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Abstract: Finger vein recognition has been widely studied due to its advantages, such as high security,
convenience, and living body recognition. At present, the performance of the most advanced finger
vein recognition methods largely depends on the quality of finger vein images. However, when
collecting finger vein images, due to the possible deviation of finger position, ambient lighting and
other factors, the quality of the captured images is often relatively low, which directly affects the
performance of finger vein recognition. In this study, we proposed a new model for finger vein recog-
nition that combined the vision transformer architecture with the capsule network (ViT-Cap). The
model can explore finger vein image information based on global and local attention and selectively
focus on the important finger vein feature information. First, we split-finger vein images into patches
and then linearly embedded each of the patches. Second, the resulting vector sequence was fed into
a transformer encoder to extract the finger vein features. Third, the feature vectors generated by
the vision transformer module were fed into the capsule module for further training. We tested the
proposed method on four publicly available finger vein databases. Experimental results showed
that the average recognition accuracy of the algorithm based on the proposed model was above
96%, which was better than the original vision transformer, capsule network, and other advanced
finger vein recognition algorithms. Moreover, the equal error rate (EER) of our model achieved
state-of-the-art performance, especially reaching less than 0.3% under the test of FV-USM datasets
which proved the effectiveness and reliability of the proposed model in finger vein recognition.

Keywords: finger vein; biometrics; computer vision; deep learning

1. Introduction

The Internet era makes a face [1], iris [2], fingerprint [3], and other biometric features
of people’s digital identification. Biometrics can automatically detect, capture, process,
analyze, and identify these digital physiological or behavioral signals, which is a typical and
complex pattern recognition problem and has been at the forefront of the development of
artificial intelligence technology. Finger vein recognition is a biometric technique that uses
human finger vein images to identify individuals. Finger vein recognition refers to the use
of a charge-coupled device (CCD) camera to obtain an individual’s finger vein distribution
map by irradiating fingers with near-infrared light and then using advanced filtering image
binarization and other means to extract digital image features by comparing them with
the finger vein feature values stored in the host and using a complex matching algorithm
to match the characteristics of the finger veins, so as to realize personal identification.
Compared with other biometrics, finger vein recognition has become the second generation
of biometrics because of its advantages in high security, precision, stability, and ease of use.

Early finger vein recognition is mainly based on feature engineering methods, which
extract distinguishable features from pre-processed finger vein images, such as local texture
features [4], vein pattern features [5], minutiae features [6], etc., by measuring the similarity
between the image features to be compared and the extracted features to achieve recognition.
However, feature extraction of finger veins is greatly affected by ambient temperature [7].
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When the finger is cold, the veins of the finger shrink and thin, making vein information
scarce. Secondly, the surrounding strong ambient light (such as sunlight) will cause different
degrees of interference with the near-infrared image, affecting the authentication rate of vein
recognition. At the same time, finger vein acquisition devices have certain requirements for
the acquisition posture, so the acquisition posture will have a certain impact on the image
quality. These defects affect the effect of traditional feature extraction algorithms and have a
negative impact on the performance of finger vein recognition. With the rapid development
of deep learning, self-learning features based on the deep framework have made great
progress in image recognition in recent years. Compared with traditional algorithms, the
goal of deep learning is to learn features. The problem of manually extracting feature
points was solved by obtaining the feature information of each layer through the network.
Based on the learning of massive data and under the constraints of deep framework theory,
we adjusted the parameters of the multi-layer network, established the optimal nonlinear
fitting network between input and output nodes, and then compared the target samples
with the samples mapped by the deep network, marking the correspondence between
them to get as close as possible to the real distribution. By training the deep network
model, the maximum probability distribution of the target classification was obtained.
Finger vein recognition [8] is a recognition technology for complete image classification.
Many methods of finger vein recognition based on deep learning have been proposed
in recent years and achieved satisfactory results. Das et al. [9] proposed a CNN-based
finger vein recognition model and tested its effectiveness on four public finger vein image
datasets. Wang et al. [10] proposed an HGAN-based data expansion strategy for the
CNN finger vein recognition model and compressed the model using filtered pruning and
low-rank decomposition. Lu [11] et al. proposed a CNN-based local descriptor named
CNN-Competitive Order (CNN-CO) for the finger vein recognition model of the Deep
Convolutional Neural Network (DCNN). However, CNN did not consider the spatial
relationship between potential target features and performed poorly in exploring the
spatial relationship between features. Moreover, the pooling layer of CNN loses a lot of
valuable information, which makes the result of finger vein recognition unable to achieve
a great improvement. Hinton et al. [12] presented the capsule network, which defined
features in a more reasonable way than CNN by ensuring the invariance of translation
and rotation. Dilara Gumusbas et al. [13] used capsule networks for recognition using a
limited number of samples in four finger vein datasets. Although the capsule network
overcomes some of the drawbacks of CNNs, the model cannot selectively focus on the
important information in the image, resulting in a much smaller receptive field during
actual processing than the theoretical receptive field. In fact, after we detected the key
points, object boundaries, and other basic units that made up visual elements, high-level
visual semantic information tended to focus more on how these elements related to each
other to form a target object and how the spatial position relationships between these
target objects constituted a scene. However, models such as the capsule network do not
achieve the desired effect when dealing with the relationships between these elements.
Dosovitskiy [14] put forward a transformer model applied to computer vision, which
achieved good results on multiple image recognition benchmarks. Unlike CNN models,
vision transformer uses a self-attention mechanism to integrate information across the
entire image. Even at the lowest level, the vision transformer captures global contextual
information by using self-attention to establish remote dependencies on targets and extract
more powerful features.

To solve the problem that the capsule network lacks the ability to encode the long-range
dependencies in the image and cannot selectively pay attention to important image feature
information when the capsule network is used for image classification, we integrated
the advantages of the capsule network in processing the underlying vision information,
as well as the advantages of the transformer in processing the relationship between the
visual elements and the target objects, and propose a new vision transformer-based capsule
network model (ViT-Cap) for finger vein recognition. The model can encode the dependen-
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cies between image features so as to improve the effect of image classification, especially
multi-label classification. Experimental results showed that the proposed model has better
recognition performance than the existing recognition methods.

The main contributions of this article are as follows. A new vision transformer model
based on a capsule network is proposed for finger vein recognition.

(1) The model can encode long-range dependencies in images and can better understand
the relationship between advanced semantic visual information and basic visual
elements in finger vein images.

(2) Based on the vision transformer, we introduced the local information shared by the
capsule network module and constructed a finger vein recognition model based on
global attention and local attention, which better obtained the features of finger veins
and maximized the performance of the model.

(3) Compared with CNNs, the model we proposed has higher logical interpretability, and
we visualized part of the training process of the model. At the same time, due to the
dynamic routing mechanism in the model, better performance was obtained when
processing small-scale image data, which solved the limitation of a small amount of
finger vein data.

The remainder of this article is organized as follows: Section 2 briefly introduces the
relevant work of finger vein recognition methods; Section 3 describes the motivation behind
our proposed new model and the main methods based on our proposed model; Section 4
gives the detailed experimental results and analysis; and finally, we summarize the work
and look forward to the future work in Section 5.

2. Related Work

Digital vein recognition technology was first invented by Joseph Rice [15] in 1983
and named Veincheck, which is the prototype of modern vein recognition technology.
Japanese researchers Kono et al. [16] first proposed the use of finger vein features for
identity authentication in 2000. Like other biometrics, finger vein recognition processes
mainly include four stages: image acquisition, image pre-processing, feature extraction,
and feature matching. So far, many researchers have proposed many interesting methods
of finger vein feature extraction.

Generally speaking, the recognition methods of finger veins are divided into the
following two categories: The first type of finger vein recognition method is based on the
traditional manual feature extraction. Miura et al. [17] proposed a classical linear tracking
algorithm to extract vein pattern features based on a local grayscale difference of finger
vein images. Qin et al. [18] presented a method of finger vein pattern extraction based on
region growth, and the extraction effect was better. To further improve the effectiveness of
feature extraction, Miura et al. [19] also proposed the maximum curvature algorithm for
finger vein feature extraction by finding the maximum curvature of a local cross-section of
the image, which has become a presentative algorithm in the field of finger vein feature
extraction. However, low-quality finger vein images may reduce recognition performance,
and Gupta et al. [20] proposed the use of local multi-scale matching filters to alleviate the
noise generated by uneven illumination in digital vein images. At the same time, global
features are used to enhance finger vein images to obtain better recognition performance.
Rosdi et al. [21] proposed a local linear binary pattern feature based on the local feature
of finger veins to extract the coding feature of the linear local region and obtained good
experimental results. Van et al. [22] presented a new extraction method for digital vein
features, which focused on local invariant directional feature extraction. The extracted
features are further processed by GridPCA to remove redundant data, which can obtain a
more accurate recognition effect of finger veins.

The second type of finger vein recognition method is based on the feature extraction
methods of deep learning. The goal of deep learning is to learn features and obtain
the feature information of each layer through the network, thus solving the problem of
manually extracting feature points. Das et al. [9] proposed a CNN-based finger vein
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recognition model and tested its effectiveness on four public finger vein image datasets.
Hong et al. [23] proposed a CNN-based finger vein recognition model that is robust to
image shading and misalignment. This model was tested on three public finger vein
databases and achieved good recognition results. Zeng et al. [24] presented a finger
vein verification algorithm based on fully CNN and conditional random field and tested
the proposed model on three public finger vein datasets, and the experimental results
verified its superior performance in the finger vein verification task. Wang et al. [25]
proposed a Multi-Receptive Field Bilinear Convolutional Neural Network (MRFBCNN) to
obtain second-order features of finger veins and better distinguish finger veins, with little
difference between classifications.

3. Materials and Methods

In this section, we will first introduce the motivation of the finger vein recognition
model we proposed, and then we will detailly describe the vision transformer model and
capsule network module, and then focus on the ViT-Cap model we designed and developed
to better achieve the finger vein recognition task.

3.1. Motivation

At present, CNNs are the dominant deep neural network architectures in computer
vision. From image classification [26], object detection [27], and image segmentation [28]
to action recognition [29], various types of CNNs have proved their effectiveness in these
computer vision tasks and have also shown good performance in the field of finger vein
recognition. Although CNN offers translation invariance, the translation invariance it
provides through pooling technology is limited, which is also the reason why CNN needs
much data rotated from different viewpoints.

3.1.1. Overview of Vision Transformer

Recently, the amazing effects of transformer models in natural language tasks have
attracted the attention of computer vision. Researchers have proposed many transformer-
based vision models, such as ViT [14], DETR [30], DeiT [31], GLiT [32], etc. Vision trans-
former is a modified NLP transformer for image classification without any convolutional
layers. The image is split into patches, which are then flattened and put into a lower-
dimensional embedding space. An extra token is added to each vector to denote its relative
location in the image, and another learnable token is added to the entire sequence of vectors
to denote the class. The sequence of vectors is fed to a standard transformer encoder, which
has been modified with an extra fully connected layer at the end for classification.

For vision transformers, the attention mechanism provides key advantages that CNNs
do not have. The transformer can capture the long-range relationship and has dynamic
adaptive modelling capability. Moreover, the transformer’s self-attention mechanism has a
built-in attention map, which provides a new way for models to make decisions. CNNs
are not highly interpretable and can only provide a rough visualization. Transformer
tokens provide more detailed attention images than CNN’s limited receptive field, and the
self-attention mechanism clearly simulates the interactions between each area in the image.
However, vision transformers need a very large dataset to surpass CNNs. The performance
of ViT can only achieve the performance of SOTA when it is trained on Google’s private
image dataset JFT-300M. This problem is particularly serious in the field of finger vein
recognition due to the small data set of finger veins. As with the ViT model, CNNs perform
worse when data is scarce.

3.1.2. Overview of Capsule Network

Hinton et al. [12] proposed a capsule network in view of the shortcomings of CNN
models. A capsule is a set of neurons whose activity vectors represent the instantiation
parameters of a specific type of entity, such as an object or object part. It uses the length
of the activity vector to represent the probability of entity existence and its orientation to
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represent the instantiation parameters. Multiple capsules form a hidden layer, and the
relationship between the two hidden layers is determined by a dynamic routing algorithm.

There are two main advantages of a capsule network. First, the capsule network model
requires less data for training, and the capsule network can promote what it has learned
to new scenarios. Second, the capsule network is not interfered with by the overlapping
of multi-categories, and it can handle complex scenes of overlapping targets. Through
the dynamic routing mechanism, the capsule network can realize the identification and
prediction of overlapping targets. However, the capsule network has its own limitations.
It lacks the ability to encode long-range dependencies in images and cannot selectively
focus on important image feature information. When dealing with the relationship between
high-level visual semantic information and basic visual elements in the image, it does
not achieve the desired effect. Although the capsule network can almost reach the best
performance when processing small-scale image data, it still needs to be improved in
large-scale image processing.

3.1.3. Overview of ViT-Cap Module

Motivated by these factors, this study aimed to propose a vision transformer-based
capsule network model for finger vein recognition. A capsule network can be regarded as
modelling shared local information. Compared with CNN and traditional neural networks,
the capsule network is more adaptable to bad data and can adapt to affine transformation
for input data.

We introduced transformer-based modelling of shared local information and then
explored the network structure of the vision transformer based on global and local attention.
Our model combined the advantages of capsule networks in processing the underlying
vision with the advantages of transformers in processing the relationships between visual
elements and objects. Our proposed model solved the problem of the lack of long-range
dependence on the encoding image and its inability to selectively focus on important image
feature information when the capsule network is used for image classification, thereby
achieving better finger vein classification results. In addition, the capsule network can
better explore the relationship between features. In the case of a small amount of data, a
capsule network has better generalization abilities than CNNs and can resist overfitting
better. The model we proposed solves the limitation of a small amount of finger vein data
and maximizes the performance of the model.

The complete architecture of our proposed model is shown in Figure 1. We used the
encoder part of the transformer architecture combined with our capsule networks and their
dynamic routing to implement finger vein recognition. The model we proposed mainly
consisted of three parts. The first part was to process the input finger vein image and
linearly embed it into the transformer encoder, the second part was to build the transformer
module to process the embedded finger vein image, and the third part was to deploy
the capsule network module. The data processed by the transformer is inputted into the
capsule network module for further training, and finally, the model results are outputted.
A detailed description of the model architecture is expanded in Sections 3.2–3.4.

Figure 1. The overall architecture of the ViT-Cap model.
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3.2. Linear Embedding of Finger Vein Images

Transformers were originally applied in the field of natural language processing,
where the standard transformer receives a one-dimensional sequence of token embeddings
as input [20]. Therefore, when we used a transformer to process 2D finger vein images,
to fit the transformer architecture, we split the finger vein images into patches, linearly
embedded each patch, and fed the resulting sequence of vectors into the transformer
encoder [14,30,31].

As shown in Figure 2, first, we needed to chunk the input finger vein image, assuming
that the image information parameter of the input image x is (H, W, C), where (H, W) is the
resolution of the finger vein image and C is the number of channels. Assuming the patch
size was (P, P), then N = HW/P2 image blocks were divided for the vein image with input
parameters (H, W), and we chose the patch size P, which was 16 × 16 or 28 × 28. If the
patch size was too large, the parameter scale of the model exponentially increased, and
conversely, if the size of the patch was too small, the final performance of the model was
affected. Therefore, in the process of finger vein images in our proposed model, the patch
size was selected as 28 × 28. Then, each block was regarded as a vector, and all the vectors
were combined into a sequence, resulting in a dimension of

(
N, P2C

)
for the data.

Figure 2. The first part of ViT-Cap model architecture: linear embedding of finger vein images.

Transformers use a constant vector size D in all layers, so we flattened all the patches
and mapped them to D dimensions through a trainable linear projection. The final em-
bedded sequence of the patch, with the token Z0, is given in Equation (1), where xclass is a
learnable classification token that is needed to perform the classification task. The patch
embeddings are the output of this projection.

Z0 =
[

xclass; x1
pE; x2

pE; · · · ; xN
p E
]
+ Epos, E ∈ R(P2·C)×D, Epos ∈ R(N+1)×D (1)

3.3. Transformer-Based Module

The resulting sequence of embedded patches Z0 was passed to the transformer en-
coder. Figure 3 shows the second part of our model. The encoder consisted of L identical
layers, which were composed of alternating layers of the multi-head self-attention block
(MHSA, Equation (2)) and a fully connected, feed-forward dense block. Each layer was
a feed-forward network after the attention, and the function of the feed-forward dense
block was spatial conversion. Feed-forward networks introduce a nonlinear ReLU acti-
vation function, which transforms the space of attention output, thereby improving the
performance of the model. Layer norms were applied before every block, and the residual
connections were applied after every block.

Zl = MHSA(LN(ZL−1)) + ZL−1, l = 1, . . . , L (2)
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Figure 3. The second part of the ViT-Cap model architecture: transformer encoder module.

The MHSA was the core component of the transformer encoder, and its role was to
determine the relative importance of a single patch embedding relative to other embeddings
in the sequence. MHSA consists of four layers: a linear layer, a self-attention layer, a
concatenation layer, and a final linear layer. The operation of the MHSA is as follows.

Firstly, we inputted the linear transformation of image matrix Z and divided it into
three matrices Q, K, and V, which were obtained by three different weight transformation
matrices, WQ, WK, and WV (Equation (3)).

[Q, K, V] =
[
ZWQ, ZWK, ZWV

]
(3)

Then the matrices Q, K, and V, obtained above, were linearly projected into h different
subspaces, h equaled 12, and the self-attention values in each subspace were calculated
(Equations (4)–(7)).

[Q1, · · · , Qh] =
[
QWQ1 , · · · , QWQh

]
(4)

[K1, · · · , Kh] =
[
KWK1 , · · · , KWKh

]
(5)

[V1, · · · , Vh] =
[
VWV1 , · · · , VWVh

]
(6)

Headi = Softmax

(
QiK

T
i√

d

)
Vi (7)
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Finally, we concatenated all the attention heads and then projected them through a
feed-forward layer with a learnable weight W (Equation (8)).

MultiHead(Q, K, V) = Concat(Head1, . . . , Headh)W
O (8)

In the process of finger vein recognition, attention is an effective non-local information
fusion technology. Attention essentially means the average weighting according to the
matrix of a relation, which means different information can be fused. CNN itself has
a defect, that is that each of its operations can only focus on the information near the
convolution kernel and cannot fuse distant information. However, attention can realize a
weighted fusion of distant information, which plays an auxiliary role. On the other hand,
attention has a higher logical interpretability than CNN, and the weighted analysis of
attention naturally has the property of visualization.

As shown in Figure 4, we trained the model on four public datasets of finger veins
and visualized the attention maps obtained from the four datasets. The more important the
area in Figure 4, the brighter the pixels. Figure 4 shows the process of obtaining finger vein
information by the multi-head attention mechanism. Through this module, the important
feature information of finger vein images was gradually obtained. For example, in FV-USM,
the attention map head-1 only showed partial attention to the vein feature information,
but the corresponding attention was also given to irrelevant information outside the veins.
This problem was gradually improved in subsequent attention map heads. By the time
of attention head-12, we saw that less attention was paid to irrelevant regions, and more
attention was paid to the vein feature information in the image. For MMCBNU, attention
head-1 mainly focused on irrelevant information, and then the model attempted to capture
the discriminative areas that corresponded to the finger vein. For SDUMLA and HKPU, as
attention heads increased, the model tended to pay more attention to the region of finger
veins. After attention head-6, we saw that less attention was paid to irrelevant regions. By
analyzing the visualized finger vein results, the attention mechanism learned very strong
structural features.

Figure 4. Attention maps obtained on four public finger vein datasets.
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3.4. Capsule Network-Based Module

We fed the vector X generated by the transformer module into the capsule module, and
the architecture of the third part of the proposed model is shown in Figure 5. First, we used a
convolutional layer to process the feeding vector X. Conv1 had a 9× 9 convolutional kernel
with a stride of 1 and an activation function of ReLU. This layer converted pixel intensity
into activities of the local feature detector, which were then used as input for PrimaryCaps.

Figure 5. The third part of ViT-Cap model architecture.

The PrimaryCaps module was a convolutional capsule layer containing 32 channels
of convolutional 8D capsules. Each primary capsule contained 8 convolutional units, a
9× 9 kernel, and a stride of 2. PrimaryCaps had [32× 6× 6] capsule output. Each layer of
the DigitCaps module had a 16D capsule, and each capsule received input from all capsules
in the layer below.

We used dynamic routing between PrimaryCaps and DigitCaps, as shown in Figure 5b.
For the capsules, the input ui and output vj of the capsule were vectors. We applied a
transformation matrix Wij to the capsule output ui of the previous layer, and then calculate
the weighted sum sj of the weight cij. cij was the coupling coefficient calculated by the
iterative dynamic routing process.

ûj|i = Wijui (9)

sj = ∑
i

cijûj|i (10)

We applied a squashing function (Equation (11)) to ensure that short vectors shrank to
almost zero in length and long vectors shrank to almost one length.

vj =

∣∣|sj|
∣∣2

1 +
∣∣|sj|

∣∣2 sj∣∣|sj|
∣∣ (11)
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Prediction vector ûj|i was the prediction of the output of capsule j from capsule i. If the
activity vector was very similar to the prediction vector, we concluded that both capsules
were highly correlated. This similarity was measured using the predicted scalar product
and the activity vector.

bij ← ûj|i·vj (12)

The coupling coefficient cij was calculated as the Softmax of bij.

cij =
expbij

∑k expbik
(13)

To make bij more accurate, it was iteratively updated in 3 or 4 iterations in finger vein
recognition experiments.

bij ← bij + ûj|i·vj
(14)

Finally, the model-encoded finger vein image was fed into a dense layer with a Softmax
activation function that mapped the embedded vector to the desired class in one-hot format.

4. Results
4.1. Finger Vein Datasets Description

In this section, we first discuss the details of the datasets used, followed by the setup
of the experiments. The effectiveness of our proposed ViT-Cap model was evaluated on
four publicly available finger vein datasets: MMCBNU from Jeonbuk National University
in South Korea [33], SDUMLA from Shandong University in China [34], FV-USM from
University Sains Malaysia [35], HKPU from the Hong Kong Polytechnic University [7],
and MIXFV. The primary reason for using these specific datasets was that most existing
finger vein recognition methods are evaluated by tests performed on one or more of these
datasets. The details of these four public finger vein databases are shown in Table 1.

Table 1. Details of public finger vein datasets.

Database Sampling
Object

Image
Resolution

Number of
Classes

Number of
Fingers Total Images

MMCBNU 100 320 × 240 600 6 6000
SDUMLA 106 320 × 240 636 6 3816
FV-USM 123 640 × 480 492 4 5904
HKPU 156 513× 256 624 4 3132

Information from the MMCBNU database was collected from 100 volunteers, including
83 men and 17 women. Each volunteer provided the index, ring, and middle fingers of
both hands, and the collection was repeated 10 times per 6 fingers, for a total of 60 finger
vein images from each volunteer.

The SDUMLA database was created by Shandong University in China, with a dataset
of finger veins from 106 volunteers, each of whom provided the index, middle, and
ring fingers of both hands, so a total of 3816 images were collected with a resolution
of 320 × 240 pixels.

The FV-USM database was collected from 123 volunteers, including 83 men and
40 women, ranging in age from 20 to 52. Each volunteer provided four fingers: left index
finger, left middle finger, right index finger, and right middle finger, resulting in a total of
492 finger classes, and the finger image resolution captured was 640 × 480.

The Hong Kong Polytechnic University dataset consisted of finger vein images col-
lected from men and women volunteers. About 93% of the participants were under 30
years old. Finger images were obtained over two separate time periods, with a minimum
interval of one month and a maximum interval of more than six months. In each session,
each volunteer provided six image samples from the index and middle fingers, and each
sample consisted of a finger vein and finger texture image from the left hand.
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The MIXFV contains 100 categories selected from the top 100 categories of SDUMLA,
FV-USM, MMCBNU and HKPU. The MXIFV database is divided as follows: the training set
has 27 training samples for each category from four different public finger vein databases,
and the test set has 13 test samples for each category, also from four different public finger
vein databases.

4.2. Finger Vein Image Pre-Processing

In the process of finger vein image acquisition, accurate identification of finger veins
is a very difficult task due to the influence of uneven illumination, equipment noise, and
other factors. Therefore, before finger vein recognition, it is necessary to pre-process the
finger vein datasets to improve the recognition performance. To test the performance of
our proposed model to the maximum extent, we only performed region of interest (ROI)
localization processing on the finger vein image to maximize the retention of the vein
feature information in the original image.

For the MMCBNU and FV-USM datasets, we used the ROI images included in the
datasets for model training, which ensured the reliability of the vein image information.
For HKPU and SDUMLA datasets, we adopted the ROI extraction method proposed
by Lu et al. [36]. We retained the finger vein area in the image to the greatest extent and
conducted ROI localization along the outer tangent direction of the finger. We only removed
irrelevant background information in the image, but not the part with unclear vein lines
in the original image. Although there were still some problems, such as unclear partial
vein texture information and missing vein texture information caused by severe exposure
in some images after ROI extraction, the vein image after ROI localization retained the
complete vein information of the original image and such data could better show the
robustness of the model we proposed. Figure 6 shows the comparison of ROI-localized
finger vein images with the original finger vein images from four public datasets.

Figure 6. Comparison of finger vein images before and after ROI in four public datasets.

4.3. Experimental Setup for Finger-Vein Recognition

We conducted three sets of experiments on four public datasets. In the first set of
experiments, we changed the number of multi-heads and studied the relationship between
the attention mechanism and model performance. Then we changed the number of encoder
layers and the number of routing iterations and studied the relationship between network
depth and model performance. In addition, equal error rate (EER) and recognition accuracy
(ACC) were used to evaluate the performance of the finger vein recognition model. The
EER is the error rate when the false acceptance rate (FAR) equals the false rejection rate
(FRR). The FRR is the probability that the correct sample is wrongly rejected by the system,
while FAR is the probability that the wrong sample is considered correct by the system.

The recognition accuracy was selected to evaluate the recognition performance of the
model. By feeding the test set into the training model and outputting it through Softmax,
the maximum probability was selected as the category of the current image. By comparing
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with the labels, the proportion of the number of samples with the same prediction category
and categories in the total number of samples was calculated, as shown in Equation (15)
(where N_T represents the number of correctly classified samples and N represents the
total number of samples).

Accuracy =
NT
N

(15)

We clearly described the calculation method of the EER. For multi-classification meth-
ods, such as ours, we regarded the prediction of each class as a binary classification task.
For instance, we fed an image of a finger vein, which belonged to class three, into the
model, which outputted a list of predictions. We assumed that there were 100 predictions:
[0.0031, 0.5362, 0.9966, 0.0042, . . . , 0.0033]. The threshold (from 0 to 1) was set to 0.5. If
the prediction probability was greater than 0.5, the corresponding sample was marked
as positive (P); otherwise, it was marked as negative (N). If the predicted label of the
corresponding sample was the same as its true label, we marked it as a true (T) sample;
otherwise, it was a false (F) sample. For the value 0.9966, the true label of its corresponding
sample was three, which was equal to the predicted result, so it was a TP sample. Similarly,
0.0031 was a TN sample, and 0.5362 was an FP sample. Then, the FAR and FRR were
calculated (as shown in Equations (16) and (17)). Multiple sets of FAR and FRR were
obtained by setting a series of thresholds. We connected these points to form a receiver
operating characteristic curve (ROC), and its intersection with the diagonal was EER, while
AUC was the area under the ROC curve.

FAR =
FP

FP + TN
(16)

FRR =
FN

FN + TP
(17)

In the second set of experiments, we compared the results of our model with several
state-of-the-art methods, including ACC and EER values. Finally, we tested the model’s
performance on datasets of small categories, selecting 50, 100, 150, and 200 categories on
four public finger vein datasets for experimentation. We also used fewer images for training
and compared the results. The main purpose of the third set of experiments was to test
the performance of our proposed model in processing small categories and small-scale
image data.

In all experiments, the basic framework of our proposed ViT-Cap model did not change.
What we changed during the experiment were the layers of the encoder, the number of
multi-heads, and the number of routing iterations. The embedding dimension of the ViT-
Cap model was 784, and the number of routing iterations used in the experiment was three
or four. To improve the experimental effect, we adjusted the ROI pre-processed image size
to 224 × 224 and the patch size to 28 × 28. During model training, we used PyTorch (a
Python-based deep learning framework) to resize the input vein images to 224 × 224.

For comparison, we evaluated the model’s performance based on standard population
accuracy, which was the number of correctly classified finger vein images divided by the
total number of finger vein images. We also used the EER value and AUC value obtained
by the experiment as important indicators to evaluate the performance of the model. To
analyze the performance of the proposed model, we compared it with state-of-the-art finger
vein recognition models. The results of the ViT-Cap model on the four datasets mentioned
above showed competitive or even better performance.

All the algorithms in this article were implemented and run using Python 3.8 on a
server with an Intel(R) Silver 4214 CPU, 256 GB of RAM, and a Tesla T4 graphics card, and
we used PyTorch 1.7.1, an open-source deep neural network library written in Python.

4.4. Experiment 1: Preliminary Analysis

We tested the models on four publicly available finger vein datasets, each of which was
first divided into training and test sets. For the FV-USM dataset, we set the percentage of
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training data to test data at 8-4; for the SDUMLA dataset, we set the percentage of training
data to test data at 5-1; for the MMCBNU dataset, the percentage of training data to test
data was 6-4; for the HKPU dataset, the percentage of training data to test data was 8-4.

Under the condition that the overall framework of the model remains unchanged,
we used the method of controlling variables to set the number of encoder layers in the
transformer module to one and two, the number of heads to 12 and 24, and the number
of routing iterations in the capsule module to three and four, respectively. The number
of training rounds of the model was unified to 300 epochs, and the accuracy, EER, and
AUC values of the model under different parameters were obtained through experiments
to evaluate the performance of the model. Table 2 shows the experimental results obtained
under different parameters.

Table 2. Performance comparison of ViT-Cap on four datasets and under different parameter settings.

Database Number
of Layers Heads Routing

Iterations ACC (%) EER (%) AUC

MMCBNU
1

12
3

96.54 0.66 1.0
24 97.52 0.63 1.0

2
12

4
95.29 1.12 1.0

24 97.25 0.65 1

SDUMLA
1

12
3

91.98 2.15 0.99
24 94.97 1.13 1

2
12

4
92.45 2.38 0.99

24 93.24 1.74 0.99

FV-USM
1

12
3

97.76 1.01 1.0
24 98.68 0.29 1.0

2
12

4
97.82 0.28 1.0

24 97.92 0.60 1.0

HKPU
1

12
3

92.62 3.53 0.99
24 93.45 2.93 0.99

2
12

4
95.36 2.56 0.99

24 95.61 1.66 0.99

The results in Table 2 clearly show that the performance of our proposed model was
very good. On the four publicly available finger vein datasets, the average recognition
accuracy of ViT-Cap reached 95.53%. On the FV-USM dataset, the ViT-Cap model achieved
a minimum EER value of 0.28% and an AUC value of almost one. Through experimental
analysis, when only the number of heads was changed, the results of the experiment using
24 heads were significantly better than that using only 12 heads.

After completing the experiments of Table 2, we conducted an extreme experiment
at the same time. We set the encoder layers, heads, and routing iterations to 8-24-6,
respectively. The experimental results in Table 3 further show that when the performance of
the model reached a certain level, changing the depth of the encoder layer and the number
of routing iterations did not improve the recognition performance.

For most deep learning models, increasing the depth of the model greatly improved
the performance of the model. However, the framework of our ViT-Cap model determined
that increasing the depth of the model did not greatly improve the overall performance
of the model. We extracted the local feature information of the finger vein image through
the encoder layer (layers of 1–2), which obtained the basic vein feature information, and
then use the capsule network module to perform a deeper global vein feature information
extraction of the finger vein features obtained by the encoder layer. The encoder layer
and capsule network module complemented each other, enabling our model to encode
dependencies between vein image features, thereby improving finger vein recognition per-
formance. The setting of the number of routing iterations was essentially a hyperparameter.
It was most reasonable to set routing iteration to three and four. If the parameters of routing
iteration of the model were set too large, it greatly increased the training cost of the model.
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Table 3. Performance comparison of ViT-Cap with deep layers and routing iterations on four datasets.

Database Number
of Layers Heads Routing

Iterations ACC (%) EER (%) AUC

MMCBNU 12 24 6 96.08 0.72 1
SDUMLA 12 24 6 92.14 1.63 1
FV-USM 12 24 6 98.35 0.55 1
HKPU 12 24 6 95.48 1.71 0.99

Figure 7 shows the ROC curve obtained by the experiment. For the MMCBNU dataset,
continuing to increase the depth of the network model degraded the performance of the
model as the depth of the network model increased to a certain level. As can be seen
from Figure 7a, increasing the number of layers of the encoder significantly reduced the
performance of the network model without changing the number of heads. On the contrary,
if we increased the number of heads, the performance of the model was further improved.
Since the multi-head attention mechanism acquired long-range contextual information in
the image without considering distance, it was possible to obtain the relationship between
complex high-level semantic information in finger vein images thereby improving the
accuracy of recognition. The ROC curve obtained after training the model with FV-USM
dataset is shown in Figure 7b. The optimal model configuration was an encoder layer
with 24 heads, and the number of routing iterations is set to 3. Furthermore, when the
experimental results reached the upper limit of the model performance, continuing to
change the configuration of the model did not improve the experimental results.

Figure 7. ROC curves of the ViT-Cap model on four public finger vein datasets:(a) MMCBNU
(b) FV-USM (c) HKPU (d) SDUMLA.

We designed two sets of ablation experiments. We used Resnet50 and MobilenetV3
as the backbone to test performance. The experimental results are shown in Table 4. The
experimental results showed that the two sets of ablation experiments achieved 93.13% and
89.07% of the accuracy, respectively, and the accuracy of our proposed model is 95.23%.
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Table 4. Ablation study on MIXFV.

Model ACC (%)

Resnet50 + CapsNet 93.13
MobilenetV3 + CapsNet 89.07

Proposed 95.23

4.5. Experiment 2: Comparison with State-of-the-Art Finger Vein Recognition Algorithms

In the second set of experiments, we selected four state-of-the-art methods to conduct
experiments on four publicly available datasets. The first algorithm we chose was the vision
transformer model, and we applied it to finger vein recognition. The second algorithm
we chose was the capsule network model, which used the capsule network to train finger
vein images, and the third algorithm selected was the finger vein recognition algorithm
based on convolutional neural network proposed by Das et al. [14], which obtained stable
and high-precision performance when processing finger vein images of different qualities.
The last algorithm we chose was the method based on maximum curvature proposed by
Miura et al. [23]. The algorithm extracted the features used for finger vein recognition
by calculating the local maximum curvature point of the finger vein cross-section, and it
becme a presentative algorithm in the field of finger vein recognition. Table 5 shows the
recognition accuracy achieved by four comparative finger vein recognition algorithms and
ViT-Cap algorithm. Experimental results indicated that the recognition performance of the
proposed method was better than that of other methods.

Table 5. Comparison with state-of-the-art methods of finger vein recognition.

Datasets Training Testing

Accuracy

State-of-the-Art Methods

ViT Capsule Net CNN [9] MC [19] ViT-Cap

MMCBNU 6 images remaining 4 images 95.13 96.29 - - 97.52
SDUMLA 5 images remaining 1 image 90.88 95.66 97.48 97.95 93.24
FV-USM 8 images remaining 4 images 95.99 96.47 97.53 90.34 98.68
HKPU 8 images remaining 4 images 87.62 95.07 95.13 85.24 95.61

As can be seen from the obtained recognition accuracy, the average recognition accu-
racy of our proposed model on four public datasets was 96.26%, which was significantly
better than other advanced algorithms. The recognition accuracy of ViT-Cap model on
FV-USM, SDUMLA, MMCBNU, and HKPU datasets was 98.68%, 93.24%, 97.52%, and
95.61%, respectively, while the average accuracy of the vision transformer and capsule
network model was only 92.41% and 95.87%, respectively. This indicated that our proposed
model has excellent extraction ability of finger vein features. Compared with the existing
methods, the ViT-Cap provided a new reference model for finger vein recognition.

EER plays an important role in evaluating the recognition effect of finger vein models,
so we selected the recognition algorithms proposed in six cutting-edge papers on finger
vein recognition and experimented with our algorithm and compared the obtained EER
results. Table 6 shows the EER values obtained by our model and the EER results of other
related algorithms. Repeated line tracking algorithm and maximum curvature algorithm
were representative finger vein recognition methods, but all had high EER values in three
public datasets. We also compared our model with the deep learning-based recognition
algorithms proposed in recent years [37–40] and found that our model still achieved the
best results. The results of Table 6 are the results of a direct citation of the original paper.
We ensured that we compared each method based on the same datasets and metrics and
used the same number of training and testing datasets. For each, the best results were
selected for comparison. Therefore, we believe that the comparison was fair, and our model
can withstand the test of different methods.
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Table 6. Performance comparison in terms of EER (%).

Algorithm Year MMCBNU SDUMLA FV-USM HKPU

Miura et al. [17] 2003 5.74 5.85 - 3.32
Miura et al. [19] 2005 2.69 3.65 - 2.41

Qin et al. [37] 2018 - - 0.80 2.33
Kang et al. [38] 2019 1.69 0.94 2.40
Yao et al. [39] 2021 1.68 - 2.12 4.23
Tao et al. [40] 2021 - 2.23 - -

Proposed 2021 0.63 1.3 0.28 1.66

4.6. Experiment 3: Performance Analysis of algorithms on Small Sample and Small Categories of
Finger Vein Datasets

Artificial intelligence technology, represented by deep learning, is booming, and there
are more applications in the field of finger vein recognition. However, deep learning is
more suitable for large datasets in applications. Deep learning needs to automatically learn
features from the data, which is usually only possible with a large amount of training
data. However, the model we proposed can perform better on the small amount of finger
vein datasets. Our model could better explore the relationship between data features and
maximize the performance of the model.

In most cases, to improve the performance of deep learning-based finger vein recogni-
tion models, the finger vein datasets are augmented to obtain more experimental samples.
We redesigned the experiment to test the model’s performance on a finger vein dataset
with fewer samples. We used a lesser number of images for training and compared the
results, and we compared the proposed method with capsule networks. We redivided
the four public datasets, and when the test set was determined to be one sample, the data
of the training set was reduced in turn, and the division methods of 4-1 and 3-1 were
selected, respectively, to test the effect of the model in the case of a small sample of data.
Table 7 shows the comparison results of the proposed model ViT-Cap and capsule network
in accuracy, EER and AUC values under the condition of reducing training samples. The
experimental results showed that the performance of our model decreased to a certain
extent when the sample size was reduced. However, compared with deep learning models,
such as capsule networks, that process small sample data better, our model could still
achieve better performance than the capsule network model with fewer samples, and the
average recognition accuracy of our model was 91.7%.

Table 7. Finger vein recognition performance of ViT-Cap on small sample datasets.

Datasets Training Testing Model ACC (%) EER (%) AUC

MMCBNU
4 images 1 image Capsule 90.83 1.87 0.99

ViT-Cap 91.66 1.17 0.99

3 images 1 image Capsule 86.66 2.53 0.99
ViT-Cap 87.16 2.49 0.99

SDUMLA
4 images 1 image Capsule 88.50 5.06 0.98

ViT-Cap 90.25 3.11 0.99

3 images 1 image Capsule 81.13 8.02 0.97
ViT-Cap 82.71 4.13 0.99

FV-USM
4 images 1 image Capsule 93.08 1.46 0.99

ViT-Cap 94.31 2.21 0.99

3 images 1 image Capsule 88.33 4.52 0.99
ViT-Cap 89.02 3.61 0.99

HKPU
4 images 1 image Capsule 89.04 4.24 0.98

ViT-Cap 93.09 2.35 0.99

3 images 1 image Capsule 82.38 8.94 0.96
ViT-Cap 92.14 2.31 0.99
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5. Conclusions

In this study, a new finger vein recognition model based on a capsule network of
vision transformers was proposed. We combined the advantages of a capsule network in
processing the underlying vision with the advantages of a transformer in processing the
relationship between visual elements and objects, thus solving the problem that capsule
networks lack the ability to encode long-range dependencies in images and cannot selec-
tively focus on important image feature information when it is used for image classification.
Thus, a better classification effect of the finger vein was achieved. At the same time, we
used dynamic routing mechanisms to solve the problem of poor model training effect
caused by the small amount of finger vein data. It is worth noting that the ViT-Cap model
we first proposed was used to solve the task of finger vein recognition, which provided a
completely new reference model for finger vein recognition. ViT-Cap showed a significant
advantage over other CNNs in that it was more effective in processing smaller categories
of data. Different from the traditional CNN, ViT-Cap endowed the model with a new
expression of the relationship between local features and overall features, which provided
a new idea for the direction of computer vision.

In the future, we will study how to clarify the correlation between intra-patch and
inter-patch and conduct experiments in more open-finger vein datasets. In view of the
problem that direct resizing in the process of model training may affect the performance of
the model, we will seek a specific model or method to achieve lossless resizing of images.
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