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Abstract: Helical anchors are widely used in engineering to resist tension, especially during offshore
wind energy harvesting, and their uplift behavior in sand is influenced by many factors. Experimental
studies are often used to investigate these anchors; however, scale effects are inevitable in 1× g model
tests, soil conditions for in situ tests are challenging to control, and centrifuge tests are expensive and
rare. To make full use of the limited valid data and to gain more knowledge about the uplift behaviors
of helical anchors in sand, a prediction model integrating gradient-boosting decision trees (GBDT)
and particle swarm optimization (PSO) was proposed in this study. Data obtained from a series of
centrifuge tests formed the dataset of the prediction model. The relative density of soil, embedment
ratio, helix spacing ratio, and the number of helices were used as input parameters, while the anchor
mobilization distance and the ultimate monotonic uplift resistance were set as output parameters. A
GBDT algorithm was used to construct the model, and a PSO algorithm was used for hyperparameter
tuning. The results show that the optimal GBDT model accurately predicted the anchor mobilization
distance and the ultimate monotonic uplift resistance of helical anchors in dense fine silica sand. By
analyzing the relative importance of influencing variables, the embedment ratio was found to be
the most significant variable in the model, while the relative density of the fine silica sand soil, the
helix spacing ratio, and the number of helices had relatively minor influence. In particular, the helix
spacing ratio was found to have no influence on the capacity of adjacent helices when S/D > 6.

Keywords: helical anchor; sand; artificial intelligence techniques; gradient-boosting decision trees;
particle swarm optimization

1. Introduction

Helical anchors have a century-old application history in engineering practice [1,2]
and have the potential to be used to support offshore floating structures [3] due to their
advantages of rapid installation and high uplift capacity. A typical helical anchor comprises
a central steel shaft and several helical steel plates welded onto the shaft, as shown in
Figure 1. In designing floating structures, one needs to accurately predict the monotonic
tensile capacity of the helical anchor, which is affected by the relative density of the soil,
the embedment ratio of the helices, the soil friction angle, the dilation angle, the number of
helices, the installation effect, and many other factors; the monotonic tensile capacity of the
helical anchor is difficult to predict.
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Figure 1. Helical anchor definitions. 

The uplift capacity of a helical anchor in sand is generally predicted through experi-
ments, including field tests [4,5], small-scale model tests [6–13], and centrifuge tests 
[10,14–18]. Experimental studies are relatively costly and time-consuming, especially field 
tests and centrifuge tests; additionally, it is challenging to obtain reliable data due to the 
complex operating environment. For small-scale studies, the experimental parameters are 
relatively more controllable; however, the size effect hinders the prediction accuracy. 
Thus, making full use of existing and reliable experimental results is of great significance 
for accurately predicting the uplift capacity of helical anchors in sand. 

Given the advanced capabilities of AI technologies, they have been applied to a vari-
ety of related problems in civil engineering, such as predicting the bearing capacity of 
monopiles [19,20] and pile settlements [21], and determining the frictional resistance of 
driven piles [22]. Specifically, Alzabeebee et al. used multiobjective evolutionary polyno-
mial regression to identify strong correlations between factors; their study highlights the 
influence of undrained cohesion and effective stress on adhesion and provides a guaran-
tee for optimized bored pile designs under undrained conditions [23]. Furthermore, a 
novel model that predicts the friction capacity of driven piles was proposed based on a 
multiobjective genetic algorithm for evolutionary polynomial regression [24]. Goh et al. 
constructed a Bayesian neural network model to estimate the adhesion factor of un-
drained side resistance [25]. In addition, Zhang and Goh compared backpropagation neu-
ral networks and multiple adaptive regression splines to explore pile drivability [26]. Mo-
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Figure 1. Helical anchor definitions.

The uplift capacity of a helical anchor in sand is generally predicted through experiments,
including field tests [4,5], small-scale model tests [6–13], and centrifuge tests [10,14–18]. Ex-
perimental studies are relatively costly and time-consuming, especially field tests and
centrifuge tests; additionally, it is challenging to obtain reliable data due to the complex
operating environment. For small-scale studies, the experimental parameters are relatively
more controllable; however, the size effect hinders the prediction accuracy. Thus, making
full use of existing and reliable experimental results is of great significance for accurately
predicting the uplift capacity of helical anchors in sand.

Given the advanced capabilities of AI technologies, they have been applied to a va-
riety of related problems in civil engineering, such as predicting the bearing capacity of
monopiles [19,20] and pile settlements [21], and determining the frictional resistance of
driven piles [22]. Specifically, Alzabeebee et al. used multiobjective evolutionary poly-
nomial regression to identify strong correlations between factors; their study highlights
the influence of undrained cohesion and effective stress on adhesion and provides a guar-
antee for optimized bored pile designs under undrained conditions [23]. Furthermore, a
novel model that predicts the friction capacity of driven piles was proposed based on a
multiobjective genetic algorithm for evolutionary polynomial regression [24]. Goh et al.
constructed a Bayesian neural network model to estimate the adhesion factor of undrained
side resistance [25]. In addition, Zhang and Goh compared backpropagation neural net-
works and multiple adaptive regression splines to explore pile drivability [26]. Moayedi
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et al. established a variety of nonlinear models to estimate the ultimate bearing capacity
of shallow footing under double-layer soil conditions [27]. Furthermore, Mosallanezhad
and Moayedi [28] proposed an AI-technology-based model to predict the uplift capacity
of helical piles in sand using 41 1× g model tests. However, the above studies have at
least three shortcomings: (1) the application of AI in geotechnical engineering problems
is mostly based on artificial neural networks (ANN), but the “black box” nature of these
models leads to poor interpretability [29]; (2) the feasibility of using other advanced models,
such as tree-based ensemble algorithms, to predict the monotone tensile capacity of helical
anchors in sand is still unknown; and (3) the scale effect, which significantly influences the
strength of sand [30], was not considered in previous research [28].

To address these issues, in this study, the results of centrifugation tests were used to
prepare the dataset, and a more robust AI technique, the gradient-boosting decision tree
(GBDT) approach, was used to predict the monotonic tensile capacity of helical anchors in
sand. GBDT is an ensemble learning technique that can improve the predictive accuracy
by combining many decision tree models [31]. This approach is robust in non-relationship
modeling, even when the dataset contains outliers, and the relative importance of the influ-
encing variables can be investigated. Having been used for a wide range of applications on
various datasets, the GBDT method has been shown to achieve relatively good performance
compared with other AI techniques such as ANN [32,33]. Since the predictive performance
of GBDT on a specific dataset is influenced by its hyperparameters, the particle swarm
optimization (PSO) approach was employed for hyperparameter optimization in this work.

In this study, a novel method was proposed to predict the monotonic tensile capacity
of helical anchors in sand. The GBDT method was used for nonlinear relationship modeling,
while PSO was employed for GBDT hyperparameter tuning. The predictive performance
was evaluated, and the relative importance of influencing variables was investigated. This
study leads the way for the application of GBDT and PSO in capacity estimation of helical
anchor, which will promote the utilization of the helical anchor in various geotechnical
problems, such as in offshore wind power generation [34].

2. Study Background
2.1. Gradient-Boosting Decision Tree

The GBDT approach is composed of a classification and regression tree (CART) and a
boosting algorithm. The details of these elements are briefly described below.

2.1.1. Boosting

Boosting is a serial-generated serialization algorithm in which each training procedure
is the correction of the previous one. Boosting pays attention to the samples with errors in
judgment during the previous training, and gives weight to the samples with errors [35].
There are two ways to update the weight of samples: one is to reweigh the samples, while
the other is to resample the original samples according to their weights. The core concept
of boosting is to build weak learners one by one and transform them into strong learners
through multiple iteration accumulation [36]. In this paper, a gradient-boosting approach
was used in which the negative gradient value of the current model on all samples was
calculated through continuous iteration. This negative gradient value was then used as the
residual approximation to construct a new weak evaluator for fitting [37]. The final output
of the gradient-boosting algorithm was accumulated from multiple weak learners [38].

2.1.2. Classification and Regression Tree

CART is a basic classification and regression approach that consists of (decision)
root nodes, leaf nodes, and directed edges, as shown in Figure 2 [39,40]. The root nodes
denote features or attributes, while categories are shown by the leaf nodes [41]. In this
paper, the CART for regression problems was used, whose core rationale is to identify
the best partitioning point and confirm the output results of the leaf nodes. After the
spatial region of the training set is effectively divided according to a particular method, the
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regression tree is then constructed by determining the values of each subregion. The specific
process is as follows:
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(1) Determine the optimal value of the variable, j, and the segmentation point, s, to
minimize Equation (1).

min
j,s

[min
c1

∑
x1∈R1(j,s)

(yi − c1)
2 + min

c2
∑

x2∈R2(j,s)
(yi − c2)

2] (1)

where xi and yi represent the input and output variable, respectively; c1 and c2 are the
mean values of the interval; R1 and R2 are some subregions of the input space.

(2) As shown in Equations (2) and (3), the selected pair (j, s) is used to divide the region
and output the corresponding value:

R1(j, s) =
{

x
∣∣∣x(j) ≤ s

}
, R2(j, s) =

{
x
∣∣∣x(j) > s

}
(2)

ˆcm =
1

Nm
∑

xi∈Rm(j,s)
yi, x ∈ Rm, m = 1, 2 (3)

where x(j) is the j-th variable, and s is the value it takes. The optimal value, ˆcm, is the mean
of the corresponding output, yi, of all input instances, xi, on region Rm.

Repeat steps (1) and (2) until the termination condition is met. In addition, if the input
space is divided into M regions, such as R1,R2 . . . Rm, then a complete regression tree can
be constructed according to Equation (4), as shown in Figure 2.

f(x) =
M

∑
m=1

ˆcm I(x ∈ Rm) (4)

where I stands for the impurity of the decision tree.

2.2. Particle Swarm Optimization

PSO is a population-based swarm evolutionary computing technology used to find
the optimal solution of multidimensional problems [42]. Based on adaptability to the
environment, this algorithm can guide individuals in the group to optimal areas in the
search space [43]. The PSO algorithm starts by initializing the particle group (including
random position and velocity). The fitness value of each particle is then calculated according
to the fitness function. Finally, the PSO algorithm compares the fitness of each particle with
the corresponding value of the single historical optimal position (pbest) and the global
optimal position (gbest) [44]. If the current particle has a higher fitness value, it will be
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used to update and replace the previous position [44]. At the same time, the velocity and
position of each particle will be updated according to Equations (5) and (6). The above
steps are then repeated until either the algorithm reaches a maximum number of iterations
or the increment of the optimal fitness value is below a given threshold.

vk
id = wvk−1

id + c1r1(pbestid − xk−1
id ) + c2r2(pbestid − xk−1

id ) (5)

xk
id = xk−1

id + vk−1
id (6)

where vk
id and vk−1

id represent the flight velocity of the k-1 and k-generation particles,
respectively; xk

id and xk−1
id denote the d-dimensional components of the position vectors

of the k-1 and k-generation iteration particles, respectively [45]; c1 and c2 denote the
acceleration constant, which is used to adjust the maximum stride length of learning;
r1 and r2 are two random functions in the range of [0, 1]. w is the non-negative inertia
weight for adjusting the search range of solution space. The overall flowchart of the PSO
algorithm is shown in Figure 3.
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3. Methods

In this section, the PSO and GBDT algorithms are combined to learn from the datasets
and make predictions. Figure 4 illustrates the GBDT–PSO methodology, which consists of
three parts: the establishment of dataset, the tuning of hyperparameters, and the evaluation
and interpretation of the model.
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3.1. Established Dataset

To eliminate the influence of the scale effect, the data used in this study were obtained
from centrifuge experiments [23] conducted at the University of Western Australia (UWA)
with an acceleration of 20× g. In these centrifuge experiments, fine, dry silica sand [46,47]
was used and prepared by air pluviation to control the relative density of soil in the range of
~85–96% at single gravity. The model anchors used in the centrifuge experiments, as shown
in Figure 5a, consisted of a shaft, which can be divided into several sections with different
lengths, plates, and anchor caps; all the anchors were manufactured from aluminum. Model
anchors were placed with a “wished-in-place” approach at relevant embedment depths
to avoid the installation effect. This was achieved by pausing pluviation when the soil
reached the targeted height for the lowermost helix or plate. At this point, the plate or
helix with the first shaft extension segment was located carefully on the sample surface,
and pluviation commenced until the sample height reached the targeted location for the
next helix. The information about the dimension of helical anchors and the UWA sand
used in these centrifuge experiments are shown in Table 1. The details about the setup are
shown in Figure 5b. During the experimental process, the model anchors were pulled by
applying a force on the anchor cap through a hook; the force was then captured by a load
cell attached to the hook. The relevant parameters and results of 33 experiments are listed
in Table 2. In the predictive models, the relative density of soil, Dr, embedment ratio, H/D,
helix spacing ratio, S/D, and the number of helices, n, were treated as input parameters; the
anchor mobilization distance, up, and the ultimate monotonic uplift resistance, Qu, were
treated as output parameters. Table 3 contains a summary of the statistical description of
the model’s inputs and outputs. The authors note that variations in Dr in the current study
were relatively small as we are focusing primarily on dense sand. In addition, the difficulty
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involved in data collection for loose and medium–dense sand makes the above selection
reasonable.
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Table 1. The information about the helical anchor and soil [18].

Helical Anchor Soil

Dimensions Value Properties Value

Helix diameter, D (mm) 20 Specific gravity, Gs 2.65
Helix pitch, p (mm) 5 Median grain size, d50 (mm) 0.25

Helix thickness, t (mm) 2 Coefficient of uniformity, Cu 1.87
Shaft diameter, d (mm) 4.7 Coefficient of curvature, Cc 0.938

Number of helix, n 0, 1, 2, 3, 4 Maximum void ratio, emax 0.703
Helix spacing, S 1.5, 2, 3, 4.5, 6 D Minimum void ratio, emin 0.516

Critical state friction angle, 31

Table 2. Experimental program and key results used in this paper [18].

Experiment Number N S/D H/D Dr (%) UP /D Qu (kN)

T1 1 0 3 85.8 0.050 22.9
T2 1 0 6 85.8 0.140 108.7
T3 1 0 9 85.8 0.204 236.2
T4 1 0

12
85.8 0.242 357.5

T5 1 0 85.4 0.238 313.4
T6 1 0 2 86.7 0.032 9.9
T7 1 0

3
86.4 0.055 22.1

T8 1 0 96.2 0.067 22.9
T9 1 0 4 86.7 0.091 42.9

T10 1 0
6

86.4 0.128 108.1
T11 1 0 96.2 0.146 121.7
T12 1 0 7.5 90.0 0.180 161.6
T13 1 0

8
86.4 0.170 176.4

T14 1 0 96.4 0.188 217.6
T15 1 0

9
88.8 0.201 249.9

T16 1 0 96.1 0.192 270.3
T17 1 0 96.2 0.166 260.0
T18 1 0 10 96.4 0.190 309.6
T19 1 0 10.5 90.0 0.201 271.8
T20 1 0

12
85.4 0.227 322.1

T21 1 0 91.7 0.209 364.9
T22 2 1.5 7.5 88.7 0.153 158.8
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Table 2. Cont.

Experiment Number N S/D H/D Dr (%) UP /D Qu (kN)

T23 2 1.5 12 86.6 0.224 383.1
T24 2 3 9 89.3 0.198 240.7
T25 2 3 12 86.7 0.201 412.0
T26 2 4.5 10.5 89.3 0.198 320.9
T27 2 4.5 12 86.6 0.220 370.7
T28 2 6 9 96.2 0.190 264.7
T29 2 6 12 86.7 0.214 384.2
T30 3 1.5 9 89.3 0.168 222.9
T31 3 3 12 88.8 0.211 459.5
T32 3 1.5 12 96.1 0.209 512.6
T33 4 2 12 90.0 0.254 489.4

Table 3. Statistical description of inputs and outputs.

Variables Type Standard Deviation Maximum Minimum Mean Kurtosis Skewness

N Input 0.783 4.000 1.000 1.515 1.844 1.464
S/D Input 1.815 6.000 0.000 1.152 1.363 1.473
H/D Input 3.107 12.000 2.000 8.788 −0.490 −0.705

Dr Input 3.992 96.400 85.400 89.724 −0.959 0.737
up/D Output 0.057 0.254 0.032 0.174 0.652 −1.129

Qu Output 137.747 512.600 9.900 248.182 −0.720 −0.098

After the normalization and binarization of the dataset, we divided the whole dataset
into two parts: a training set comprising 80% of the data and a testing set comprising the
remaining 20%. The data in the training set were used for training the GBDT–PSO model
and hyperparameters tuning, while the model performance was evaluated using the vali-
dation set [48]. The authors note here that, although the dataset size seems relatively small,
it is still by far the largest available dataset regarding helical anchors with multiple helices.
Laboratory experiments involving helical anchors with multiple helices are cumbersome;
thus, collecting validated data is extremely challenging. Considering the number of input
features, which was four in the current study, the dataset size was feasible (as shown in the
modelling results section).

3.2. Hyperparameters Tuning

Before constructing the GBDT–PSO model, it is necessary to first preadjust and deter-
mine several important hyperparameters, because the prediction performance of the model
will vary greatly with different hyperparameters combinations. However, using traditional
methods such as a learning curve and grid search to adjust these parameters individually is
tedious and time-consuming. Accordingly, this paper uses the PSO algorithm to take the R
value in the training set as the fitness function and maximize it during the evolution of PSO.
Thus, the hyperparameters were tuned and the optimal parameters could be determined.
Table 4 summarizes the selected hyperparameters to be tuned and their tuning ranges.

Table 4. Hyperparameters description and their tuning ranges.

Hyperparameters Explanation Type Tuning Range

Max_depth The maximum depth of the CART Integer 3–15
Min_samples_split The minimum number of samples required to split an internal node Integer 2–15
Min_samples_leaf The minimum number of samples at the leaf node Integer 1–15

Max_RT The maximum number of CART models in GBDT Integer 50–2000
Learning rate The learning rate shrinks the contribution of each CART model Float 0.01–1
Max_features The number of features to consider during tree splitting Float 0.4–1
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In the process of hyperparameter tuning, K-fold cross-validation was used as an
indicator to evaluate model performance. The initial data were evenly divided into K folds,
and each fold was successively used as the validation set while the rest of the K-1 folds were
used for training to obtain K models [49]. Finally, the model performance was tested using
the validation set. However, due to the randomness of the partitioning of the dataset, the
model evaluation obtained by single K-fold cross-validation is not convincing. Therefore,
the dataset was divided repeatedly 30 times in this study, and the mean value of the K-fold
cross-validation was used as the final evaluation result.

3.3. Evaluation and Interpretation of the Model

In this paper we were selected the following elements to evaluate the model’s per-
formance: the explained variance score (EVS); the mean squared error (MSE); the mean
absolute error (MAE); the correlation coefficient (R); the ratio of predictions with an error
within the range of ±20% of the total predictions (a20-index); and the percentage of predic-
tion within an error range of ±30% (P30) [49–53]. The EVS value range is [0, 1]; the closer
this value is to 1, the more the independent variable can explain the observed variance
change of the dependent variable. The MSE is used to calculate the mean value of the sum
of error squares of sample points corresponding to the original data and the fitting data.
The MAE is a measure of how close the predicted value is to the true value [54], and R is
used to describe the degree of linear correlation between the predicted y value and the real
y value. The variation ranges of a20-index and P30 are [0, 1]; the closer the values are to 1,
the more predicted values fall within the acceptable error range, and the better the model
performance. The calculation of the six evaluation indexes is shown in Equations (7)–(12):

EVS = 1− Var{yi − ŷi}
Var{yi}

(7)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (9)

R =

n
∑

i=1
(yi − y)(ŷi − ŷ)√

n
∑

i=1
(yi − y)2 n

∑
i=1

(ŷi − ŷ)2
(10)

a 20-index =
Per20

n
(11)

P30 =
N30

n
(12)

where Var is the variance; ŷi is the predicted value; yi is the desired target response; y is
the mean of the target response; ŷ is the mean of the target response; n is the number of
samples; n is the number of test samples used for model evaluation; per20 is the number of
predicted values within ±20% error; and N30 is sample points with ±30% deviation from
the experimental value.

In addition, the importance score and partial dependence plots were used to further
evaluate the correlation between outputs and inputs. The importance score is a single
indicator that describes the importance degree of inputs to outputs while the partial
dependence plots indicate the dependence, such as variation tendency, between the output
and the variation of the inputs. A detailed explanation of the importance score and partial
dependence plots can be found in our previous studies [52].



Appl. Sci. 2022, 12, 10397 10 of 19

4. Results, Discussion, and Concluding Remarks
4.1. Results of the Hyperparameters Tuning

Taking R as the fitness function and using the data of the training set to tune the
hyperparameters of the model, the tunning results are shown in Figure 6. As expected,
the accuracy of the model was significantly improved. Specifically, for up, R increased
from 0.75 to 0.82, while Qu increased from 0.89 to 0.93. The determined optimization
hyperparameters are summarized in Table 5.
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Table 5. Optimized hyperparameters for both datasets.

Hyperparameters Qu Dataset up Dataset

Max_depth 4 15
Min_samples_split 7 7
Min_samples_leaf 1 1

Max_RT 1319 873
Learning rate 0.061 0.890
Max_features 1 1

4.2. Results of the Optimum GBDT Model

In the existing literature, machine learning predictions for Qu and up have not been at-
tempted. Thus, the prediction accuracy achieved in this study cannot be compared with pre-
vious results. However, GBDT modeling has been widely verified to display better perfor-
mance than commonly used machine learning techniques in many problems [36,37,55–57].
Furthermore, the performance of GBDT was further increased using PSO in this study,
improving the representativeness of the current work.

To verify the efficiency of the proposed optimization model, we applied it to the testing
set for evaluation (Figure 7). For up, the R value achieved on the testing set was above
0.8, while the R on the testing set for Qu is as high as 0.92. Furthermore, the MAE and
MSE values of the two datasets were small, implying the high generalization ability of the
model. However, there were clear differences in the MSE and MAE of Qu on the training
and testing sets, which will lead to weak predictive ability for Qu. In addition, the EVS of
up was between 0.6 and 0.7, and the predicted and sample values were more dispersed
than those of Qu (0.85).
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The experimental and predicted Qu and up values were further compared, as shown
in Figure 8. The variation trends and the numerical value of Qu and up were predicted
well except for some special cases, such as T33 for up and T32 for Qu. The R value was
0.941 and 0.913 on the whole datasets of Qu and up, respectively. Furthermore, Figure 8
shows that there are three different parts to the results: (1) T1–T5 consist of five tests
concerning single-plate anchors embedded under different depths with similar Dr—in this
part, up and Qu increase with the embedment depth; (2) T6–T21 consist of ten different
embedment depths of single-helix anchors in sand with similar Dr—in this part, up and Qu
also increase with the embedment depth and the relevant size is close to that for single-plate
anchors in part (1); (3) T22–T33 comprise multiple-helix anchors with different H/D, S/D,
and n, with double-helix anchors with different H/D and S/D to those analyzed in T22–T29.
Adjacent helices were found to have no influence on each other for Qu and up when S/D > 6
in dense fine silica sand; this outcome differs from the threshold value result of S/D > 9
in Hao et al. [23]. Combined with the finding by Ilamparuthi et al. [16] (i.e., the relevant
influence of circular-plate anchors in loose sand is smaller than that in dense sand), the
findings of this study have potentially important implications for optimization, Qu, for
multiple-helix anchors if they can be verified by other experimental studies in the future.
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With the increasing number of helices, the differences between the predicted and actual
values fluctuate, which may be caused by the relatively small available data volume for
multiple-helix anchors.
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(a) evaluation of experimental and predicted up; (b) evaluation of experimental and predicted Qu.

To further verify the model results, the cumulative frequency of the predicted values
within a specific error range was repeatedly calculated (30 times) using the a20-index and
P30, with the results shown in Figure 9. Specifically, for up, the mean values of the a20-index
and P30 were 0.724 and 0.819, respectively; the equivalent values for Qu were 0.70 and 0.824.
All these results are close to 1, indicating good generalization performance of the model.
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4.3. Relative Importance of Influencing Variables

The importance of influencing variables was analyzed for a deeper understanding of
Qu and up. As indicated before, partial dependence plots and the relative importance score
were choose as the methods for interpreting the importance of influencing variables [58,59].

In Figure 10, partial dependence plots of four influencing variables of Qu and up are
shown. Normally, the significance of influencing variable is reflected by the output response
when an influencing variable is changed. As shown, there was an almost linear growth
relation between Qu and H/D. The finding is quite understandable as the self-weight
stress of soil increases with the increase in H/D when D remains unchanged. An almost
linear initial growth relation is also shown between up and H/D; however, the growth
rate gradually decreases with increasing H/D and tends toward a stable value when H/D
reaches a certain size. The output response to variation in the inputs indicates that H/D
was the most significant variable for both Qu and up. The importance of the remaining
three input variables was similar, although both Qu and up exhibit slow growth increases
with increasing n. The authors also note here the relatively small influence of Dr (%) in the
current study was due to the limited change in Dr. If the data for loose and medium–dense
sand were also included, their influence on Qu and up would be significantly greater.
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Figure 10. Partial dependence plots of the influencing variables in the optimal GBDT model for
predicting: (a-1–a-4) Qu, (b-1–b-4) up.

Figure 11 shows the relative importance score of four influencing variables with the
summation of all importance scores being scaled to one; H/D was the most sensitive
variable for both Qu and up. The importance scores of H/D were 0.614 and 0.622 for Qu
and up, respectively. The influence of H/D on Qu is consistent with results from previous
studies [24,26,60] and the influence of H/D on up also agrees with the findings of previous
research [26,61]. The other three variables show almost equal importance scores for Qu.
The above results agree well with the partial dependence plots. For up, the n parameter
had an importance score of 0.058, indicating it is also a non-negligible influencing variable.
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In general, the partial dependence plots and relative importance scores of influencing
variables in this study highlight some important outcomes and indicate future potential
experimental studies concerning Qu and up in dense sand. These findings have particular
importance for optimizing Qu and up and represent a useful tool for helical anchor design.

4.4. Superiority and Limitations

The primary strength of this study is the proposal of a novel strength prediction model
based on GBDT and PSO for the Qu and up prediction of helical anchors in dense fine silica
sand. The proposed method was robust in predicting Qu and up and the established model
provides new insights into the importance of influencing variables. Broadly, the low-cost,
less time-consuming, and non-destructive prediction of Qu and up in this work will help to
promote the utilization of helical anchors in engineering.

In terms of limitations, the analysis in this work was focused on dense fine silica sand;
thus, the lack of results for Qu and up in medium–dense sand and loose sand is a clear
limitation. In addition, data regarding the influence of soil particle size were not included
in the present study. Further experimental studies, which could provide more data, are
thus required.

5. Conclusions

In this study, based on relevant centrifuge test data, a GBDT–PSO prediction model was
constructed to explore the nonlinear relationship between four input variables
(e.g., soil relative density) and the ultimate monotonic uplift resistance, Qu, and the anchor
mobilization distance, up. A 30-fold cross-validation approach was applied, and six external
indicators (R, EVS, MSE, MAE, a20-index, and P30) were used to verify the performance
of the optimal GBDT model. In addition, partial dependence plots and importance scores
were selected to investigate the parameters’ relative importance. The specific conclusions
of the work are as follows:

(1) PSO was efficient in the hyperparameter tuning of GBDT models with maximum
R values of 0.987 on the Qu dataset and 0.957 on the up dataset; these results were
achieved in the first 10 PSO iterations.

(2) The optimal GBDT–PSO model has a high generalization ability. For Qu and up, the
R values on the testing set were up to 0.93 and 0.82, respectively, and the a20-index
values were 0.70 and 0.724, indicating that the model has predictive ability for the
lifting behavior of spiral anchors in sand.
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(3) The embedment ratio, H/D, was found to be the most important variable; however,
the helix spacing ratio, S/D, was found to have less influence on the capacity of
adjacent helices when S/D > 6. The influence of other input variable is not obvious.

The prediction results for multiple-helix anchors have non-negligible differences with
experimental results, which may be a result of insufficient data. With the filling of more
centrifuge test results of in situ test results, the accuracy of prediction could be markedly
improved, and the present model can be used for more robust and economic designs of
helical anchors in sand.
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Nomenclature
Dr relative density of soil
H embedment depth of lowest helix
D helix diameter
d shaft diameter
S helix spacing
n number of helices
t thickness of helix
p the pitch of helix
up the anchor mobilization distance
Qu the ultimate monotonic uplift resistance
Nγ the anchor uplift capacity factor
γ the unit weight of sand
A the projected area of a single helix or plate
AI artificial intelligence
ANN artificial neural network
GBDT gradient-boosting decision trees
PSO particle swarm optimization
CART classification and regression tree
EVS explained variance score
MSE mean squared error
MAE mean absolute error
R correlation coefficient
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