources by performing predictive maintenance using RNN and provide an accurate status of the
biobank in real-time. In addition, before an abnormal situation occurs, it is possible to respond
immediately to emergencies that may damage biological resources.

Keywords: IoT-based intelligent monitoring; predictive maintenance; RNN; LSTM; GRU

1. Introduction

Recently, the fields of biotechnology, genetic engineering, artificial intelligence, and big
data are emerging as the core of the Fourth Industrial Revolution. The safe storage of life
resources and related data is essential to ensure quality-of-life science research. Therefore,
biobanks that secure the safety of biomass and bioresources are becoming increasingly
important [1]. In the case of a biobanking system, it is not easy to continuously maintain
the ability to detect and correct a dangerous situation as soon as it occurs. The bioresources
and data used in the life sciences are the basic infrastructure to support research capability
and research indicators [2]. Collecting, storing, and managing bioresources and data have
emerged as the new competitive edge of bioresearch to guarantee life-science research
quality [3]. Therefore, for the reliable management of bioresources, biobanks have become
more important than ever before. In particular, bioresources stored in the biobank have
academic and economic potential and contain the inherent characteristics of living things;
hence, damage to biomass will cause enormous ethical, academic, and economic losses.
As biomedical research is rapidly progressing, collecting biomass in both types and quan-
tities is increasing; however, accidents that damage biomass frequently occur because of
managers’ lack of awareness of the appropriate storage and management of biomass, and
inadequate technology [4].

Recently, the importance of biobank management has attracted attention owing to
incidents such as blood storage accidents due to the breakdown of freezers in blood banks.
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To prevent damage to bioresources and to store them in the long term with high qual-
ity, biobank operation and management procedures should be standardized [5]. The
International Society for Biological and Environmental Repositories (ISBER) is the only
international standard forum for solving academic, technical, legal, and ethical problems in
life sciences. The ISBER forum proposed the ISBER biobank best practices for repositories,
which systematically establishes the most stable biomass repository management proce-
dures [5]. According to the ISBER biobank standard operating guidelines, the performance
of all storage equipment must be continuously monitored [1]. The temperature of the stor-
age equipment is visually checked by the manager and recorded at least thrice per week to
detect potential degradation or failure. It is recommended to use an automatic temperature
monitoring system that can record the temperatures of all the storage equipment monitored
by both humans and the system and send alert notifications during emergencies.

The most stable way to manage biobanks is to follow the ISBER standard guidelines for
resource history management, cryogenic freezer maintenance, and emergency corrective
action in the event of resource risk [1]. However, small-scale biobanks with financial
constraints are unable to secure manpower and build systems to comply with the “best
practices.” The continuous maintenance of small-scale biobanks to reduce the possibility
of risk situations of bioresources is difficult. Sometimes, it is not possible to manage risk
situations and maintain a history of resource status that must be tracked according to each
resource [4]. Therefore, the reliable quality of stored biomass is not guaranteed.

In order to solve these problems and ensure the reliability of the biobank, an IoT-based
monitoring system was adopted. Internet of Things (IoT) technology has attracted consid-
erable interest in recent years owing to its applicability across various domains [6]. Several
studies on intelligent IoT service systems have received attention owing to convergence
in information and communication technology (ICT) [7]. An IoT-based intelligent service
system is defined as a system that acquires data from various resources, recognizes the
current status using the acquired data, and interacts with the user according to the domain
knowledge of the applications [8]. IoT technology is applied in various domains such
as intelligent CCTV and intelligent robots, and users can connect to the server with a
smartphone and manage real-time monitoring and immediate response [9,10].

By applying technologies such as machine learning and deep learning, anomalies can
be detected automatically and monitored intelligently [11]. In particular, an abnormal state
may be monitored through the pattern recognition or image recognition of sensing data
and context information obtained from various resources [12]. Many studies have been
conducted on intelligent monitoring that detects abnormal patterns by applying machine
learning or deep learning [13,14]. Machine learning based on Recurrent Neural Networks
(RNNs) is optimized for time series data or predictive maintenance and can mainly be used
for stock and economic data [15,16]. In biobanks, temperature sensor data are time series
data, and RNN is useful as a predictive learning model.

Here, we propose an IoT-based intelligent monitoring system that applies RNN to
support the predictive maintenance of biobanks for the safe use of biomass. The proposed
system can be used to measure not only the internal temperature of the cryogenic freezer,
but also the temperature of each component (compressor, condenser, heat exchanger,
evaporator, etc.) through which the refrigerant circulates. Then, the temperature change
can be monitored in real time. To guarantee predictive maintenance we apply RNN deep
learning techniques to the IoT-based monitoring of biobanks.

The remainder of this paper is organized as follows. Section 2 explains the research
background and related work on intelligent monitoring based on IoT. Section 3 presents the
design of an IoT-based intelligent monitoring system and RNN model. Section 4 describes
the experimental results. Finally, Section 5 presents a brief conclusion.

2. Related Works

Hospitals and laboratories use cryogenic freezers that maintain cold temperatures
below −4 ◦C to store human resources such as blood, serum, plasma, and DNA, as well as
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experimental resources such as plants, animals, and microorganisms. In general, to manage
biobanks, the internal temperature of the cryogenic freezer is monitored. Currently, most
small-scale biobank managers manage the temperature-monitoring data on a document-
based basis by recording the temperature inside the cryogenic freezer, at regular intervals,
on paper by hand or by using a circular time chart, as shown in Figure 1. Figure 1 shows the
monitoring status in the case of small-scale biobanks. As shown in Figure 1, the manager
checks the temperature at regular intervals and records the status of the machine manually.
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According to the international standard operating guidelines for biobanks, the method
of monitoring the internal temperature of cryogenic freezers has been applied as a way to
minimize the possibility of damaging the stored biomass [1]. The temperature of different
internal locations can vary within a single storehouse because of the size, age, and other
factors of the device, and the monitoring of the internal temperature of cryogenic freezers
depends only on the temperature of the sensor location. It is not possible to determine
whether the temperature is within the appropriate range. As the inside of the cryogenic
freezer is sealed, even after the occurrence of a resource-risk situation, the internal tem-
perature of the reservoir remains unchanged for approximately 8 h, and the biomass is
damaged only when the internal temperature of the reservoir changes. Therefore, it is
difficult to manage the risk of resources stably. For the reliable management of biomass, it
is necessary to attach sensors to each component of the refrigerant, such as compressors,
condensers, heat exchangers, and evaporators, and monitor all sensors in real time.

In this study, we apply ICT convergence technology to monitor cryogenic freezers
to manage the risk status and long-term maintenance of bioresources. To automate the
monitoring of the biobank, temperature sensors and controllers are composed using IoT,
and one or more temperature sensors are installed in the refrigerant pipe of the biobank.
The temperature data are then collected and sent to the server by the controller and used
to detect abnormal conditions. RNN was used to determine the context awareness of the
cryogenic freezer. RNN is a type of deep learning model for effectively learning time series
data and is appropriate for obtaining meaningful information from the time-dependent
data changes of digital sensor data [17]. Gated Recurrent Unit Network (GRU) is a variant
of RNN [18]. RNN takes sequence data as input, recursively in the evolution direction of
the sequence, and all recurrent units are connected in a chain [19]. It is also an iterative
model that can continuously predict data [20].

In Simple RNN, longer input data cause a longer-term dependency problem, which
reduces learning performance [21,22]. The longer the input data, the greater the distance
between the input and output; thus, the correlation decreases. To solve this problem, the
LSTM (Long Short-Term Memory) technique can be used. GRU (Gated Recurrent Unit)
technique has a similar performance to LSTM; however, it has a computational advantage
because of its simple structure [23,24].
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Figure 2 shows a simple RNN architecture using three layers. The rounded rectangles
represent network layers, solid lines represent weighted connections, and dashed lines
represent predictions. LSTM and GRU are variant RNN architectures designed to store and
access information better than standard RNNs [25].
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It is possible to predict temperatures in advance by receiving temperature data for
each location from the temperature sensor attached to each device in the cryogenic freezer,
storing it in the database, and learning the stored temperature data with the variant RNN
model such as LSTM and GRU. If the difference between the actual sensed temperature and
the predicted temperature exceeds the threshold value, it is determined that the biobank
is in an abnormal state. Furthermore, sensor data for each part are learned by RNN
individually so that the cause of failure of each part can be determined.

Here, we propose a smart monitoring framework based on IoT by applying deep RNN
to support the predictive maintenance of the biobank. Figure 3 shows the framework of the
proposed IoT-based intelligent monitoring system. As shown in Figure 3, the framework
consists of three parts: a cloud server, client part, and embedded devices such as the main
controller, LCD, and sensors, which are attached to the biobank. The main controller
including the built-in IoT can receive temperature data from sensors and send them to the
cloud server. The cloud server stores the sensing data received from the main controller,
runs the RNN learning model, derives the next predicted value, and compares it with
the actual sensed value to determine the abnormal state of the biobank. Communication
between the three components occurs over the Wi-Fi network.

Temperature sensors are attached inside the cryogenic freezer and to various com-
ponents to monitor, transmit, and store the temperature data and define trigger rules to
alert the manager’s mobile device when the temperature deviates from a certain range.
We proposed an IoT based smart monitoring system for biobank system, which needs
status check periodically. Furthermore, temperature sensing data are sent to the server and
predictive maintenance can be carried out using the RNN predictive learning model.

For the intelligent predictive maintenance of the biobank, both LSTM and GRU models
were designed for temperature sensor data, and comparative experiments were performed.
Section 3 presents details of the proposed system.
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3. Design of an IoT-Based Intelligent Monitoring System and RNN Model

In the international standard operating guidelines for biobanks, the method of moni-
toring the internal temperature of cryogenic freezers has been applied as a way to minimize
the possibility of damage to stored bioresources, but it depends on the various parts of
cryogenic freezers. In addition, the following problem may occur in the method of monitor-
ing only the internal temperature of the cryogenic freezer. The internal temperature of the
reservoir remains unchanged for 8 h, even in cases of a sudden temperature rise of the stor-
age facility, power shutdown, aging internal parts, over-load, and failure. Therefore, when
the internal temperature of the reservoir actually changes, it causes immediate damage to
bioresources. Hence, no biobank fully guarantees the maintenance of bioresources. We
designed and implemented an IoT-based monitoring system for the cryogenic freezer to
monitor the exact storage condition in real time before the temperature inside the storage
changes. The proposed system can measure the front and rear temperatures of each compo-
nent, such as the compressor, condenser, heat exchanger, and evaporator through which
the refrigerant circulates, as well as the internal temperature of the cryogenic freezer. The
temperature sensor data are sent to the cloud server and analyzed using an RNN-based
predictive learning model so that the abnormal status of each part can be monitored in
real time.

Figure 4 shows the architecture of the IoT-based integrated monitoring system apply-
ing RNN for the predictive maintenance of a biobank. It was designed as client–server
architecture, as shown in Figure 4. There are three main parts: embedded hardware, a
cloud server, and a client, as shown in Figure 4. It consists of various components: sen-
sors and main controller attached to a cryogenic freezer, sensor data manager, anomaly
detector, RNN-based predictive learning model, maintenance manager in a cloud server,
real time monitoring, and client. The IoT-based main controller, which is attached to the
biobank system, transmits temperature data from the sensors to the cloud server over the
Wi-Fi network. The cloud server consists of four component modules and databases. The
maintenance manager connects and manages cryogenic freezers and clients. The sensor
data manager receives the temperature data sent from each sensor, stores the sensing data
in the database, and provides data to the RNN predictive learning model that runs the
RNN learning and derives the next predicted value. The anomaly detector compares the
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predicted value with the actual sensed value to determine the abnormal state of the biobank.
According to the results of the anomaly detector module, the maintenance manager module
notifies the biobank manager of the biobank. The biobank manager in the client part can
monitor the biobank in real time through the web or app, and check the biobank status
information and other information. The sensors are placed at various locations in the
biobank, and the main controller is also attached. The RNN predictive learning model
performs prediction learning with the stored temperature data, which are time series data,
and compares them with actual measured temperature data values. The anomaly detector
sends the status information to the maintenance manager when the difference between the
predicted value and the actual value is greater than the threshold value for each sensor.
Through the web/app UI/UX, the biobank manager can monitor the status of the biobank
with smart devices in real time and respond immediately to abnormal conditions of the
cryogenic freezer. An intelligent monitoring and integrated management system to support
biobanks can provide an entire management process for biobank managers to guarantee
biomass safety.
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The RNN models for the intelligent monitoring system are shown in Figures 5 and 6.
During the RNN process, the information in the foreground data may be lost. To solve this
problem, an LSTM cell has been proposed, which is shown in Figure 5. The LSTM cell can
be represented using two vectors h(t) and c(t). Vector h(t) denotes the short-term state and
vector c(t) denotes the long-term state. RNNs control which data to store in the long-term
state or which data to discard. C(t−1), long-term memory, passes through the forgetting
gate, losing some of its contents and adding a new memory i(t). The generated c(t) is sent to
the output. The long-term state is copied and passed to the tanh function to produce the
short-term state h(t). Eventually, the LSTM cell recognizes the important input, stores it in a
long-term state for some time, and then extracts it whenever needed. This guarantees a
good performance when training long time series data.

The expressions below show how to calculate the cell state for each time step for one
sample. The formula for LSTM is as follows:

i(t) = σ
(

Wxix(t) + Whih(t−1) + bi

)
f(t) = σ

(
Wx f x(t) + Wh f h(t−1) + b f

)
o(t) = σ

(
Wxox(t) + Whoh(t−1) + bo

)
g(t) = tanh

(
Wxgx(t) + Whgh(t−1) + bg

)
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c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t)

h(t) = o(t) ⊗ tanh
(

c(t)
)

where the meaning of the parameters are as follows:

whi : weight matrix o f input gate connected to h(t−1)

wh f : weight matrix o f f orget gate connected to h(t−1)

who : weight matrix o f output gate connected to h(t−1)

whg : weight matrix o f inner hidden state
(

be f ore c(t)
)

connected to h(t−1)

bi, b f , bo, bg : bias f or each layer

Figure 6 shows the GRU model, which has been implemented more simply than the
LSTM model. The two state vectors are expressed as one vector h(t), and one gate controller
z(t) controls both the erase and input gates. When the gate controller outputs 1, the erase
gate opens and the input gate closes.
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The following expressions show the calculation of the cell state for each time step for
one sample. The GRU formula is as follows:

z(t) = σ
(

Wxzx(t) + Whzh(t−1) + bz

)
r(t) = σ

(
Wxrx(t) + Whrh(t−1) + br

)
gt = tanh

(
Wxgx(t) + Whg

(
r(t) ⊗ h(t−1)

)
+ bg

)
h(t) = z(t) ⊗ ht−1 +

(
1 − z(t)

)
⊗ g(t)

The input dataset used in the LSTM model comprises 525,000 temperature data, and
each X_train datum consists of a temperature vector from time t − 9 to time t, and the
Y_train data are temperature data at time t + 1. The part of the train dataset, 0.2 * training
dataset, was used as a validation data. The hidden layer uses two LSTM Layers, each node
consists of 10, and the output layer is a fully connected layer and has one output value. The
main parameters used in the training are as follows:

batch size: 1
loss function: mean squared error
optimizer: ADAM (Adaptive Moment Estimation)
Input layer:
X_train Dim: (525,000, 10)
Y_train Dim: (525,000, )
Length: 525,000
Normalization: 0 ~ 1 (Min Max Scaler)

In the case of the GRU model, the basic neural network is the same as the LSTM model,
but only the hidden layer part uses the GRU layer. The number of nodes in each hidden
layer of the LSTM model is shown in Table 1, while Table 2 shows the case of the GRU
model. It is possible to use regulation rate or dropout in case of overfitting, but they were
not used in our model because overfitting did not occur.

Table 1. Number of nodes in each hidden layer (LSTM).

Layer (Type) Output Shape Param

Hidden 0 (LSTM) ( , 10, 10) 480

Hidden 1 (LSTM) ( , 10) 840

Output (Dense) ( , 1) 11

Total params: 1331

Table 2. Number of nodes in each hidden layer (GRU).

Layer (Type) Output Shape Param

Hidden 0 (GRU) ( , 10, 10) 390

Hidden 1 (GRU) ( , 10) 660

Output (Dense) ( , 1) 11

Total params: 1061

Figure 7 shows the designed structure, which has outputs of Y, 10 sequences, and two
hidden layers. If the difference between the Ypred1 output as the predicted value and the
actual data Y1 is greater than the threshold, it is counted as an error. Thus, the accuracy
of the predictive model can be calculated by examining how accurate it is relative to the
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threshold. It is used to check the learning accuracy of the prediction model with accuracy
within the range considering the same temperature within a certain threshold.
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The implementation environments are as follows: Python and Google Colab were used
to construct and evaluate the RNN learning model for predictive maintenance. MySQL
and MongoDB were used to store the metadata of the bioresources and the temperature
sensing data, respectively. The app client will be developed using Android Studio, and
APM is used for the web server and database server.

The cryogenic freezer consists of a compressor, condenser, gas–liquid separator, heat
exchanger, and refrigerant recovery flow path. The compressor compresses the refrigerant
at high temperatures and pressures, and then the condenser condenses it. In the first
stage, the gas–liquid separator separates the condensed mixed refrigerant into gas-phase
refrigerant and liquid–liquid refrigerant. The liquid–liquid refrigerant is expanded and
sprayed to be supplied at low temperature and pressure. The heat exchanger exchanges
gaseous and liquid refrigerants. After condensation, they are fed to the second-stage gas–
liquid separator. It comprises an evaporator to obtain cryogenic cold air by expanding
the refrigerant that is condensed through the final heat exchanger and the refrigerant
passing through the evaporator and the refrigerant recovery flow path to be recovered to
the compressor.

The cryogenic freezer, configured as described above, is likely to deteriorate the sample
of the subject when there is a problem in performance due to an abnormal power supply
or aging of the accessory equipment. Hence, to continuously monitor and manage the
condition of the cryogenic freezer with high accuracy, it is necessary to closely attach the
temperature sensor to the refrigerant tube. To automate monitoring, a temperature sensor
and an IoT controller are produced, one or more temperature sensors are installed in the
refrigerant pipe of the biobank, and the temperature data are collected and sent to the server
to detect abnormal conditions. Figure 8 shows the temperature sensors attached to the
components near the freezer. In order to monitor the state of the cryogenic freezer, a sensor
for detecting the temperature of the refrigerant pipe is used. To increase the precision of
the condition monitoring, a device for attaching the temperature sensor to the refrigerant
pipe is required.

For gathering temperature data from multiple parts, sensors were installed at different
locations in the refrigerant pipe to measure the temperature of each location within it. Six
temperature sensors were installed; the temperature sensor is a pt100-type temperature
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sensor. The temperature sensors located in the internal part of the cryogenic freezer are
shown in Figure 8.
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In the proposed system, a temperature sensor is attached to the components near the
freezer, and the temperature of the refrigerant tube is sensed at regular intervals by the
temperature sensor, which then stores the average temperature.

4. Experiments

Experiments were conducted to verify the functions of intelligent monitoring in the
proposed system. Temperature data were gathered every 1 min. The six sensors were
attached to various parts that included the temperature in the cryogenic freezer. Figure 9
shows the temperature data from the sensors. Sensor 1 is attached to the end of the
condenser and Sensor 2 is located inside the freezer. Sensor 3 is placed on the high-stage
compressor pipe, Sensor 4 is used for the outside temperature measurement, Sensor 5 is
placed on the head of the low-stage compressor, and Sensor 6 is attached to the low-stage
high-pressure part of the compressor. The temperature is measured in degrees Celsius.
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Figure 10 shows the temperature data collected from a normally operating cryogenic
freezer for 3 h. According to the location of the sensor, it can be observed that the tem-
perature data exhibit a pattern over time within a certain range, as shown in Figure 10.
From the data collected from each of the six sensors, 0.8 random data are extracted and
used as a training dataset. The remaining data are used as a test dataset to evaluate
prediction accuracy.
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We constructed both LSTM and GRU in order to implement applied RNN for pre-
dictive learning. The comparison results of LSTM and GRU (loss function graph and
prediction results graph of each sensor) are shown in Figure 11. The graphs on the left
side of Figure 11 show the loss function graph for the results of training with the LSTM
and GRU methods using the data collected by each sensor. Overfitting did not occur until
20 epochs, and the loss value was less than 0.05, indicating convergence within 20 epochs.
The graphs on the right side show the comparative analysis of the predicted temperature
using the LSTM and GRU for the data collected from each sensor. Blue represents the
training data up to 120 times, orange represents the actual data used for verification, and
green represents the data predicted by inputting the verification data. This shows that
there is little difference between the actual and predicted data after 120 iterations. The
prediction results for each sensor’s data show almost no difference from the actual data,
which means that the built RNN prediction model is effective for intelligent monitoring
and predictive maintenance.

Experiments were performed on two models each applied to six types of sensor data.
Experimental results confirmed that both models can be applied to predictive maintenance.
The accuracy of the predictive model can be assessed based on how closely it falls within the
threshold. However, the accuracy was within the range considering the same temperature
within a certain threshold, and the accuracy value depended on the threshold value.
Figure 12 shows a comparison of the accuracy of the LSTM and GRU results from the
experiments. In the case of sensor 3, the threshold value is 5.0, which is larger than the
others; therefore, the accuracy is lower than in other cases. In most cases, it can be noted
that there is no significant difference between LSTM and GRU. However, GRU is known to
be efficient in consuming computational resources.
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graph and prediction results graph of sensor3, (m–p): loss function graph and prediction results
graph of sensor4, (q–t): loss function graph and prediction results graph of sensor5, (u–x): loss
function graph and prediction results graph of sensor6).
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5. Conclusions

This paper presents an IoT-based intelligent monitoring system applying RNN. Deep
RNN and IoT convergent technology were applied for the intelligent monitoring of a
biobanking system to support predictive maintenance. Not only the architecture of the
IoT-based intelligent monitoring system, but also the RNN predictive learning model with
two hidden layers and 10 sequences was implemented. For the predictive maintenance of
the biobank, both LSTM and GRU models were constructed. In addition, experiments were
performed to compare the two models based on the loss function and prediction accuracy.
The accuracy results of the two models were similar, and we ensured that there were no
problems of overfitting according to the loss function graphs of each sensor. Using the
implemented monitoring system, it is possible for the biobank manager to easily manage
and respond immediately to abnormal situations. The contribution of this work is that the
proposed intelligent monitoring framework based on IoT and deep RNN can be useful to
improve the reliability of the biobanking system. We will develop a client app and carry
out additional experiments on a larger dataset in order to put our research to practical use.
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