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Abstract: Recent years have seen an increase in events of drone incursion into airport terminal areas,
leading to safety concerns and disruptions to airline operations. It is of great importance to identify
the potential conflict, especially for those non-cooperative drones, as their intentions are always
unknown. For the safe operation of air traffic, this paper proposes a conflict risk assessment method
between non-cooperative drones and manned aircraft in the terminal area. First, the trajectory data
of manned aircraft and drones are obtained. Real-time cylindrical protection zones are established
around manned aircraft according to the separation interval for safe operation between the drone and
the manned aircraft at different altitudes. Secondly, trajectory predictions for the manned aircraft and
the drone are conducted, respectively. A quartile regression bidirectional gate recurrent unit neural
network is proposed in this research for the trajectory prediction of the drones. The model integrates
the bidirectional gated recurrent unit structure and the quartile regression structure. The performance
indicators confirm the superiority of the proposed model. Based on the trajectory prediction results,
it is then determined whether there is a conflict risk between the drone and manned aircraft by
comparing the position distribution of the drone as well as the real-time cylindrical protection zone
of the manned aircraft. The conflict probability between the drone and the manned aircraft is then
calculated. The prediction accuracy of conflict probability is estimated by Monte Carlo simulation
methods. The collision probability prediction accuracy of manned aircraft and drones at different
flight stages and altitudes ranges from 73% to 97%, which shows the reliability of the proposed
method. Finally, the collision probability between the drone and the manned aircraft at the closest
encountering point and the estimated time to reach the closest encountering point are calculated. This
paper predicts the conflict risk between the drone and manned aircraft, thus providing theoretical
support for the safe operation of air transport in low-altitude environments.

Keywords: non-cooperative drones; manned aircraft; trajectory prediction; machine learning; artifi-
cial neural networks; Monte Carlo simulation

1. Introduction

In recent years, incidents of drones invading the airspace around airports and interfer-
ing with civil manned aircraft have occurred frequently, resulting in the inbound flights of
airports being diverted to other places and large-scale delays of outbound flights. Since
most of the drones intruding at airports are non-cooperative drones, the flight information
between the drone and the manned aircraft cannot be exchanged in real-time. When a
drone is detected, it is difficult to determine the position of the drone at the next moment
accurately and efficiently, as their intentions are always unknown. The conflict risk be-
tween the drone and the manned aircraft is uncertain and the risk severity is unclear. The
risk assessment of conflict between drones and manned aircraft is an important means
of airport safety management. The collision probability prediction and risk assessment
between drones and manned aircraft in low-altitude environments can provide technical
support for the early warning of conflict in the context of air traffic.
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Until recently, a series of studies have been conducted concerning aircraft trajectory
prediction. During the take-off, landing, and cruise phases, the manned aircraft basically
follows the flight path, as they take off and land according to arrival and departure proce-
dures. However, there is often a large temporal or spatial deviation for the specific track
points as compared with the scheduled path, especially in complex air traffic environ-
ments [1]. In order to improve the safety of air traffic, it is necessary to predict the future
trajectory points according to the historical trajectory of manned aircraft and drones, so as
to assist the collision probability analysis between them.

The trajectory prediction models of traditional civil aircraft can be divided into pre-
diction based on state estimation, prediction based on dynamics, and prediction based on
machine learning [2]. Common predictions based on state estimation include the Kalman
filter model [3], the particle filter algorithm [4], the hidden Markov model [5], etc. For
example, the hidden Markov model is applied together with a Gaussian mixture model [6]
or trajectory similarity [7] to represent the position and altitude transition patterns of the
aircraft during flight operation. Since these models are only based on the state estimation
of kinematic equations, they are only suitable for short-term prediction, and the prediction
error is often large. Prediction based on dynamics relies on a large number of performance
parameters under some ideal assumptions [8]. Sun et al. presented a set of methods
for extracting different aircraft performance parameters for common aircraft types. The
parametric models combined can be used to describe a complete flight that includes takeoff,
initial climb, climb, cruise, descent, final approach, and landing [9]. However, the parame-
ters vary significantly across different types of aircraft, i.e., the civil aircraft [10] and the
general aviation aircraft [11]. The high dimensionality of the problem and nonlinearities
in aircraft dynamics and control limits the use of common dynamic methods to obtain
accurate prediction results.

On the other hand, prediction based on machine learning can mine information
in historical trajectory data for effective prediction, which is often reported to produce
satisfactory results. Machine learning technology has been widely used in autonomous
driving, image recognition, etc., in which deep neural networks show good application
ability. Moreover, research on deep neural network classifiers [12] and the detection of
backdoor attacks [13] was reported to further improve recognition performance. In terms
of the trajectory prediction of aircraft, the trajectory predictors could be enhanced by
learning from historical data [14]. For example, Shi et al. proposed a constrained long
short-term memory network for flight trajectory prediction. It is observed that the method
outperforms the widely used long short-term memory network, Markov, weighted Markov,
support-vector machine, and Kalman filter models [15]. Wu et al. proposed a 4D trajectory
prediction model based on the backpropagation (BP) neural network. The results indicated
that the predicted 4D trajectory is close to the real flight data, the time error at the crossing
point is no more than 1 min, and the altitude error at the crossing point is no more than
50 m [16]. Gallego et al. developed a probabilistic horizontal interdependency measure
between aircraft supported by machine learning algorithms, addressing time separations
at crossing points [17].

In contrast to traditional civil aircraft or fixed-wing unmanned aerial vehicles (UAV),
rotary-wing drones have high stability during vertical take-off and landing, hovering,
and horizontal movement [18]. Due to the characteristics of strong maneuverability, high
flexibility, and the changeable range of activities of rotary-wing drones, their intentions are
not easy to capture, and their trajectories are more difficult to predict [19]. It is recognized
that non-cooperative drones pose several safety and privacy concerns to the public [20].
Research has been conducted to identify target intent [21], some of which was conducted
under the conditions of uncertain or incomplete information [22]. Existing trajectory pre-
diction models for drones include models based on equations of kinematics and dynamics,
such as the model predictive control model subject to aerodynamic disturbances [23], the
motion-based trajectory paradigm shift that improves Flight Management System compati-
bility with tactical operations [8], the algorithm for the estimation, filtering, and prediction
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of the trajectories of light aircraft and gliders using interacting multiple model filters [24],
and machine learning methods based on historic trajectory data, such as recurrent neural
networks (RNNs), long short-term memory (LSTM), gated recurrent unit (GRU), and their
various improved algorithms [25]. In the authors’ previous research, a novel procedure
based on the bidirectional gated recurrent unit (D-GRU) method has been proposed for
intention recognition and the short-term trajectory prediction of quadrotors [26].

When a non-cooperative drone invades the prohibited zone of an airport or the
protected area of a manned aircraft, it may collide with the manned aircraft that is taking
off or landing near the airport [27]. To ensure the safe, orderly, and efficient operation of an
aircraft in low-altitude airspace, it is necessary to obtain the accurate trajectory prediction
results of manned aircraft and drones in order to provide technical support for abnormal
behavior detection, conflict warning, and flight situation awareness.

At present, the research on collision risk mainly focuses on the collision risk between
manned aircraft or between drones, whereas there are a few works concentrated on the
collision probability of intruding drones to manned aircraft. For example, a probabilistic
model based on the stochastic kinematic model was developed to implement the collision
risk evaluation. The cases covering different drones’ initial positions, positions updates,
and different collision zones are simulated and analyzed using the proposed collision-
course based model [28]. A 3D Monte Carlo unmanned aircraft system (UAS) positional
distribution model, based on flight dynamics of the UAS, was developed to help assess
the risk posed by the UAS to aircraft operating inside the aerodrome. The 3D model was
also used to carry out simulations that could help determine the buffer airspace needed for
cooperative UASs operating inside the aerodrome [29].

Although few studies have been conducted with regard to the collision risk between
manned aircraft and drones, most were based on kinematic models and simulation analysis
under hypothetical assumptions. Due to the limitations of data acquisition, the conflict
risk between drones and manned aircraft has seldom been estimated and the risk level
is unclear. Furthermore, the reliability of the Monte Carlo simulation results needs to
be further verified due to limited iterations. The purpose of this paper is to provide a
conflict risk assessment method between manned aircraft and drones in the terminal area
based on actual trajectory data of manned aircraft and drones. This method is oriented to
the different flight stages and flight altitudes of manned aircraft. Based on the trajectory
prediction results of manned aircraft and the drone, the collision probability is calculated.

The main contributions and innovations provided in this paper are as follows:
First, due to the flexibility and changeable range of activities of drones, their position

at the next moment is uncertain. Therefore, the use of deterministic trajectory prediction
may bring a large error to the collision prediction results. This paper proposes a quartile
regression bidirectional gate recurrent unit neural network (QRDGRU) to predict the
location of the drone. The model integrates the bidirectional gated recurrent unit structure
and the quartile regression structure, which can obtain the position distribution of the
drone. Considering the uncertainty of drone position, the collision probability prediction
can be more accurate.

Second, most of the existing prediction methods regarding collision probability are
based on the assumption that the error follows a normal distribution. The collision probabil-
ity is calculated considering the error caused by the uncertainty of the predicted position. In
this paper, a Monte-Carlo-based collision probability prediction method between manned
aircraft and drones is proposed. Time to the closest distance at the encountering point and
the collision probability at the closest point are calculated.

The rest of the paper is organized as follows. The data collection and preparation pro-
cess are presented in Section 2. Section 3 exhibits the prediction method of manned aircraft
trajectory in terminal areas. Section 4 provides the prediction of trajectory distribution for
drones. The conflict risk assessment between drones and manned aircraft is presented in
Section 5. Section 6 summarizes the conclusions and proposes future works.
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2. Data Preparation

To meet the research objective, the trajectory data of both manned aircraft and drones
were collected. The data collection and processing process is illustrated as follows.

2.1. Data Collection

For the manned aircraft, the Automatic Dependent Surveillance–Broadcast (ADS-B)
trajectory data from Shanghai Hongqiao Airport (ZSSS) to Beijing Capital International
Airport (ZBAA) were obtained, with flight data for a total of 9752 flights. The ADS-B data
of each flight include the flight ID, aircraft type, longitude, latitude, altitude, ground speed,
heading angle, monitor time, departure airport, landing airport, etc.

The main flight stages of manned aircraft can be divided into the take-off stage, cruise
stage, and landing stage. Since drones can only collide with manned aircraft in the take-off
and landing stages, the trajectory data of the manned aircraft in the two phases around
the airport terminal area are selected for further analysis, which usually has an altitude of
below 1000 m. Table 1 is an example of ADS-B trajectory data for manned aircraft, including
aircraft type, longitude, latitude, altitude, ground speed, and monitoring time, as follows:

Table 1. Trajectory data illustration for manned aircraft.

Longitude (◦) Latitude (◦) Altitude (m) Ground Speed (m/s) Monitoring Time

121.3286514 31.18910980 7.62 209.21 18 November 2017 14:35:13
121.3322525 31.20203972 114.30 209.21 18 November 2017 14:35:19
121.3318024 31.20713043 167.64 209.21 18 November 2017 14:35:23
121.3292694 31.21495056 419.10 217.26 18 November 2017 14:35:38
121.3263092 31.21867943 495.30 217.26 18 November 2017 14:35:43
121.3179321 31.22800064 723.90 209.21 18 November 2017 14:36:04
121.3126831 31.23370934 853.44 205.00 18 November 2017 14:36:14
121.3089905 31.23778915 937.26 207.61 18 November 2017 14:36:24

Because the ADS-B data transmit various information to ground equipment through
data link broadcasting, and are affected by various factors such as signals, the collected data
might be inaccurate or missing. It is necessary to preprocess the data to improve the quality of
the original data and delete the flight data with crucial missing or inaccurate information.

Toward the research on the trajectory distribution prediction of drones, this paper
collected a total of 34 h of historical trajectory data of three types of quadrotor drones over
30 days. Each drone automatically records relevant information every 0.1 s. Table 2 is an
example of part of the trajectory data of the drone, including timestamp, longitude, latitude,
altitude, x-speed, y-speed, z-speed, heading angle, pitch angle, roll angle, etc. It can be seen
that the trajectory is flexible and changeable. Table 3 is a summary of the collected data for
drones, including the number of trajectory records, as well as the statistical information
about the ground speed and vertical speed. The ground speed for the drone ranges from 0
to 20.60 m/s and the vertical speed ranges from −9.86 to 11.60 m/s.

2.2. Data Processing

The obtained trajectory data for manned aircraft and the drone are processed and repre-
sented as time-series data at equal intervals. The detailed procedure is illustrated as follows.

(1) Data processing for manned aircraft

Step 1-1: Coordinate system transformation
The longitude and latitude in the collected aircraft trajectory data based on the space

spherical coordinate system are converted into the Earth-centered, Earth-fixed coordinate
system (ECEF), which is shown in Equation (1).{

X = (h + N) ∗ cos ϕ ∗ cos λ
Y = (h + N) ∗ cos ϕ ∗ sin λ

(1)
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In the formula, h is the height; N is the radius of curvature; ϕ is the radian corre-
sponding to latitude; λ is the radian corresponding to longitude. The unit of latitude and
longitude after coordinate transformation is meter (m). X is the longitude after transforma-
tion; Y is the latitude after transformation.

Step 1-2: Time series data generation
For the altitude and ground speed in the aircraft trajectory data and the converted

longitude X and latitude Y in Step 1-1, time series data at equal intervals are generated
through linear interpolation.

Step 1-3: Dimensional processing and sample segmentation
The equally spaced time series data in Step 1-2 are normalized to eliminate the influence

of dimension, and the normalized equally spaced time series data are divided into fixed-length
time series slices via a sliding time window. The coordinate value of the trajectory point
contained in the slice sample is subtracted from the initial position value of the sample, and
the slice sample set containing the input and output data of the trajectory prediction model
in the take-off stage and the landing stage are generated, respectively. Each slice sample set
includes four variables: latitude, longitude, altitude, and ground speed.

Table 2. Trajectory data illustration for drones.

Timestamp
(ms)

Longitude
(◦)

Latitude
(◦)

Altitude
(m)

x-Speed
(m/s)

y-Speed
(m/s)

z-Speed
(m/s)

Heading
Angle (◦)

Pitch
Angle (◦)

Roll Angle
(◦)

6600 107.828147 35.7985822 4.4 −0.447 −0.224 −4.921 144.5 0.6 0.1
6700 107.828147 35.79858204 4.6 −0.447 −0.224 −5.145 144.4 1.7 −0.6
6800 107.8281451 35.79858007 4.8 −0.447 −0.224 −5.369 144.1 2.6 0.4
6900 107.828145 35.79857969 5.1 −0.671 −0.224 −5.592 144.2 2.7 0.2
7000 107.828144 35.79857816 5.3 −0.671 −0.224 −5.816 144.2 4.2 −0.6
7100 107.8281438 35.79857759 5.6 −0.671 −0.224 −5.816 144.0 5.3 −1.4
7200 107.8281427 35.79857622 5.8 −0.671 −0.224 −5.816 143.7 6.0 −1.3
7300 107.8281424 35.79857557 6.1 −0.671 −0.224 −5.816 143.6 5.3 −0.6
7400 107.828142 35.79857462 6.4 −0.671 −0.224 −5.816 143.8 4.7 −1.0
7500 107.8281416 35.79857388 6.6 −0.895 −0.224 −5.816 144.0 4.7 −2.1
7600 107.8281412 35.79857291 6.9 −0.895 −0.224 −5.816 143.7 5.1 −2.7

Table 3. Summary of the collected data for the drone.

Type of
Drone

Net
Weight/g

Max Speed
(m/s)

Max Ascent
Speed (m/s)

Max Decent
Speed (m/s)

Number of
Trajectory
Records

Ground Speed (m/s) Vertical Speed (m/s)

Min Max Mean Min Max Mean

Mavic Pro 743 18.0 5.0 3.0 11,576 0.00 18.00 2.33 −18.70 19.08 −0.01
Mavic Air 430 19.0 3.0 3.0 8338 0.00 19.55 1.64 −5.92 8.90 −0.01
Mavic 2 905 20.0 5.0 3.0 19,634 0.00 20.60 2.40 −9.86 11.60 0.00

(2) Data processing for drones

Step 2-1: Noise data processing
The data of unstable trajectory points existing in the process of collecting data during

the initial flight of the drone is cleaned up. The cleaned drone trajectory data are divided
into equal interval data according to the interval of the above-mentioned time series data
for manned aircraft.

Step 2-2: Coordinate system transformation
The drone trajectory data processed in Step 2-1 are presented in the form of longitude

and latitude in the World Geodetic System 1984 (WGS-84) Coordinate System. The lon-
gitude and latitude in the coordinate system are converted to the vertical and horizontal
values in the ECEF Cartesian coordinate system.

Step 2-3: Dimensional processing and sample segmentation
The drone trajectory data in Step 2-2 are normalized to eliminate the influence of

dimension. The normalized trajectory data are divided into fixed-length time series slices
using a sliding time window, and a sliced sample set containing the input and output
data in the trajectory prediction model is generated. Each slice sample set includes nine



Appl. Sci. 2022, 12, 10377 6 of 20

variables: latitude, longitude, altitude, speed in the horizontal axis, speed in the vertical
axis, vertical speed, heading angle, pitch angle, and roll angle.

(3) The protection zone of manned aircraft

Conflicts between drones and manned aircraft mostly occur in the take-off and landing
stages of manned aircraft. Considering that the flight height of light rotor drones is usually in the
range of 0–300 m, the flight height of 0–300 m (meters) is divided into height intervals of 100 m.

The flight speed of the manned aircraft in the take-off phase and the landing phase
changes rapidly with the altitude. Based on the divided flight altitude intervals, the separation
distance for the safe operation of manned aircraft is set according to the average aircraft speed
at the corresponding altitude intervals. The protected area of the manned aircraft is a cylinder
with the predicted position of the manned aircraft as the center. For the altitude of 0–100 m,
the horizontal distance from the boundary to the center is 609.6 m, and the vertical distance
is 76.2 m. In the altitude range of 100–200 m and 200–300 m, the separation distance for the
safe operation of the drone and manned aircraft in the horizontal and vertical directions is
expanded in proportion to the average speed of manned aircraft. Therefore, the protected
areas for manned aircraft in the three altitude intervals can be obtained.

3. Prediction of Manned Aircraft Trajectory in Terminal Areas

In this section, three types of models are used to predict the trajectory of manned
aircraft, including the gated recurrent unit (GRU) structure, the long short-term mem-
ory (LSTM) network and the support vector regression (SVR) structure. The models are
described as follows.

3.1. Model Construction

(a) The gated recurrent unit structure

The gated recurrent unit (GRU) structure is utilized to train the neural network for
manned aircraft trajectory prediction. The loss function is expressed as:

Loss =
1
n

n

∑
i=1

(y(x)i − yi)
2 (2)

where y(x)i is the predicted position of the aircraft at the time i; and yi is the actual position
of the aircraft at the time i.

In the process of neural network training, to minimize the loss function, the stochastic
gradient descent method is used to solve the problem. The minimized loss function and
corresponding model parameters are obtained. Figure 1 depicts the GRU architecture for
aircraft trajectory prediction.

As mentioned above, the small drone will only collide with the manned aircraft during
the take-off and landing phases, and for each trajectory, data in the take-off and landing
phases are filtered. With the longitude, latitude, altitude, ground speed, and heading angle
of the manned aircraft, the input to the network is a three-dimensional dataset with the
shape of the batch number of samples * number of features * timestep. The data samples
are divided into the training sets, validation sets, and test sets according to the ratio of 80%,
10%, and 10%, respectively.

The structural parameters and internal parameters of the neural network are initialized,
including the number of hidden layers, the number of neurons in a single layer, the
number of batch training, the number of iterations, and the learning rate. The neural
network parameters are iteratively updated by using the manned aircraft trajectory training
dataset. In each epoch process, a certain number of samples are randomly selected from the
trajectory data training set, and the loss function value is calculated according to the data
labels corresponding to the actual value of the aircraft trajectory. The test set is substituted
into the trained network structure for performance testing.
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(b) The long short-term memory structure

The long short-term memory (LSTM) network was proposed by Hochreiter and
Schmidhuber for addressing the vanishing gradients problem in RNNs [30]. It has been
proven to perform well on sequence-based tasks with long-term dependencies. Compared
with the traditional artificial neural network, the LSTM network realizes the combination of
long-term and short-term memory by setting special structures such as the forgetting gate,
input gate and output gate. Based on the LSTM network, the historical data of the drone
trajectory, including the longitude, latitude, altitude, ground speed, and heading angle
of the manned aircraft, are input into the model. The output is the trajectory prediction
result in the next moment. Based on the standard LSTM network, the learning rate is
automatically adjusted to avoid accuracy degradation and local convergence caused by
rapid convergence.

(c) The support vector regression structure

Support vector regression (SVR) is a supervised learning algorithm that can be used to
predict time series data. SVR trains using a symmetrical loss function, which equally penal-
izes high and low misestimates. A flexible tube of minimal radius is formed symmetrically
around the estimated function. In this way, the absolute values of errors less than a certain
threshold ε are ignored both above and below the estimate. The points outside the tube are
penalized, but those within the tube, either above or below the function, receive no penalty.
One of the main advantages of SVR is that its computational complexity does not depend
on the dimensionality of the input space. Additionally, it has excellent generalization
capability, with high prediction accuracy [31]. The inputs and outputs of the model are
similar to those in the LSTM and GRU models.

3.2. Evaluation Metrics

The average Euclidean distance error (EDE), which represents the distance between the
actual and predicted position of the manned aircraft, is used to evaluate the performance
of the constructed model. The actual positions are taken from the latitude, longitude, and
altitude of the trajectories after coordinate transformation. The equation is shown as follows.

EDE =
1
n

n

∑
i=1

√
(xi − xi)

2 + (yi − yi)
2 + (zi − zi)

2 (3)

Among them, n is the number of predicted samples; xi and xi are the predicted and
the actual longitude of the aircraft at the time i; yi and yi are the predicted and the actual
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latitude of the aircraft at the time i; zi and zi are the predicted and the actual altitude of the
aircraft at the time i, respectively.

3.3. Model Training and Testing

Before training, the parameters for the neural network need to be determined. Different
parameters for the input layer and output layer of the GRU trajectory prediction model
are compared first. After comparison, it is finally determined that the number of training
samples in a single batch is five; the timestep of the input network is twenty; the timestep of
the input network in the landing phase is twenty-five. In the take-off phase, the input data
dimension of each sample is set as [20, 4]. In the landing stage, the input data dimension
of each sample is [25, 4]. The output data dimension is [1, 3]. The initial parameters are
randomly selected in the [0, 1] interval.

The other parameters for the GRU trajectory prediction model are also compared to
determine an appropriate value. The maximum number of iterations of the network in
the take-off stage and the landing stage are both set to be 200. The learning rate is 0.0001.
The number of hidden layers in the take-off and landing stage is set to three. The number
of neurons in a single hidden layer is 90 for both the take-off and landing stages. The
initial parameters are randomly selected in the [0, 1] interval, and Sigmoid is selected as
the activation function.

For the LSTM model, the network adopts three hidden layers with 100 neurons in
each layer. The timestep of the input network is 35. The learning rate is 0.0001, and the
number of training samples in a single batch is five. The activation function is ReLU. The
model takes five main features as input, including latitude, longitude, altitude, horizontal
velocity, and vertical velocity, to generate time series data for each variable.

The computer environment for this study is configured as Win 10 (64-bit) operating
system, Intel(R) Core(TM) i5-8265U 1.60 GHz processor, 16 GB memory, and 4 GB video
memory. The Python 3.8 programming language, Pycharm-based development environment,
Tensorflow, and Keras model framework are utilized for model training and testing.

3.4. Trajectory Prediction Results of the Manned Aircraft

To testify the performance of the GRU model, two commonly used trajectory prediction
methods are selected as benchmark methods, including the LSTM and SVR models. Since
the trajectory prediction results of manned aircraft are mainly used to evaluate the short-
term collision risk between manned aircraft and drones, the prediction time length is
initially set to be 20 s. Through the model prediction errors, the prediction performances
of the three different models are compared for the take-off phase and the landing phase,
respectively. A comparison of prediction errors in longitude, latitude, and height are shown
in Table 4 and Figure 2.

The prediction timestep is gradually increased in one second time intervals to obtain
the prediction error. It can be seen from Figure 2 that, in the take-off stage, the prediction
error of GRU is about 400 m for the 20 s time interval. The prediction error of LSTM is
slightly larger than that of GRU. The prediction error of SVR has reached 500 m for the 10 s
time interval. This prediction error is generally comparable with the results in previous
studies, which ranges from several hundred meters to over 1000 m during the take-off and
landing stages [6,32].
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Table 4. The prediction error for manned aircraft in the take-off and landing stages.

Prediction
Timestep Method EDE for the Take-Off

Stage (m)
EDE for the Landing

Stage (m)

5 s
GRU 151.95 193.10
LSTM 270.44 311.81
SVR 350.05 484.55

10 s
GRU 292.69 411.35
LSTM 389.81 540.66
SVR 524.62 740.65

15 s
GRU 363.65 541.06
LSTM 425.01 728.62
SVR 762.20 899.54

20 s
GRU 416.33 620.61
LSTM 454.67 846.69
SVR 926.82 1085.70

25 s
GRU 443.99 641.25
LSTM 501.54 870.42
SVR 1458.09 1831.64

30 s
GRU 515.81 760.49
LSTM 602.21 896.20
SVR 1630.39 2060.62

35 s
GRU 536.05 872.92
LSTM 660.77 935.91
SVR 1847.63 2486.47

40 s
GRU 583.63 960.82
LSTM 725.68 955.61
SVR 1989.57 2603.30
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In the landing stage, for the prediction timestep of 20 s, the prediction error of GRU
is about 600 m, the prediction error of LSTM is about 800 m, and the prediction error of
SVR is as high as 1000 m. It can be seen that the prediction error of the SVR model is
significantly larger than that of the GRU and LSTM models. As the prediction timestep
increases, the error shows an overall upward trend. By comparing Figure 2a,b, it can be
seen that the error in the landing stage is generally higher than that in the take-off stage,
indicating that the manned aircraft trajectory prediction model has better performance in
the take-off stage.
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4. Prediction of Distribution of Drones

In this section, a quartile regression bidirectional gate recurrent unit neural network
(QRDGRU) is established to predict the trajectory of drones. The proposed model is com-
pared with traditional GRU, SVR, quartile regression long short-term memory (QRLSTM),
and quartile regression gate recurrent unit (QRGRU) models to testify its performance. The
proposed model structure is described as follows.

4.1. Model Construction

The traditional GRU model can only predict the point position of the aircraft. Consider-
ing the flexible and changeable characteristics of the drone, this paper constructs a quartile
regression bidirectional gate recurrent unit neural network (QRDGRU). This QRDGRU
model is an improved model from the bidirectional gated recurrent unit (D-GRU) structure
from the authors’ previous research. The D-GRU model integrates the prediction based on
the change of location for two adjacent points, as well as the prediction based on the change
of location at intervals of two points [24]. In this research, the quartile regression structure
is further incorporated. The QRDGRU model can provide the position distribution of
the drone to compensate for possible irregularities in the mapping learned by the neural
network layer when sampling at a single interval, from which the air transport managers
can have a better knowledge of the position of the drone.

Similar to GRU, the QRDGRU structure includes two gates, update gate zt and reset
gate rt, to control input and output values. The essence of QRDGRU is the improvement of
data processing and loss function. Equation (4) demonstrates the loss function of QRDGRU:

floss = min
N
∑

i=1
ρτ [Yi − f(Xi, Wτi , bτi )]

= min

[
∑

Yi≥f(Xi ,Wτi ,bτi )
τ|Yi − f(Xi, Wτi , bτi )|+ ∑

Yi<f(Xi ,Wτi ,bτi )
(1− τ)|Yi − f(Xi, Wτi , bτi )|

] (4)

The estimation of the QRDGRU parameters can be regarded as an optimization prob-
lem of parameters in Equation (4). The parameters are iteratively optimized by back-
propagation through the network. Among them, Xi is the time series trajectory input of the
drone; Yi is the true position of the drone; f(Xi, Wτ i, bτ i) is the predicted value of the neural
network; and τ is the quartile, usually in the range of (0, 1); Wτ i is the weight matrix of
the neural network under quartile τ; bτ i is the bias parameter of the neural network under
quartile τ. Figure 3 shows the structure of the QRDGRU model. The QRDGRU takes the
sample sequences at two time intervals as the input of two parallel GRU stacked layers, and
combines the extracted features with fully connected layers, and the latitude, longitude,
altitude, horizontal speed, vertical speed, heading angle, pitch angle, and roll angle are
learned by the QRGRU under each quartile. After that, the network output value under
each quartile is obtained, and the loss is calculated through the regression layer.

The QRDGRU obtains the optimal estimation of its parameters by continuously adjusting
Wτ i and bτ i, thereby training the network under different quartiles, and obtaining the predicted
value of the drone position under different quartiles according to the learned network.

QY(τ|X) = f(X, Ŵτ , b̂τ)
2

(5)

Among them, QY(τ|X) is the predicted position of the drone under quartile τ when
the trajectory data of the drone is input as X; Ŵτ and b̂τ are the optimal weight matrix and
optimal bias parameter of the network under quartile τ, respectively; τ is a continuous
value between (0, 1). The predicted position of the drone under different quartiles can
form the predicted position distribution of the drone. The output of the QRDGRU model
QY(τ|X) under different quartiles is the conditional distribution of the predicted position
of the drone.
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4.2. Evaluation Metrics

To evaluate the performance of the proposed model, mean absolute error (MAE), root
mean squared error (RMSE), and mean absolute percentage error (MAPE) are calculated
for each method, respectively. The equations are shown as follows.

MAEτ =
1
n

n

∑
i=1

∣∣∣x̂i|τ − xi

∣∣∣+ ∣∣∣ŷi|τ − yi

∣∣∣+ ∣∣∣ẑi|τ − zi

∣∣∣ (6)

RMSEτ =

√
1
n

n

∑
i=1

(
x̂i|τ − xi

)2
+
(

ŷi|τ − yi

)2
+
(

ẑi|τ − zi

)2
(7)

MAPEτ =
100%

n

n

∑
i=1

∣∣∣∣ x̂i|τ − xi

xi

∣∣∣∣+ ∣∣∣∣ ŷi|τ − yi

yi

∣∣∣∣+ ∣∣∣∣ ẑi|τ − zi

zi

∣∣∣∣ (8)

Among them, n is the number of predicted samples; x̂i|τ and xi are the predicted and
true latitude of the drone under quartile τ at time i, respectively; ŷi|τ and yi are the predicted
and true longitude of the drone under quartile τ at the time i, respectively; ẑi|τ and zi are
the predicted and true altitude of the drone under quartile τ at the time i, respectively.

4.3. Model Training and Testing

The latitude, longitude, altitude, speed in the x, y, and z-axis, heading angle, pitch
angle, and roll angle of the drone are input into the neural network. The outputs are the
predicted longitude, latitude, and altitude of the drone. The specific steps are as follows:

Step 1: Data processing. The collected drone trajectory data are processed using a sliding
window, and spatial reconstruction and normalization are performed to construct samples that
can be input into the QRDGRU. Assuming that the number of drone trajectory data is k, the in-
put of a sample is a matrix of k× 9, for which the i-th row of X is (xi, yi, zi, vxi, vyi, vzi, ϕi, θi, γi),
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and the target matrix corresponding to X is [xi+k+s, yi+k+s, zi+k+s], where s is the
prediction timestep.

Step 2: Network training. The processed drone trajectory data set is divided into the
training set and testing set. The training set is input into the QRDGRUi under different
quartiles, and the optimal weight and bias parameters are obtained. The validation set is
input into the trained QRDGRUi. The hyperparameters of the network, such as the number
of iterations and the number of neurons, are determined in the network.

Step 3: Predict the drone location distribution. Based on the constructed QRDGRUi
with determined hyperparameters, the outputs including latitude, longitude, and altitude
are obtained under each quartile. The outputs are denormalized to obtain the predicted
value of the QRDGRUi. Then, the predicted position distribution of the drone is formed.

Step 4: Model evaluation. Compare the predicted location distribution of the drone
with the actual location for model evaluation.

The experimental environment configuration is the same as that of the manned aircraft.
It is finally determined that three hidden layers are used, the number of nodes in the input
layer is nine, and the number of nodes in the output layer is three. The activation function
is “ReLU”. The learning rate is set to 0.0001. The number of training iterations is set as
epoch = 100. For each batch, ten samples and nine feature variables are trained, generating
time series data T for each variable. Therefore, the actual input data of a batch of samples
are three-dimensional vectors with the shape B × N × T, where B is the number of batch
samples, N is the number of features, and T is the timestep.

The hyperparameters of the network are determined according to MAE, MAPE and
RMSE, including the number of neurons in a single layer c and the timestep T. It is finally
determined that the number of neurons in a single layer is 80, and the timestep of the
QRDGRU model is T = 25.

4.4. Trajectory Prediction Results of the Drones

To testify the performance of the QRDGRU model, several benchmark trajectory
prediction models are constructed and compared, including the GRU, SVR, QRLSTM
and QRGRU models. As a traditional classific model, the GRU model was first applied
to justify whether to predict the three-dimensional coordinates at one time or to predict
the three-dimensional coordinates separately. The prediction accuracies in the two ways
are compared. The hyperparameters for the models are provided in Table 4 and the
results are summarized as Model 1 and Model 2 in Table 5. The prediction performance
indicators include RMSE, MAE, MAPE, and consumed time. The computer in this research
is equipped with the R5-3600 CPU, with the frequency of 4.00 GHz and batch size of 100.

It can be seen that all the models converge rapidly within several seconds. For the GRU
model, the accuracy acquired by predicting the three-dimensional coordinates together
tends to be higher than by predicting three-dimensional coordinates separately, indicating
the fact that the drone’s movements in the three axes are related. Therefore, in the following
models, the three-dimensional coordinates were input into the model together.

Comparing the prediction results from Model 1 to Model 6 in Table 6 and Figure 4, it can
be found that the prediction performance indicators RMSE, MAE, and MAPE increase with the
increase of timestep, due to the uncertainty of the drones’ movement. In general, the QRDGRU
model has the highest and most stable prediction accuracy, as compared with the SVR, GRU,
QRLSTM, and QRGRU models for different timesteps. The proposed QRDGRU method
improves the model structure by integrating two different prediction frameworks, including
the D-GRU model proposed in our previous research as well as the quartile regression. The
performance indicators confirm the superiority of the established model.
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Table 5. The hyperparameters for the models.

Model

Parameters

Timestep (s) Number of
Neurons in a Layer

Number of
Hidden Layers

GRU (predicting three-dimensional
coordinates together) 10 80 3

GRU(predicting three-dimensional
coordinates separately) 20 80 3

QRGRU 25 80 3
QRLSTM 35 80 3

QRDRGRU 25 80 3

SVR
Timestep (s) c kernel

10 0.1 linear

Table 6. Prediction performance under different timesteps for the six models (m).

Timestep (s) RMSE (m) MAE (m) MAPE (%) Time (s) RMSE (m) MAE (m) MAPE (%) Time (s)
Model 1: GRU (Predicting Three-Dimensional

Coordinates Together)
Model 2: GRU (Predicting Three-Dimensional

Coordinates Separately)
5 20.59 13.18 2.97 0.516 34.12 21.56 8.90 1.696

10 45.46 32.48 5.08 0.589 53.12 42.89 20.93 1.699
15 76.92 55.50 7.68 0.521 110.43 76.99 30.01 1.671
20 104.00 74.79 16.57 0.519 162.92 156.11 60.67 1.735
25 125.70 90.92 16.49 0.575 186.34 168.13 58.88 1.766
30 147.06 110.01 23.27 0.538 215.77 202.43 72.06 2.004
35 158.33 123.32 22.13 0.523 250.35 249.94 57.89 1.750
40 175.25 127.84 39.14 0.502 265.55 264.99 57.55 1.680

Model 3: SVR Model 4: QRLSTM
5 19.63 17.42 10.77 0.193 18.33 12.10 2.90 0.622

10 55.71 50.69 15.91 0.274 49.41 32.81 5.88 0.626
15 93.78 90.73 28.63 0.260 73.31 55.78 13.49 0.600
20 135.17 131.20 44.10 0.261 104.13 75.10 13.41 0.602
25 168.73 166.85 49.95 0.254 123.46 90.93 12.38 0.606
30 192.88 196.12 61.15 0.265 139.35 100.76 17.13 0.619
35 219.62 220.05 53.70 0.302 165.95 114.36 27.17 0.651
40 248.97 234.77 62.40 0.265 161.91 120.59 19.24 0.615

Model 5: QRGRU Model 6: QRDGRU
5 16.35 10.54 2.38 0.356 15.65 10.25 2.10 0.780

10 43.75 29.50 6.48 0.349 40.95 28.21 5.64 0.898
15 68.70 50.20 9.37 0.403 69.22 50.62 8.84 0.974
20 94.58 70.89 14.60 0.358 94.96 71.30 12.66 0.838
25 119.47 90.54 19.26 0.350 115.16 88.88 14.22 0.764
30 138.35 96.09 16.06 0.390 145.74 105.49 13.29 0.867
35 154.14 115.04 22.89 0.365 155.83 115.58 16.59 0.838
40 172.77 118.27 15.43 0.389 161.73 120.39 14.90 0.885

According to the QRGRU method, the distribution of the probability for the drone with
a specifically predicted timestep can be obtained. Figure 5 depicts the position distribution
in the horizontal plane of the drone at a specific moment in the future for the 10 s, 20 s, 30 s,
and 40 s timesteps, respectively. The darker the colour, the higher the position distribution
probability is. It can be seen that the area of predicted location spreads with the increase
of timestep, which further indicates the uncertainty of the drones’ movement. The blue
circle indicates the maximum uncertainty calculated using the maximum acceleration and
speed for the given time-step, which is a circle with the initial position of the drone as its
center and the furthest distance that can be arrived as its radius. The furthest distance
is calculated based on the assumption that the drone accelerates with its initial speed to
the maximum speed and then flies with the maximum constant speed to reach the largest
distance within a given timestep. For the Mavic 2 drone, the maximum acceleration rate is
6 m/s2 and the maximum speed is 20 m/s.
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5. Conflict Risk Assessment between Drones and Manned Aircraft

Based on the predicted position of the manned aircraft and the predicted position
distribution of the drone obtained in Sections 3 and 4, it is determined whether a conflict
risk exists between the drone and the manned aircraft. Additionally, the conflict probability



Appl. Sci. 2022, 12, 10377 15 of 20

between the drone and the manned aircraft with the conflict risk is calculated. The specific
process is as follows:

First, it is determined whether there is an intersection between the predicted position of
the drone under each quartile at the prediction time and the protected area of the predicted
location for the manned aircraft. If the predicted value of the drone at the τ quartile at the
i-th time is in the protected area of the manned aircraft in the x, y, and z directions, that is,
when Formula (9) is satisfied, it means that the drone is in the risk of conflict with manned
aircraft. The horizontal and vertical distance between the predicted position of the drone
and the protected area of the manned aircraft is judged as follows:{ √

(O(x)τi − P(x)i)
2 + (O(y)τi − P(y)i)

2 < dise

|O(z)τi − P(z)i| < dis f
(9)

In the formula, dise is the horizontal distance between the predicted position of the
drone and the protected area of the manned aircraft; disf is the vertical distance between the
predicted position of the drone and the protected area of the manned aircraft; O(x)τi, O(y)τi,
O(z)τi are the predicted values of the drone at the τ quartile at the i-th time in the x, y, and z
axes; P(x)i, P(y)i, P(z)i are the predicted values of the manned aircraft in the x, y, and z axes.

Second, the probability of collision between the drone and the manned aircraft at the
predicted time can be estimated. According to the conflict risk assessment, the number of
predicted position points of the drone under all the quartiles at the prediction time in the
protected area of the manned aircraft is obtained. The ratio of the number in the protected area
to the number of total predicted position points of the drone under all quartiles is the collision
probability between the drone and the manned aircraft at the predicted time. The collision
probability Probi between the drone and the manned aircraft at the i-th moment is expressed as:

Probi =

m
∑

τ=1
bτ|i

m
(10)

In the formula, m is the number of predicted position points of the drone under all
quartiles, and bτ|i represents the conflict between the predicted position of the drone and
the manned aircraft under the τ quartile at the i-th time. When there is a conflict risk, bτ|i
takes the value of 1, and otherwise, bτ|i is 0.

The conflict probability threshold is set to 50%. The threshold is the same as that set in
previous research [27,29]. If the probability of conflict at the predicted time is greater than
or equal to the conflict probability threshold, it is considered that there is a conflict between
the drone and the manned aircraft. If it is less than the conflict probability threshold, it is
considered that the drone and the manned aircraft are not in conflict.

Then, the correct detection rate and false alarm rate of collision probability prediction
are calculated. In reality, it is difficult to carry out a collision test between a manned
aircraft and a quadrotor. Therefore, a collision simulation test is carried out based on the
real trajectory data, which not only ensures that the trajectory data in the simulation test
conforms to the actual flight situation but also reduces the test risk and cost. In this research,
Monte Carlo simulation experiments are conducted. In the simulation experiment, the ratio
of the number of correctly predicted collisions to the number of real collisions between
the drone and manned aircraft is the correct detection rate. The ratio of the number of
incorrectly predicted collisions to the number of non-collisions is the false alarm rate.

Percd =

Num
∑

r=1
qr = 1

Relcol
(11)

Per f a =

Precol −
(

Num
∑

r=1
qr = 1

)
Num− Relcol

(12)
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In the above formulas, Num is the total number of simulation tests; Percd is the correct
detection rate; Perfa is the false alarm rate. qr = 1 indicates the correct prediction of real
collisions in the r-th simulation test, which means that both the predicted results and the
real results between the drone and manned aircraft are collisions; Relcol is the number of
real collisions in the simulation test; and Precol is the number of collisions predicted in the
simulation test.

Finally, the collision probability between the drone and the manned aircraft at the
closest encountering point and the estimated time to reach the closest encountering point
are calculated. The following assumptions are made:

• The drone and the manned aircraft are regarded as a particle with a direction of movement;
• During the movement, the drone and the manned aircraft are independent of each

other, and the influence of the wake factor is excluded;
• The effects of bad weather such as wind, rain, and thunderstorms are ignored;
• The horizontal and vertical movements of the drone are independent;
• The speed of the drone and the manned aircraft remain consistent at the closest moment.

Based on the above assumptions, it can be judged whether there is a conflict risk
according to the predicted position points of the manned aircraft and the predicted position
distribution of the drone. The drones that do not have a conflict risk are screened out. For
the remaining drones with conflict risks, assuming that the drone and the manned aircraft
are predicted in the next k seconds from the current time n, the minimum distance between
the predicted position of the manned aircraft and the drone at the same time is defined as
the closest encountering point.

For any time n + s within the time n + 1~n + k, calculate the distance (Lµ
n+s) between

the predicted position of the manned aircraft at the time of n + s for each point in the
predicted position distribution of the drone trajectory.

Lµ
n+s =

√
(xn+s − uµ

n+s)
2
+ (yn+s − vµ

n+s)
2
+ (zn+s − wµ

n+s)
2

µ = 1, 2, . . . , j
s = 1, 2, . . . , k

(13)

where xn+s, yn+s, zn+s are the predicted longitude, latitude and altitude, respectively, for
manned aircraft at time n + s; uµ

n+s, vµ
n+s, wµ

n+s are the predicted longitude, latitude and
altitude, respectively, for the drone at time n + s; j is the number of quartiles. The minimum
distance between the drone and the manned aircraft at time n + s (Ln+s) is calculated as:

Ln+s = min(Lµ
n+s)

µ = 1, 2, . . . , j
(14)

According to the obtained minimum distance between the drone and the manned
aircraft at the time n + s, the minimum distance between the drone and the manned aircraft
from time n + 1~n + k (Ln+l) are obtained.

Ln+l = min(Ln+s)
s = 1, 2, . . . , k

(15)

Thus, n + l is the timestamp when the drone and the manned aircraft meet at the
nearest point, and l is the time when the drone and the manned aircraft are expected to
reach the nearest encountering point from the current time.

The procedure is illustrated using the following example. Based on the trajectory data
of the take-off stage and the landing stage of the manned aircraft and the collected drone
trajectory data, the drone and the manned aircraft are placed in the same space by means
of translation, and simulation experiments are carried out within four conflict risk levels.

Figure 6 illustrates the conflict scenario based on the predicted drone and aircraft
trajectory. The cylinder is the protected area of the manned aircraft when they meet at
the nearest point; the solid line is the historical trajectory of the drone; the dotted line is
the historical trajectory of the manned aircraft; the asterisk * is the predicted position of
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the manned aircraft when it meets at the nearest point. The continuous curve predicts the
location distribution for the drone.
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It can be seen that most of the predicted drone trajectory points fall within the manned
aircraft protection zone when arriving at the closest encountering point. The closest distance
at the encountering point is 457.27 m. According to the current historical trajectory of the
drone and the manned aircraft, it is predicted that the closest encountering point between
the drone and the manned aircraft will be 18 s later. With Formula (8), it is estimated that
the collision probability between the drone and the manned aircraft at the closest point is
81.63%. The air transport management department can make decisions based on the above
simulation results.

The Monte Carlo simulation tests were conducted at each flight level during the
departure and arrival stages. The prediction accuracy of collision probability at different
flight stages and levels can be obtained, as shown in Table 7. With the increase of altitude,
the prediction accuracy of collision probability decreases. This is because the higher the
altitude, the higher the flight speed. The mean absolute error for the trajectory prediction
of the manned aircraft will be reduced as the altitude increases, which affects the collision
probability prediction accuracy.

Table 7. Conflict prediction accuracy under different flight levels.

Altitude (m) The Take-Off Stage The Landing Stage

Percd Perfa Percd Perfa

0–100 97.37% 8.20% 96.97% 5.90%
100–200 91.07% 11.63% 94.44% 12.70%
200–300 88.89% 6.70% 90.00% 16.32%

Naturally, there is a tradeoff between correct detections and false alarms. For example,
with a larger protection zone of the manned aircraft, the correct detection rate tends to be
higher while the false alarm rate also tends to be higher. The performance indicators are also
affected by the type of intruder. For example, it has been demonstrated in previous research
that when the correct detection rate is around 80%, the false alarm rate is around 8% for
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Zagi size as the intruder, 35% for ScanEagle size, and 90% for Cessna size as intruder [33]. In
another study, alert results from 10,000 simulated unmanned aerial system tracks indicate
that, to obtain a relatively high failure rate, the false alarm rate ranges from 18.89% to
71.38% based on different methods [27]. Overall, the correct detection rate ranges from
88.89% to 97.37% and the false alarm rate ranges from 5.9% to 16.32% in the current research.
The model estimation results are generally comparable with those in previous research.

6. Conclusions and Discussion

Collision risk assessment between manned aircraft and drones is a key technology
for the safe operation of air transport in low-altitude airspace. This paper begins with the
problem of the illegal flight of drones, leading to the risk of collision with manned aircraft
in the take-off and landing stages. A short-term risk assessment method between manned
aircraft and drones has been implemented to identify the collision risk and enhance the
safe operation of air traffic. The main findings of this paper are as follows:

First, based on the historical ADS-B trajectory data of manned aircraft, a short-term
trajectory prediction model of manned aircraft in different flight stages was conducted. The
original manned aircraft trajectory data were collected. Data processing was performed,
including the removal of noise and outliers, and the reconstruction of the trajectory into
equally spaced data to improve data quality. The model comprehensively takes the longitude,
latitude, altitude, speed, and other information of the manned aircraft as inputs in the trajectory
prediction model to learn the flight intention of the manned aircraft. The performance of the
model was compared with the commonly used trajectory perdition models.

Second, considering the flexible and changeable characteristics of drones, and based
on the historical trajectory data, a QRDGRU structure is proposed to predict the trajectory
of the drone. The model integrates the bidirectional gated recurrent unit structure and
the quartile regression structure, which can obtain the position distribution of the drone.
The proposed model is compared with traditional GRU, SVR, QRLSTM and QRGRU
models to testify its performance. The performance indicators confirm the superiority of
the established model.

Third, given the difficulty in estimating the uncertain collision risk between manned
aircraft and drones, a Monte-Carlo-based collision probability estimation model is proposed.
Based on the predicted manned aircraft trajectory and drone position distribution, the
estimated probability is calculated by the Monte Carlo simulation method. Time to the
closest distance at the encountering point, and the collision probability between the drone
and the manned aircraft at the closest point are calculated.

This paper predicts the conflict risk between non-cooperative drones and manned aircraft
in the take-off and landing phases. The model structure can be directly applied by airport
operators or air transport managers to identify the potential risk between manned aircraft and
drones ahead of time. The intention of drones can be judged to detect dangerous behaviors.
Furthermore, according to the estimated time to the closest distance at the encountering point,
and the collision probability between manned aircraft and drones, different warning strategies
can be implemented based on the predicted conflict levels. However, due to the limitation of
acquired data, the following aspects can be further improved.

First, for trajectory prediction of manned aircraft, only ADS-B data are currently
considered, and there is no support for flight plans, high-altitude weather, and other data.
The performance of the model can be further improved as long as these parameters can be
obtained and input into the model.

Second, the predicted trajectory of drones is only based on the historic ADS-B data, while
the aircraft performance is not incorporated. As a matter of fact, the weather, especially wind,
and the maneuverability of drones may influence the predicted position distribution. Future
studies should also be conducted with regard to the intention of drones.

Third, in the estimation of the collision probability between the drone and manned
aircraft, since the collision between the drone and manned aircraft cannot be tested in actual
situations, this paper translates the trajectory to generate an intersection. The behaviors of
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drones and manned aircraft may change for risk abatement in real conditions. At the same
time, this paper focuses on estimating the probability of collision between a single manned
aircraft and a single drone. In actual scenarios, the manned aircraft may also conflict with
the drone fleet during the take-off and landing stages. Research can also be conducted on
the collision risk between aircraft and multiple drones.
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