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Abstract: Maintaining the data freshness and completeness of road intersection information is the
key task of urban road map production and updating. Compared to professional surveying methods,
crowdsourced trajectory data provide a low-cost, wide-coverage and real-time data resource for road
map construction. However, there may exist the problems of spatio-temporal heterogeneity and
uneven density distribution in crowdsourced trajectory data. Hence, in light of road hierarchies, the
paper proposes a hierarchical segmentation method to generate road intersections from crowdsourced
trajectories. The proposed method firstly implements an adaptive density homogenization processing
on raw trajectory data in order to decrease the uneven density discrepancy. Then, a hierarchical
segmentation strategy is developed to extract multi-level road intersection elements from coarse
scale to fine scale. Finally, the structural models of road intersections are delineated by an iterative
piecewise fitting method. Experimental results show that the proposed method can accurately and
completely extract road intersections of different shapes and scales, with an accuracy of about 87–90%.
Particularly, the precision and recall of road intersection detection are obviously increased by about
7% and 20% by adaptive density homogenization, indicating the advantages of dealing with uneven
trajectory data.

Keywords: crowdsourced trajectory data; road intersection; density homogenization; hierarchical
segmentation; routable road map

1. Introduction

High Definition (HD) routable road map is an indispensable data infrastructure for
many Intelligent Transportation System (ITS) applications, such as self-driving, Intelligent
Connected Vehicles (ICVs) and Mobility as a Service (MaaS) [1,2]. As critical hubs of
interconnecting roadways, road intersections play a significant role in route guiding [3],
traffic controlling [4] and road safety [5]. Generally, road intersections have more complex
network structures and more diverse traffic rules than common roadways [6]. Nevertheless,
the road intersection information in current map products is limitedly represented on both
the level of detail and data freshness, leading to hardly meeting the demands of many
ITS applications [7]. Hence, it becomes one of the crucial topics in the field of road map
production and data updating to generate the up-to-date and high-detailed models of road
intersections [8].

In the last decades, numerous targeted approaches, such as map vectorization, mobile
mapping and remote sensing have been developed for commercial or official road map
construction [9–11]. However, these professional-surveying approaches may be confronted
with some vulnerabilities, such as long updating cycle, outdated data source (for map
vectorization), expensive data acquisition/processing cost or ticklish object-occlusion prob-
lem [9,12,13]. Presently, in the new data-collection paradigm of “citizens as sensors” [14],
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some crowdsourced mapping platforms (e.g., OpenStreetMap) make important data supple-
ments for map construction and updating in spite of submissions of varying quality [15,16].
Particularly, the increasingly amount of crowdsourced trajectory data not only prompt
the research on spatiotemporal dynamic analysis [17–19], but also provide a continuous-
dynamic, wide-coverage and low-cost way for constructing routable road map [20–22].
However, some unpredictable bias and observation errors may occur to crowdsourced
trajectories. On the one hand, limited by the equipped GNSS (Global Navigation Satel-
lite System) devices, unstable positioning precision and uneven sampling intervals make
crowdsourced trajectories possibly delineate inconsistent shapes of true moving path (see
Figure 1a). On the other hand, impacted by uneven road traffic flows, the collected trajec-
tories at different grade roads may show largely varied densities. As shown in Figure 1b,
the trajectories collected at high-grade roads are generally highly dense, whereas those
trajectories collected at low-grade streets are relatively sparse.
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To address the above-mentioned challenges, the paper proposed a hierarchical seg-
mentation method for generating road intersections from crowdsourced trajectories. The
main contributions of the proposed method can be summarized as the following aspects.

• An adaptive density homogenization operator is performed on raw track data to
decrease the uneven density distribution of crowdsourced trajectories.

• A hierarchical segmentation process is implemented to targetedly extract multi-level
road intersection elements implied on crowdsourced trajectory data.

• An iterative piecewise fitting method is adopted to approximately delineate the geo-
metric structures of road intersections.

The remainder of the paper is organized as follows. The state of art road network
extraction is systematically reviewed in Section 2. After that, the road intersection extraction
method is detailedly elaborated in Section 3. Experimental results and analysis are then
presented in Section 4. Finally, Section 5 concludes the paper and outlooks the future works.

2. Literature Review

In the early stage, optical remote sensing images provided the primary data sources for
fast acquiring road network data. The existing methods can mainly be categorized into four
kinds, e.g., road detection methods based on template matching [23,24], road extraction
models based on prior knowledge [25], object-oriented road segmentation methods [26] and
road semantic labelling methods based on deep learning [13]. Generally, the image-based
road extraction methods have the advantages of high efficiency and mature technologies,
which are suitable for large-scale scenarios. However, the image-based methods may suffer
from some difficulties in approaching poor illumination, severe weather condition and
ground object occlusion, as well as obtaining dynamic traffic information.

After that, Light Detection And Ranging (LiDAR) technologies produced a new data
source for extracting high detailed road features, such as 3D road boundary, road markings
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and affiliated road facilities (e.g., street lamp, traffic signs and street trees). The road bound-
ary extraction methods were mostly based on the assumption that the road surfaces are
approximately flat and sharp elevation fluctuations probably occur at road curbs [11,27].
The road marking extraction methods generally utilized the intensity difference of point
clouds and specific shapes of road markings to obtain typical road marking informa-
tion [28,29]. Additionally, numerous studies attempted to apply template matching, super
voxel and deep learning in extracting pole-like road facilities [30,31]. In brief, the LiDAR-
based methods can extract highly precise and very detailed road features under different
environmental conditions, but meanwhile, high data cost together with the vulnerable
occlusion problem may limit their application in large-scale areas.

Presently, the emerging of crowdsourced mapping (i.e., Volunteer Geographic In-
formation, VGI) prompts a paradigm shift from professional surveying to ubiquitous
mapping [32]. As a low-cost, wide-coverage and real-time data resource, crowdsourced
trajectories collected by vehicles or pedestrians can be processed to extract road net-
works [20,33–36]. The trajectory-based road extraction approaches can mainly be sum-
marized as rasterization methods and vectorization methods. The rasterization methods
first converted vector trajectories to raster images and then made use of various image
processing algorithms, such as morphological operators and skeletonization algorithms, to
generate vector road networks [37,38]. The rasterization methods are proved efficient and
suitable to handle wide-range construction of road maps, but it may be challenging to ob-
tain road semantic information and topological relations for their neglecting the trajectory
movement characteristics [39]. The vectorization methods mainly consist of two kinds of
strategies. One was devoted to automated road map construction by exploring the cluster-
ing patterns of moving trajectories [40], and the other one adopted a trajectory-aligning
strategy to incrementally construct road networks [41,42]. Generally, the vectorization
methods can generate detailed road structures and infer some road semantic information
(e.g., road width and turning rules); however, these methods are still not robust enough
to deal with large trajectory density disparities. Particularly, Zhang et al. (2020) proposed
a hybrid road extraction method by considering the road changing patterns implied in
multi-temporal trajectory data [12]. Furthermore, some studies attempted to construct
lane-level road maps from high frequency/precision trajectory data. Most of them first
computed the lateral distances of trajectory points to road central lines and inferred the
lane number or location from the distance distributions based on the Gaussian Mixture
Model (GMM), Bayesian Classifier and Kernel Density Estimation (KDE) [1,43–45].

Particularly, complete road intersection information is very important for route plan-
ning and traffic management. Hence, more and more attention has been paid to extracting
road intersections from crowdsourced trajectory data in recent years [4,46]. The related
methods often supposed road intersections as the convergent places of two or more road-
ways, where vehicle trajectories probably manifest some specific driving behaviors, such as
changing lane, changing speed and steering off [7]. Based on such driving characteristics,
the general workflow of road intersection extraction consisted of three main steps, i.e., road
intersections detection, turning modes identification and road geometries derivation [47,48].
Fathi and Krumm (2010) developed a trace classifier trained by localized shape descriptors
to distinguish road intersections from non-intersections [49]. Wang et al. (2015) introduced
G-statistics hotspot analysis to mine the agglomeration patterns of large turning behaviors
at road intersections [3]. Xie et al. (2017) computed the longest common subsequence
between two GNSS traces to detect the connecting points where the candidates of road
intersections [50]. Recently, Yang et al. (2021) applied a mask region convolutional neural
network for automatically detecting road intersections [51]. The turning modes within road
intersections can be further identified based on trajectory clustering [48] or entrances/exits
matching [46,52]. Based on turning modes identification, two widely-used strategies of
curve fitting [47] and piecewise approximation [1] are adopted to derive the road central
lines of different turning modes. Although previous methods [44–51] made much beneficial
work to obtain road intersection information, there are still some improvement spaces
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in the robustness to approach heterogeneous trajectory data and the reliability to extract
road intersections with different shapes and structures. The paper thus implements a
density homogenization process for the purposes of alleviating raw trajectories’ density
unevenness, and meanwhile, decreases huge computational cost of processing all raw data.
Particularly, in light of road hierarchies, a hierarchical segmentation strategy is proposed to
extract multi-level road intersection elements from the heterogeneous trajectory data.

3. Materials and Methods

As illustrated in Figure 2, the proposed method mainly consists of three key steps:
adaptive density homogenization, hierarchical trajectory segmentation and road structure
delineation. In detail, a data preprocessing is first performed on raw trajectory data to filter
out the abnormal points and traces. Then, an adaptive density homogenization is utilized
to reduce the impacts of various traffic volume on trajectory sampling density. After that, a
hierarchical trajectory segmentation strategy is designed to gradually extract multi-level
road intersection elements according to their direction and position characteristics. Finally,
the geometric structures of road intersections are delineated by an iterative piecewise
fitting algorithm.
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3.1. Adaptive Density Homogenization

As listed in Table 1, raw trajectory data are in .txt data format, which records the car
ID, time, longitude, latitude and speed for each trajectory point. The trajectory of one
vehicle is reorganized as a sequential trajectory point set grouped by car ID and sorted
by time. Limited by the equipped GNSS devices, unstable positional drift and varying
sampling intervals often occurred to raw trajectory points. Hence, on the one hand, the
trajectory points, which have no displacements with the former and next points, are first
removed for avoiding unnecessary calculations. On the other hand, the vehicle trajectories,
with some sub-segments (i.e., the distance between two successive points) longer than
the predefined threshold, will be split at those sub-segments. In this paper, we refer to
Deng et al. [44] and set the threshold as 80 km/h × 30 s by considering the most-frequent
sampling interval of track points and the highest speed limit in urban areas. After that, we
select those trajectories which have more than 5 track points to extract road intersections in
view of data reliability.

Moreover, as mentioned before, vehicle trajectory data are, actually, a sparse sensing
way of road information due to uneven traffic flows. Generally, dense trajectories are
obtained on high-grade roads and large road intersections while sparse trajectories are
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collected at secondary roads and small street blocks. Hence, we propose an adaptive
density homogenization method to decrease the trajectory density discrepancies at different
grade roads. The adaptive density homogenization process encompasses three key steps,
described as follows.

Table 1. The main information in raw trajectory data.

No. Time Car ID Longitude Latitude Speed

1 1 October 2018
07:23:55 210-197-99-205-62-145-201-224-247-111-102-55-62-36-220-4 113.018163 28.214653 27.0

2 1 October 2018
07:24:10 210-197-99-205-62-145-201-224-247-111-102-55-62-36-220-4 113.014310 28.212013 0.0

3.1.1. High-Density Trajectory Cells Identification

As mentioned before, vehicle trajectories probably manifest some specific behavior
characteristics, such as changing lane, changing speed and steering off. However, due
to uneven sampling density of raw trajectory data, the number of trajectories with such
specific moving characteristics may greatly vary at different regions, which could make it
difficult to make a uniform rule or threshold for detecting road intersection points from
raw trajectory data. To acquire a density-even trajectory data, we should first recognize
high-density trajectory cells and do a screening processing to ensure the uniform sampling
in the whole study area. So, we partition the covering area of raw trajectory data into
regular cells with the fixed size of w * h. The cell width w and cell height h are calculated by
the following formula.{

w = k ∗min{dxi|dxi = |Xi − Xi−1| > 0}
h = k ∗min{dyi|dyi = |Yi −Yi−1| > 0} (1)

where dxi and dyi denote the absolute values of X and Y coordinate differences between
two successive track points. k is a density parameter, uniformly set as 1000 here.

Then, the proportion of track points in each cell Gj is computed as follows.

Propj =
Num(j)

∑i Num(i)
(2)

where Num(j) is the number of trajectory points in the cell Gj. The cell Gj will be identified
as a high-density trajectory cell (renumbered as HGj) when Propj is larger than a predefined
threshold Ngrid.

3.1.2. Calculating Neighborhood Circles for High-Density Trajectory Cell

The identified high-density cells indicate that there are a large number of trajectories
collected at these cells. However, the covering range of high-density trajectories at each
high-density cell is uncertain in spite of having a fixed cell size. To determine the covering
range of high-density trajectories, we compute a neighborhood circle for each high-density
cell. As shown in Figure 3, for each HGj, we suppose its center point is cj. Then, the
neighborhood circle of HGj is calculated as follows.

Step1: Build the buffer region for center cj by an increasing radius εi = ε0 + i * s,
where the initial radius ε0 and the step length s are both set as 10 m and i denotes the
iterative number.

Step2: Count the ratio of trajectory points in two adjacent buffer regions as Formula (3),
where Num(εi) is the number of trajectory points falling in the εi-buffer region.

Rεi =
Num(εi)

Num(εi−1)
(3)



Appl. Sci. 2022, 12, 10383 6 of 16

Step3: Construct the neighborhood circle for HGj using cj and the circle radius rj
defined as Formula (4), where Ncircle is a given threshold and the maximum buffer radius is
set as 200 m because of the maximum road intersection size.

rj = First
{

εi|Rεi > Ncircle & Rεi > Rεi−1 & Rεi > Rεi+1 , i = 2 . . .
}

(4)

where First{εi. . . } means the first element in the set {εi. . . }.
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3.1.3. Trajectory Density Homogenization of High-Density Trajectory Cell

To retain as much road changing information implied in raw trajectory data as possible,
we select ten-days trajectory data (e.g., 1st, 4th, . . . , 28th) at equal intervals from the raw one-
month trajectory data and perform a density homogenization processing on the remained
trajectory data. In detail, the density homogenization processing is presented as follows.

Step1: The remaining trajectories are traversed one by one to judge whether it falls in
the neighborhood circle of a high-density cell.

Step2: If the trajectory does not completely fall in the neighbor circle of any high-
density cell, it will be reserved and return Step1 to traverse the next trajectory; otherwise,
the original trajectory will be split into several trajectory segments by the neighborhood
circles overlaying with it.

Step3: Among the trajectory segments split by Step2, those trajectory segments falling
in neighborhood circles will be removed and other ones will be reserved, return Step1 to
traverse the next trajectory.

Finally, the initially-selected ten-days trajectory data together with those reserved
trajectory data after density homogenization are used in the following step of category-
level segmentation.

3.2. Hierarchical Segmentation Model for Crowdsourced Trajectories

The trajectory data in road intersection areas may show specific movement patterns
such as changing lane, changing speed and steering off. Based on this, many studies
identified the trajectory segments of lane changing or the trajectory points with large turns
by hotspot analysis [48], decision tree learning [53] or dynamic programming [50]. These
methods are restrictedly applicable for high-quality trajectory data, and furthermore, may
result in the trajectories at gas stations, parking lots and residential areas being misidenti-
fied as the representative trajectories in road intersection areas because the trajectories at
these regions show similar turning behaviors with those at road intersections. As previous
studies examined [54], urban road networks are characterized by hierarchical organization,
which provides an important inspiration for extracting road intersections from trajectory
data. The key idea of generating road intersections from trajectory data is to hierarchically
segment massive heterogeneous trajectory points or lines into different clusters, and then
geometrically delineate the trajectory points or lines of each cluster so as to form graphical
structures of road intersections. Therefore, on the basis of trajectory density homogeniza-
tion, this paper proposes a hierarchical segmentation method to identify multi-level road
intersection elements from coarse scale to fine scale. In detail, the first category-level seg-
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mentation is to distinguish the trajectory points of road-intersection and non-intersection
according to the indicators of speed change, direction change and turning distance ratio.
The second object-level segmentation is to use Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithm to further partition the trajectory points, previously,
categorized as road intersection into different clusters that correspond to various road
intersection objects. Finally, the third turning-modes segmentation is to extract the internal
traffic rules by analyzing the starting and ending direction of each trajectory segments
within road intersection.

3.2.1. Category-Level Segmentation

Previous studies proposed to use the velocity change, direction change and straight
curve ratio of trajectory points to recognize the trajectory points at road intersections.
However, vehicles that pass through residential areas, gas stations and parking lots may
have the similar moving characteristics with those passing through road intersections.
Hence, based on the trajectory data after adaptive density homogenization, we try to use
three indicators, namely speed change ∆v, direction change ∆θ and turning distance ratio
∆R to distinguish the road-intersection trajectory points from non-intersection trajectory
points. For one trajectory consisting of m points, i.e., T = {p1. . . pm}, the speed change ∆vi and
direction change ∆θi of one point pi are calculated according to Formula (5), respectively.

∆vi =

{
vi − vi−1, i > 1
vi+1 − vi, i = 1

∆θi =

{
θi − θi−1, i > 1
θi+1 − θi, i = 1

(5)

Particularly, the turning distance ratio ∆R is an indicator to measure the turning degree
of one trajectory point, and its calculation process is shown in Figure 4. Firstly, the trajectory
T = {p1. . . pm} was segmented as a bend hierarchical tree according to the method of [55],
and the turning distance hi of each trajectory point pi and the baseline length bendi of the
bend segment were recorded, respectively. As shown in Figure 4, for trajectory point p2, the
baseline length of its belonging bend segment was the Euclidean distance between p1 and
p10, i.e., bend2 = |p1p10|, and the turning distance h2 of trajectory point p2 is equal to the
perpendicular distance from p2 to the baseline p1p10. Then, the turning distance ratio of
trajectory point p2 was calculated as ∆R2 = h2/bend2, so did other trajectory points. When
the three indicators of speed change ∆v, direction change ∆θ and turning distance ratio ∆R
are all greater than the given thresholds Tv, Tα and Tdr, the track point will be identified as
a candidate of road-intersection trajectory point.
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Figure 4. Calculating the turning distance ratio based on bend hierarchical tree Figure 4. Calculating the turning distance ratio based on bend hierarchical tree.

As illustrated in Figure 5, take the blue trace for example. The identified road-
intersection trajectory points based on speed change, direction change and turning distance
ratio are marked as red dots in Figures 5a, 5b and 5c, respectively. It can be seen that only
using the indicator of speed change or direction change may lead to misidentifying some
non-intersection trajectory points that suddenly change the speed or direction (see the cyan
ellipse in Figure 5) and some local-turning trajectory points that pass through residential
areas, gas stations and parking lots (see the cyan rectangle in Figure 5) as the candidates of
road-intersection trajectory points. Comparatively, the turning distance ratio can efficiently
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distinguish irregular-turning trajectory points at specific places (e.g., gas stations) and
regular-turning trajectory points at actual intersections.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 16 
 

As illustrated in Figure 5, take the blue trace for example. The identified road-inter-
section trajectory points based on speed change, direction change and turning distance 
ratio are marked as red dots in Figure 5a, Figure 5b and Figure 5c, respectively. It can be 
seen that only using the indicator of speed change or direction change may lead to misi-
dentifying some non-intersection trajectory points that suddenly change the speed or di-
rection (see the cyan ellipse in Figure 5) and some local-turning trajectory points that pass 
through residential areas, gas stations and parking lots (see the cyan rectangle in Figure 
5) as the candidates of road-intersection trajectory points. Comparatively, the turning dis-
tance ratio can efficiently distinguish irregular-turning trajectory points at specific places 
(e.g., gas stations) and regular-turning trajectory points at actual intersections. 

 
Figure 5. Three indicators of speed change, direction change and turning distance ratio for category-
level segmentation: (a) speed charge, (b) direction change and (c) turning distance ratio. 

3.2.2. Object-Level Segmentation 

The category-level segmentation of trajectory data is to extract the coarse information 
about whether the trajectory points are road intersection or non-intersection. The next step 
is to perform object-level segmentation on the candidate trajectory points of road-inter-
section, so as to determine the location and spatial coverage of each road intersection. As 
the DBSCAN algorithm does not need to set the number of clusters in advance, and has 
certain advantages of finding different shaped clusters and handling noise points, this 
paper uses the DBSCAN algorithm [56] to further segment road-intersection trajectory 
points. Suppose the road-intersection trajectory points are P = {p1…pn}, the object-level 
segmentation process based on two parameters of Eps and MinPts is carried out as follows. 

Step1: Calculate the neighborhood point set of each point pi in P as is in formula (6), 
where Dis(pi, pj) is the Euclidean distance between pi and pj, and then choose those road-
intersection trajectory points with |NEps(pi)| larger than MinPts as the core seed point. 

�=>?(��) = @��AB$*C�� , ��D ≤ F�*, ! = 1,2 … GH (6)

Step2: Randomly select one unprocessed core seed point and establish a new cluster 
for it, and meanwhile, add the neighborhood points of the current core seed point to the 
newly-created cluster. 

Step3: Sequentially traverse each unprocessed core seed point in the current cluster, 
and add the road-intersection trajectory points density-connected with the core seed point 
to the current cluster until all core seed points in the current cluster are processed. 

Step4: Return to Step2 to traverse the remaining unprocessed core seed points until 
all core seed points have been processed. 

Based on DBSCAN, each obtained cluster C of road-intersection trajectory points ac-
tually corresponds to a road intersection object. After that, the location of the correspond-
ing road intersection is defined as the cluster center c and the spatial coverage of the cor-
responding road intersection is calculated as the maximum distance from the cluster 
points to the cluster center according to formula (7). Finally, we select the trajectory 

Legend Road-intersection Example traceNon-intersection

(a) speed change (b) direction change (c)  turning distance ratio

Other traces
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level segmentation: (a) speed charge, (b) direction change and (c) turning distance ratio.

3.2.2. Object-Level Segmentation

The category-level segmentation of trajectory data is to extract the coarse information
about whether the trajectory points are road intersection or non-intersection. The next
step is to perform object-level segmentation on the candidate trajectory points of road-
intersection, so as to determine the location and spatial coverage of each road intersection.
As the DBSCAN algorithm does not need to set the number of clusters in advance, and
has certain advantages of finding different shaped clusters and handling noise points, this
paper uses the DBSCAN algorithm [56] to further segment road-intersection trajectory
points. Suppose the road-intersection trajectory points are P = {p1. . . pn}, the object-level
segmentation process based on two parameters of Eps and MinPts is carried out as follows.

Step1: Calculate the neighborhood point set of each point pi in P as is in Formula (6),
where Dis(pi, pj) is the Euclidean distance between pi and pj, and then choose those road-
intersection trajectory points with |NEps(pi)| larger than MinPts as the core seed point.

NEps(pi) =
{

pj
∣∣Dis

(
pi, pj

)
≤ Eps, j = 1, 2 . . . n

}
(6)

Step2: Randomly select one unprocessed core seed point and establish a new cluster
for it, and meanwhile, add the neighborhood points of the current core seed point to the
newly-created cluster.

Step3: Sequentially traverse each unprocessed core seed point in the current cluster,
and add the road-intersection trajectory points density-connected with the core seed point
to the current cluster until all core seed points in the current cluster are processed.

Step4: Return to Step2 to traverse the remaining unprocessed core seed points until
all core seed points have been processed.

Based on DBSCAN, each obtained cluster C of road-intersection trajectory points
actually corresponds to a road intersection object. After that, the location of the corre-
sponding road intersection is defined as the cluster center c and the spatial coverage of the
corresponding road intersection is calculated as the maximum distance from the cluster
points to the cluster center according to Formula (7). Finally, we select the trajectory seg-
ments in the spatial coverage of each road intersection as the input of the following step of
turning-modes segmentation.

d = max
pi∈C
{Dis(pi, c)} (7)

3.2.3. Turning-Modes Segmentation

According to the importance assessment of trajectory features conducted by the lit-
erature [57], where in the headings angle of starting and ending points are better than
the heading difference of starting points, the heading difference of ending points and
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the average heading angle of intermediate points to express the road-intersection trajec-
tory characteristics. Therefore, this paper uses the headings angle of starting and ending
points to extract the internal traffic mode within road intersection. The specific process of
turning-modes segmentation is presented as follows:

Step1: For each trajectory segment of one road intersection, we first partition the
heading angle of its starting or ending point into an eight directions spider code [58]. As
illustrated in Figure 6, when the heading angle of one starting or ending point belongs to
[337.5◦,360◦] ∪ [0◦,22.5◦), the heading angle is coded as H, or when the heading angle is
between [22.5◦,67.5◦), it is coded as A, and so on.
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Figure 6. Eight directions spider code of heading directions of trajectory points.

Step2: Based on the above eight directions spider code, each trajectory segment likely
has 8 × 8 = 64 heading code combinations of the starting and ending points, which can be
further judged to belong to an element in the heading code matrix shown in Figure 7a.

Step3: According to the heading code matrix, we calculate the proportion of trajectory
segments belonging to each matrix element and select the trajectory segments in those
elements with the proportion larger than a threshold Ratio as one typical turning mode.

As shown in Figure 7a, the circle size denotes the number of trajectory segments be-
longing to each matrix element, and the black rectangles highlight the matrix elements with
the trajectory proportion larger than the given threshold. Particularly, Figure 7b separately
elaborates the trajectory segments of four typical turning modes in the rectangles (i)–(iv) of
Figure 7a, which correctly correspond to the actual traffic modes at the road intersection.
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3.3. Road Structure Delineation

As shown in Figure 8, for the trajectory segment set of one turning mode TS = {Ti|Ti
= {p1

(i)
. . . pti

(i)}, i = 1. . . n}, the road central line of the turning mode is delineated by the
following iterative piecewise fitting method:

Step1: Select the longest trajectory segment in TS as the initial central line TC = {C1. . . Cm}.
Step2: Build the buffer regions G1. . . Gm for all vertices C1. . . Cm in TC by setting the

buffering distance as |C1C2|/2. . . |Cm−1Cm|/2 and |CmCm−1|/2, respectively.
Step3: Search the trajectory points falling in each buffer region, and calculate their

average geometric centers as the new positions of C1. . . Cm to update the current central line.
Step4: Repeat Step2 and Step3 until the Hausdorff distance of the fitted central lines

between two iterations is less than a given threshold ε.
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4. Results
4.1. Experimental Data and Parameter Setting

In order to verify the effectiveness of the proposed method, we used trajectory data
from Changsha City, Hunan Province, collected in October 2018 for comprehensive analysis.
The used trajectory data covers an area of about 7.6 × 7.0 km, which is characterized by
heavy traffic flow, rich commercial facilities and a variety of road intersections with differ-
ent shapes and complex structures. The experimental dataset contains a total of 14,839,457
trajectory points collected by 5439 vehicles. The positional precision is about 5–10 m and
the most-frequent sampling interval is about 30 s. The experimental parameters for density
homogenization, hierarchical trajectory segmentation and road structure delineation are
listed in Table 2. Ngrid is the proportion threshold for identifying high-density trajectory
cells (Section 3.1.1). Ncircle is the proportion threshold for calculating the neighborhood
circles of high-density cells (Section 3.1.2). Tv, Tα and Tdr are the thresholds of speed
change, direction change and turning distance ratio for identifying road-intersection trajec-
tory points (Section 3.2.1). Eps and Minpts are the clustering parameters of DBSCAN for
detecting object-level road intersections (Section 3.2.2). Ratio is the proportion threshold
for determining the turning modes within road intersection (Section 3.2.3). ε is used to
terminate the iterative piecewise fitting process for delineating road intersection structures
(Section 3.3). These parameters are mostly determined through multiple experiments, of
which some parameters are empirically predefined according to the actual road width
(10–70 m) and trajectory data quality (positional precision: 5–10 m, time sampling: 30 s).
These used parameters could be resized for different data sources or study areas.
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Table 2. Experimental parameters setting.

Density Homogenization
Hierarchical Trajectory Segmentation Road Structure

DelineationCategory-Level Object-Level Turning-Modes

Ngrid Ncircle Tv Ta Tdr Eps MinPts Ratio ε

0.0012 0.98 5 km/h 15◦ 0.7 82 m 4 0.03 0.1 m

4.2. Result Analysis of Road Intersection Detection

Based on the density homogenization and coarse-to-fine trajectory segmentation
strategy, we hierarchically extracted the trajectory points of road-intersection, the spatial
coverages of different road intersections and the internal turning modes within road
intersections. Figure 9a,b illustrates the results of road intersections detection with and
without adaptive density homogenization. To evaluate the accuracy of road intersection
detection, we referred to the national platform for common geospatial information services
(https://map.tianditu.gov.cn/) and checked the identified road intersections one by one.
By manual inspection, the road intersections correctly identified by the proposed method
are classified as true positive (red triangle), the road intersections wrongly identified by
the proposed method are classified as false positive (green circle) and, meanwhile, the
road intersection not identified by the proposed method are marked as false negative
(blue rectangle).
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It can be seen from Figure 9 that more correctly-detected and fewer wrongly-identified
road intersections are found in the result of road intersection detection with adaptive
density homogenization. In particular, as shown in the two cyan ellipses B of Figure 9,
through trajectory density homogenization, the proposed method identifies some road
intersections with sparse trajectory density, indicating our method can efficiently overcome
large, varied trajectory densities caused by uneven traffic flow. In addition, as depicted in
the right of cyan rectangle A of Figure 9a, local movement indicators, such as speed change
and direction change, may misidentify some trajectory points passing through parking
lots and residential areas as the trajectory points at road intersection. We introduce the
turning distance ratio to distinguish the trajectory points of road intersection and non-
intersection, appropriately avoiding the road intersection misidentification based on local
movement indicators.

After manual inspection, three accuracy indicators of Precision, Recall and F-Value
are calculated to quantitatively evaluate the performance of road intersection detection,
which is stated in Table 3. It was found that 132 road intersections were identified when

https://map.tianditu.gov.cn/
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directly using raw trajectory data without density homogenization, of which 109 were
correctly identified and 23 were wrongly identified, as well as 50 road intersections which
were not detected. Overall, Precision was about 82.6%, Recall was about 68.5%, and F-Value
was about 74.9%. Through trajectory density homogenization, 166 road intersections were
identified, of which 149 were correctly identified, 17 were incorrectly identified as well
as only 15 missed road intersections. It can be seen that the accuracy indicators of road
intersection detection by trajectory density homogenization were significantly improved,
of which Precision increased to 89.8%, Recall increased to 90.8%, and F-Value reached 90.3%.

Precision = true positive
true positive + f alse positive

Recall = true positive
true positive + f alse negative

F1−Value = 2 × Precision × Recall
Precision + Recall

(8)

Table 3. Accuracy statistics of road intersections and turning modes identification.

True Positive False Positive False Negative Precision Recall F1-Value

Object-level
segmentation

Without
homogenization 109 23 50 82.6% 68.5% 74.9%

With
homogenization 149 17 15 89.8% 90.8% 90.3%

Turning-modes segmentation 229 38 30 85.7% 88.4% 87.0%

4.3. Result Analysis of Road Intersection Extraction

Figure 10 shows the results of internal turning mode recognition and road intersection
structure extraction. The red lines in Figure 10a are the structural models of road intersection
extracted by our method. Although the study area has various kinds of road intersections
with different shapes and structures, the proposed method can correctly extract complex
and diverse road intersection structures based on density homogenization and hierarchical
segmentation. In particular, Figure 10b, Figure 10d and Figure 10c, Figure 10e illustrate the
enlarged views of the generated geometric models and extracted turning modes of the two
road intersections in the green and blue circles in Figure 10a, respectively. It can be seen
that the generated geometric models and extracted turning modes have high consistency
with the actual remote sensing images, demonstrating the high efficiency and accuracy
of the hierarchical segmentation method on extracting road intersection information for
routable road map construction.

Furthermore, turning mode segmentation is the key step of road intersection extraction.
To quantitatively evaluate the effectiveness of turning mode segmentation, we randomly
selected 16 road intersections (including five cloverleaf intersection, five cross intersection,
three T-shaped junctions and three Y-shaped junctions) and manually counted the internal
turning modes within them for the ground truth. By comparing with the ground truth of
manual recognition, the accuracy statistics results based on formulas (8) are also listed in
the last row of Table 3, showing that the Precision indicator of turning modes recognition is
about 85.7%, the recall indicator is about 88.4%, and F value is about 87.0%. That further
indicates that the proposed method by combining trajectory density homogenization and
hierarchical trajectory segmentation can efficiently deal with spatio-temporal heterogene-
ity and uneven density distribution of crowdsourced trajectory data and achieve good
performance on generating structural road intersection map.
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(a) the structural models of road intersection. (b–e) the enlarged views of the generated geo-metric
models and extracted turning modes of the two road intersections in the green and blue circles in (a).

5. Discussion and Conclusions

Road intersections are critical parts of traffic road networks, which are characterized
by complex structures and diverse traffic rules. Due to the limited road intersection
information in current road map products, numerous studies attempt to extract road
intersections from crowdsource trajectory data. However, crowdsourced trajectory data
may be faced with spatio-temporal heterogeneity and uneven density distribution, leading
to larger improvement spaces in the robustness to extract road intersections with different
shapes and structures. This paper proposes a road intersection extracting method based
on adaptive density homogenization and hierarchical trajectory segmentation. Firstly, raw
trajectory data are processed to identify high-density trajectory cells and a trajectory density
homogenization is performed on high-density trajectory cells in order to effectively reduces
the time consumption of direct processing all raw trajectory data, and simultaneously
averting the misidentification of non-intersection trajectory points and the omission of true
road-intersection trajectory points caused by uneven density distribution. Moreover, in
light of road hierarchies, a hierarchical trajectory segmentation strategy of category-level,
object-level and turning-modes is then adopted to extract multi-level road intersection
elements from coarse scale to fine scale. Finally, the iterative piecewise fitting method
is utilized to generate the structural models of road intersections. A practical trajectory
dataset is used for comprehensive analysis and the results show that the proposed method
can efficiently deal with crowdsourced trajectory data with low sampling frequency and
uneven density distribution, achieving high accuracy and recall rate of road intersection
extraction. Especially, the proposed indicator of turning distance ratio can effectively
reduce the misidentification of irregular turning tracks at parking lots, gas stations and
residential areas. Nevertheless, there are also some aspects to be studied in the future
research. On the one hand, the calculation of neighborhood circle and the process of
trajectory density homogenization should be improved to ensure enough trajectories of
different traffic modes being reserved. On the other hand, the turning-modes segmentation
method should introduce more trajectory features because eight directions spider code will
be limited to extract large road intersections with more than 64 turning modes. Finally,
tedious parameter settings should also be relieved, especially for decreasing the parameter
number and the parameter sensitivity.
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