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Abstract: Heart failure (HF) is a devastating condition that impairs people’s lives and health. Because
of the high morbidity and mortality associated with HF, early detection is becoming increasingly
critical. Many studies have focused on the field of heart disease diagnosis based on heart sound
(HS), demonstrating the feasibility of sound signals in heart disease diagnosis. In this paper, we
propose a non-invasive early diagnosis method for HF based on a deep learning (DL) network and
the Korotkoff sound (KS). The accuracy of the KS-based HF prediagnosis was investigated utilizing
continuous wavelet transform (CWT) features, Mel frequency cepstrum coefficient (MFCC) features,
and signal segmentation. Fivefold cross-validation was applied to the four DL models: AlexNet,
VGG19, ResNet50, and Xception, and the performance of each model was evaluated using accuracy
(Acc), specificity (Sp), sensitivity (Se), area under curve (AUC), and time consumption (Tc). The results
reveal that the performance of the four models on MFCC datasets is significantly improved when
compared to CWT datasets, and each model performed considerably better on the non-segmented
dataset than on the segmented dataset, indicating that KS signal segmentation and feature extraction
had a significant impact on the KS-based CHF prediagnosis performance. Our method eventually
achieves the prediagnosis results of Acc (96.0%), Se (97.5%), and Sp (93.8%) based on a comparative
study of the model and the data set. The research demonstrates that the KS-based prediagnosis
method proposed in this paper could accomplish accurate HF prediagnosis, which will offer new
research approaches and a more convenient way to achieve early HF prevention.
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1. Introduction

According to the World Health Organization’s 2022 statistics report [1], 33.2 million
people worldwide died of non-communicable diseases in 2019, which was a 28% increase
from 2000, and women in more than half of all countries and men in 3/4 of all countries
face premature death from cardiovascular disease [2]. Although coronary computed
tomography (CT) [3] and echocardiography [4] can be used to diagnose potential heart
disease patients, these tests are time-consuming, costly, and require specialized testing
equipment. More frustrating, the disruption in medical services caused by the COVID-19
pandemic may expose existing patients to increased risks of serious illness and death [5].
Given the dire situation, we urgently need to develop low-cost heart disease prediagnosis
equipment and increase the popularity of early non-destructive heart disease testing, which
will greatly promote heart disease diagnosis, treatment, and prevention while reducing the
harm caused by heart disease, particularly heart failure (HF). In this paper, we attempt to
develop a Korotkoff sound (KS)-based HF prediagnosis method based on deep learning
(DL) by investigating the signal preprocessing and feature extraction techniques of KS
data gathered.

As a long-term stable and accurate blood pressure monitoring signal, KS has been
widely employed in the clinical diagnosis of hypertension and the daily monitoring of
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potential patients [6,7]. Researchers have been making continuous efforts in the field of KS-
based disease detection, and the QKD interval [8], the ankle-brachial index (ABI) [9], and
other indexes have been proposed and used to diagnose cardiovascular diseases. The QKD
interval is the period between the beginning of depolarization on the electrocardiogram (Q)
and the detection of the last Korotkoff sound (K) at the level of the brachial artery during cuff
deflation, which corresponds to diastolic blood pressure (D). Although these approaches
have limits in terms of accuracy, sensitivity, and specificity, they have proven successful in
the early detection of cardiovascular disorders as a method of early prediagnosis. With the
advancement of digital signal processing, big data, and artificial intelligence technology, we
now have a more powerful tool to re-examine the role of KS signals in disease prediagnosis.
To date, a large number of machine learning (ML) algorithms have been used to classify
non-stationary time series signals [10], with impressive results. However, traditional ML
approaches typically involve a large number of time-consuming preprocessing tasks, such
as noise reduction [11,12], segmentation [13,14], and feature extraction [15]. Furthermore,
the ML algorithm is heavily reliant on the accuracy of feature selection, and different feature
sets have a significant impact on classification results. Deep convolutional neural (CNN)
network avoids many of the problems associated with traditional ML, solves the problem
of signal feature selection, and greatly improves the classifier’s classification accuracy [16].
The CNN algorithm has become increasingly significant in processing non-stationary time
series data as people’s understanding of the CNN network has deepened [17,18].

In recent decades, heart sound (HS) [19,20], electrocardiograms (ECG) [21], and cardiac
interbeat interval (RR interval) [22] have gradually attracted people’s attention due to the
benefits of convenience, non-invasion, and simple promotion [23]. Many scholars have
developed a variety of ML and deep-learning computer-aided diagnosis systems for heart
disease based on these signals [24,25]. These systems assist researchers in identifying key
factors from large amounts of tedious data, reducing the burden on doctors and medical
staff significantly. However, the popularity of the heart disease prediagnosis system in
communities and families remains inadequate. According to some surveys, most people
do not prioritize the early prevention of heart disease due to a lack of knowledge and
attention [26].

A common method of blood pressure monitoring, the KS-based blood pressure test is
widely recognized and expertly performed. KS is a group of short and rapid pulse sounds
produced by brachial artery blood flow during the process of overcoming cuff pressure,
which is closely related to brachial artery vibration and blood turbulence [27]. KS is only a
pulse signal in comparison to heart sound, but its transient characteristics are obvious, and
signal strength and characteristics are highly related to time and cuff pressure, posing some
challenges to KS signal processing and analysis. However, if heart disease prediagnosis
can be completed concurrently with blood pressure monitoring, it will improve many
problems in current heart disease prevention and increase the likelihood of early detection
of heart disease.

The primary objective of this study is to test whether we can develop a simple, non-
invasive heart disease prediagnosis system for ordinary people to achieve a broader range
of community and family promotion. Therefore, we reintroduce this traditional, minor
source of concern: KS. It has a wide range of applications and a high penetration rate, and
most people are very familiar with the blood pressure detection process, which simplifies
KS signal acquisition and increases the popularity of related detection systems.

This paper proposes an innovative method for the prediagnosis of patients with HF
using a DL network and KS. We extracted the continuous wavelet transform (CWT) and
Mel Frequency Cepstrum Coefficient (MFCC) features of KS and sent the two feature maps
to four common DL networks for training and classification, including AlexNet, VGG-19,
ResNet50, and Xception. To confirm the best analysis model, the performance of each
model is evaluated using accuracy (Acc), specificity (Sp), sensitivity (Se), AUC criteria, and
time consumption (Tc). The contributions in this paper may be summarized as follows:
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• An innovative method for the prediagnosis of HF based on KS and DL networks has
been proposed, analyzed, and validated in four types of DL networks.

• The impact of signal segmentation and feature extraction methods on KS-based HF
prediagnosis is thoroughly investigated in this paper.

• The pre-trained neural network model is transferred to the KS-based HF prediagnosis
task, which improved the model’s training efficiency and ensured the reliability of this
paper’s conclusion.

The structure of this paper is as follows: Section 2 discusses related work in cardio-
vascular disease research; Section 3 describes the analysis method and materials used in
this article; Section 4 describes the performance of our method in the prediagnosis of HF;
Section 5 delves deeply into the experimental process and outcomes; and Section 6 presents
the conclusions and future work.

2. Related Works

Unsteady time series signal noise reduction has long been a hot research topic, Mondal
An et al. [28] proposed and demonstrated a reliable and robust HS denoising method
based on wavelet packet transform (WPT) and SVD. Deng S W et al. [29] proposed an
adaptive denoising algorithm that does not require a prior definition of the basis function,
outperforming the traditional wavelet method in low noise levels. Lopac N et al. [30]
proposed a noisy non-stationary time series signal classification method that combined deep
CNN architectures with Cohen’s class time-frequency representations (TFRs), resulting in
higher performance index values and better classification performance.

With the continuous advancement of signal processing technology, ML and DL al-
gorithms [31] for early diagnosis of heart disease have been developed in-depth. No-
man F et al. [32] proposed the Markov-switching autoregressive with switched linear
dynamic systems (MSAR-SLDS) algorithm, which achieved a classification accuracy of
86.1%. Nogueira D M et al. [33] improved the automatic classification of heart disease
by combining time-domain and frequency-domain features, and achieved an accuracy of
about 83.22%. Potes C et al. [34] used the AdaBoost-abstain classifier and CNN method to
achieve 86.02% classification accuracy in PhysioNet/Computing in Computing Challenge
2016. Rubin J et al. [35] used image deep neural networks to classify HS and achieved an
84% classification accuracy. Using only raw data as input, Zhang W et al. [36] proposed a
novel method for detecting abnormal HS without segmentation and achieved an analysis
accuracy of 94.84%. He Y et al. [37] used the U-NET network to segment and classify HS,
achieving a classification accuracy of 99.1%. Gjoreski M et al. [38] used a combination
of machine learning and DL approaches to achieve a classification accuracy of 92.9% for
HF patients.

Machine learning methods have received little attention in the field of KS research.
The majority of the work is devoted to traditional statistical analysis techniques. Gosse
P et al. [39] invented a device based on QKD interval parameters to investigate the effect of
blood pressure on arteriosclerosis and discovered a significant correlation between QKD
slope and left ventricular mass. Constans J et al. [40] used univariate and multivariate anal-
yses to demonstrate the efficacy of QKD in diagnosing atherosclerosis. Gosse P et al. [41]
discovered that the equivalent KS interval (QKDh) was important in predicting cardiovas-
cular complications and major events. El Tahlawi M et al. [42] used statistical analysis to
show a significant positive correlation between oscillatory gap (OG) and coronary artery
disease. Yamamoto T et al. [43] believed that the severity of coronary atherosclerosis was
related to the difference in systolic blood pressure. Jia S et al. [44] demonstrated that there
is a certain proportional relationship between brachial artery blood flow and cardiac output
(about 1.23%), which provides a good foundation for our future work.
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3. Materials and Methods
3.1. System Overview

The overall structure of this paper is depicted in Figure 1. The KS data were collected by
the medical team of the Department of Cardiology, the fourth people’s Hospital connected
with Zhejiang University, using a 3M Littmann 3200 electronic stethoscope with a sampling
frequency of 480 kHz. After data cleaning, all KS signals were downsampled to 4 kHz.
We denoised the downsampled KS signals using the Wiener filtering approach to remove
friction noise, ambient noise, electromagnetic noise, and human breath sounds.
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Figure 1. The overall structure of this paper.

The signal segmentation work refers to the heart sound segmentation algorithm
combined with the Shannon energy envelope algorithm, signal locating, and segmentation
method. KS locationing, unlike heart sounds, does not necessitate a fine distinction of
effective signals; however, there will be over-localization during the positioning process,
and the positioning results must be re-validated.

To compare the effect of KS signal segmentation on HF prediagnosis, we extracted
CWT and MFCC features from segmented and unsegmented KS signals. The following
datasets were obtained: the segmented-based CWT (ST-CWT) data set, the segmented-
based MFCC (ST-MFCC) data set, the unsegmented-based CWT (UST-CWT) data set, and
the unsegmented-based MFCC (UST-MFCC) data set. In CWT feature extraction, the
Morse mother wavelet was employed. When performing MFCC feature extraction, 26 Mel
filters were used, the frame length was set to 512, and the frame shift was set to 256; the
obtained CWT and MFCC coefficients were converted into 224 × 224 images. After image
augmentation, they were sent to the convolutional neural network for classification and
performance evaluation.

3.2. Database Acquisition

This work was completed by the medical team of the Department of Cardiology,
the fourth people’s Hospital affiliated with Zhejiang University. All volunteers’ heart
conditions were evaluated in accordance with the ESC 2021 Guidelines [45]. Only HF
patients with a left ventricular ejection fraction (LVEF) of less than 50% and healthy people
with no cardiovascular disease or other underlying diseases were chosen as volunteers for
this study. Each volunteer was thoroughly examined by experienced cardiologists prior to
the test to ensure the sample’s reliability.

As shown in Table 1, a total of 365 samples were collected, including 116 healthy
people and 249 HF patients. The average age of the healthy subjects was 42 ± 22 years old,
the average body mass index (BMI) was 24.8 ± 2.1, the average LVEF was 65 ± 7.5%, the
average systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 111 ± 15
and 73 ± 10 mm Hg, respectively; The patients’ average age was 61 ±17, their average
BMI was 24.5 ± 3.2, their average LVEF was 40 ± 6.83%, and their average SBP and DBP



Appl. Sci. 2022, 12, 10322 5 of 19

were 129 ± 35 and 77 ± 20 mm Hg, respectively. NT-proBNP levels in selected patients
ranged from 513 to 11,950 pg/mL, while NT-proBNP levels in healthy people were less
than 125 pg/mL.

Table 1. Subjects’ information.

Subjects Female Ratio
%

Ages
Years

BMI
Kg/m2

LVEF
%

SBP
mm Hg

DBP
mm Hg

NT-proBNP
pg/mL

Numbers
-

Healthy 50 42 ± 22 24.8 ± 2.1 65 ± 7.5 111 ± 15 73 ± 10 513~11,950 116

HF patients 40 61 ± 17 24.5 ± 3.2 40 ± 6.83 129 ± 35 77 ± 20 <125 249

Note: SBP-systolic blood pressure, DBP-diastolic blood pressure, BMI-body mass index, LVEF-left ventricular
ejection fraction, NT-proBNP-N-terminal pro-B-type natriuretic peptide.

When volunteers arrived at the echo lab, we advised them to sit for 10 min prior to
the test in order to be as emotionally stable as possible, and then we took measurements in
a temperature-controlled room (23–25 ◦C) [46]. The overall left ventricular systolic function
of each patient was evaluated by two professional cardiac ultrasound technicians using
a PHILIPS ultrasound instrument based on the patient’s clinical status and established
clinical guidelines [47]. We measured the left ventricular volume using the biplane method
(improved Simpson) [48]. The corresponding LVEF and cardiac output was generated
automatically by PHILIPS ultrasound machines.

The audio collection equipment was a 3M Littman 3200 electronic stethoscope (480 kHz
effective sampling frequency), which has a powerful environmental noise suppression
capability that ensures the capture of essential sounds while reducing background noise by
85%. As shown in Figure 2, the stethoscope was placed directly above the brachial artery
during the test to eliminate the influence of other interference factors on the test results [49].
The stethoscope probe was placed about 5 cm from the lower edge of the cuff. According
to the blood pressure detection procedure, the cuff was pressurized to 180 mm Hg, and the
measurement began with the cuff step-down until the last KS pulse disappeared. The test
duration ranged from 14 to 25 s. To ensure the consistency of the test results, each volunteer
was measured three times. After the test, the data was transferred to the workstation via
mobile storage media or Bluetooth for analysis and processing.
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Figure 2. KS data acquisition process diagram.

It should be noted that the current study described in this paper only collected infor-
mation on the hospitalization status of consecutively diagnosed patients with heart failure;
the patient’s course and the impact of pharmacological therapy on the prediagnosis are
not considered. Furthermore, the impact of diabetes, hypertension, coronary heart disease,
renal failure, anemia, and other comorbidities of HF patients on HF pre-diagnosis results,
as well as the impact of separate body weight and breast analysis on KS records based on
BMI and gender, are very important. So far, we have not paid attention to these issues,
which is a limitation of our current dataset.
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All subjects signed the informed consent form after fully understanding the issues at hand
in this test. The relevant work was approved by Zhejiang University’s Ethics Committee.

3.3. Data Processing

To investigate the impact of signal segmentation on classification results, the features of
segmented and non-segmented signals are extracted. The HS segmentation method is used
for KS segmentation, but unlike HS, KS is a group of pulse signals, there are no obvious
S1 or S2 characteristics, and KS has a period of silence during the acquisition process. In
signal segmentation, we focus on the characteristics of KS signals in the audible range of
the human ear, according to the basic principle of KS blood pressure detection [50]. We
assumed that the silence period had no effect on HF prediagnosis and thus was considered
an invalid sound in the KS segmentation. For non-segmented KS signals, only noise
reduction and resampling were used to retain as much information as possible from the
original data.

3.3.1. Wiener Filtering

The primary objective of the Wiener filter is to reduce the error between the signal’s
true value and the predicted result. The Wiener filter’s basic operation is shown in Figure 3.
The previous signal is 0.025 times the length of the KS signal, the window length is set to
80 ms, and the shift percentage is set to 60%.
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Where y(n) is the input signal, s′(n) is the output signal, s(n) is a pure speech signal,
and d(n) is a noise signal, as in the figure above, then the filter formula will be as follows:

s′(n) = y(n) · hn =
M−1

∑
m=1

y(n−m) · hm (1)

where, hm is the filter coefficient and M is the number of filter taps. The system’s filter
coefficient can be calculated by minimizing the error:

e(n) = s(n)− s′(n) (2)

3.3.2. Shannon Envelope

Compared with other segmentation techniques, the envelope method offers the bene-
fits of convenient operation and high resilience. The Shannon energy envelope calculation
technique has been widely employed in HS research, due to its improved sensitivity and
specificity [51]. The second-order Shannon envelope formula is as follows [52]:

Ej = −
1
N

N

∑
i=1

Z2
i × log Z2

i (3)
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where, N is the moving window length in samples, and Zi is the normalized segmented
signal, as given in Formula (4):

Zi = xi/max|xi| (4)

The length of the segmented signal is set to 40 ms in this computation, and the length of
the overlapping window is set to 50%. As shown in Formula (5), the normalizing procedure
is utilized to reduce the detection’s reliance on signal quality. After normalization is
complete, all negative Shannon energy values are adjusted to 0, yielding a non-negative
envelope signal. Figure 4B depicts the Shannon energy envelope effect diagram.

Pj =
Ej −mean

(
Ej
)

std
(
Ej
) (5)
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Figure 4. KS segmentation and location results: (A) de-noised KS signal; (B) Shannon envelope of the
KS signal; (C) segmentation results of Shannon envelope; (D) segmentation results for KS. NOTE:
The blue curve represents the KS signal’s time domain signal, while the red curve represents the KS
signal’s Shannon envelope. B represents the start of KS, which is the same as the * added to the line,
and E represents the end of KS, which is the same as the ◦ added to the line.

3.3.3. Location and Segmentation

Using the peak value as a benchmark, we determined the effective signal in KS
segmentation; however, there are usually several peaks in a KS pulse signal, which may
result in over-location. Furthermore, noise in the measurement procedure impedes the
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identification of effective signals. To reduce over-location and interference signals, anchor
points with intervals of less than 100 ms and greater than 2000 ms were eliminated. The
calibrated location point can be used for KS pulse signal segmentation and reorganization.
Figure 4C,D show the results of KS signal localization and segmentation.

3.4. Feature Graph Generation

Because most CNN network architecture only supports two-dimensional signal input,
we must convert one-dimensional raw data into two-dimensional image data. In this paper,
CWT time-frequency analysis technology and MFCC feature extraction technology are
used to transform raw data into 2D heat map.

3.4.1. CWT Time-Frequency Characteristics

CWT is an effective method for analyzing the frequency-time relationship [53,54].
A wavelet time-frequency scaling map can help to identify the signal’s low-frequency
characteristics and instantaneous components. To obtain the CWT coefficient [55], we
constructed a CWT filter with the same parameters for each KS signal; the CWT filter
banks use analytic Morse (3, 60) wavelets, and 48 wavelet bandpass filters are set in
each octave. L1 standardization will be used in the CWT calculation to ensure that the
constant amplitude oscillation components at different scales have the same intensity in
the continuous wavelet transform.

After the wavelet transform is completed, each set of KS will generate a wavelet
coefficient matrix of approximately (600 × 42,000). A set of standardized matrices was
obtained by performing amplitude extraction on the wavelet coefficient matrix and scaling
it to (0, 1); the normalized matrix was then converted into an uint8 matrix between (0–255).
Based on this uint8 matrix, an image matrix in RGB format is generated and saved as a
224 × 224 image.

3.4.2. Mel Frequency Cepstrum Coefficient

Mel frequency is more suitable for simulating human auditory behavior than other
audio-processing methods, and it is widely used in the field of human voice (speech
recognition, speaker recognition) [56]. The following steps are involved in obtaining
the Mel frequency cepstrum coefficient: pre-emphasis, framing, windowing, fast Fourier
transform, Mel filter banks, and discrete cosine transform [33]. The formula for converting
an ordinary frequency to a Mel frequency is as follows [57]:

mel( f ) = 2595× log10(1 + f /700) (6)

The discrete cosine transform is used to convert the logarithmic Mel spectrum back to
the time domain, and the result is known as MFCC, as shown in Formula (7).

MFCC(n1) =
M

∑
m=1

log[E(m, k)] · cos
(
(m−0.5)

M
· n1 · π

)
, n1= 1, 2, · · · , L (7)

where, M is the number of filters, n1 is the order, and E(m, k) is the average energy of the
kth frequency band.

The MFCC feature of the KS signal is extracted using 26 Mel filters, the frame length is
set to 256, and the frame shift is set to 128; the signal is framed using the Hamming window
function W(n) to avoid sidelobe leakage [58]. The calculated MFCC coefficient matrix
(167 × 26) is converted to the RGB format matrix and saved as an image of 224 × 224 using
the same processing method as the CWT coefficient matrix.

3.5. Deep Learning (DL) Network

Hinton et al. [59] proposed an unsupervised greedy layer-by-layer training method
and a supervised back-propagation algorithm based on deep belief networks (DBN) to solve
the problem of gradient disappearance. The accuracy and speed of DL algorithms were
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consequently greatly improved by AlexNet, which was proposed by Krizhevsky et al. [60]
Their work has greatly increased academic interest in deep neural networks, and many
deep neural network algorithms have been proposed. In this paper, some commonly used
neural network structures such as AlexNet, VGG19, ResNet50, and Xception are introduced
to explore the application of DL algorithms in KS-based HF prediagnosis.

3.5.1. AlexNet

AlexNet is a deep neural network structure that includes a convolution layer, a non-
linear layer, a pooling layer, and a dropout layer [60]. The addition of nonlinear layers,
pooling layers, and dropout layers maximizes the accuracy and generalization ability of
the convolution network. The AlexNet network structure is depicted in Figure 5a below.
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3.5.2. VGG19

As shown in Figure 5b, the VGG19 network is made up of 16 convolution layers and
3 full connection layers. The 3 × 3 matrix is widely used in the network to replace the
11 × 11 matrix in AlexNet to reduce the computing scale caused by network depth increase.
The VGG19 network increases the depth of the network, and the networks of each layer
are stacked on top of each other, resulting in more calculation parameters and a slower
calculation speed. However, as the first scheme to expand the scale of CNN, VGG19 can
achieve better accuracy in most tasks, and it is a network structure that has been widely
referenced [61].

3.5.3. ResNet

With the deepening of the network structure, it was discovered that the simple su-
perposition of the convolution layer and pooled layer cannot effectively improve network
performance, but instead led to network degradation and other problems. The residual
network proposed by Kaiming et al. [62] solved this problem and greatly encouraged the
use of DL networks. Resnet reduces the number of network parameters by introducing
skip or residual connections and allows for further network expansion by simply repeating
VGG blocks. The Resnet50 network will be used in this article, and its structure is depicted
in Figure 6 below.
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3.5.4. Xception

Google’s Xception is yet another improvement to Inception-v3. As shown in Figure 7,
it employs a 36-layer convolution neural network structure, with the core idea being to
use depth separable convolution to reduce network parameters, allowing it to achieve
relatively high network accuracy with fewer parameters [63]. Depth separable convolu-
tion includes spatial convolution (3 × 3) and dot convolution (1 × 1). Simultaneously,
Xception introduces the residual network structure to improve the network’s editability
and efficiency.
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3.5.5. Data Augmentation

Deep neural networks are data-greedy learning algorithms, which means that the net-
work’s training effect is proportional to the size of the data. Data augmentation technology
is an important technical support for neural network algorithms, as it can increase the
number of samples and prevent the algorithm from overfitting [64]. In our experiments,
we applied the following augmentation strategies to the original feature image.

Flipping: The patient’s and healthy person’s feature images are flipped 180 degrees
horizontally.

Add Gaussian noise: The feature maps of patients and healthy people are augmented
with Gaussian noise. The variance of Gaussian noise is set at 0.02 and the mean value is set
at 0.2.

Contrast enhancement: During the patient’s feature map processing, we generated
enhanced images by linear mapping of color values greater than 0.3 × 255. In the feature
image processing of healthy people, we performed three types of contrast enhancement:
the first is to set the color values of less than 0.3 × 255 to 0, and the enhanced image is
generated by linear mapping; the second is to generate the image by nonlinear mapping
of the original image, with the nonlinear coefficient gamma = 0.6. The third step is to
non-linearly map the 0.3 × 255–255 color value of the original image into the 0.3 × 255–255
color image, gamma = 0.9.

After data augmentation, the KS image feature set of HF patients increased threefold,
from 249 to 996; and the image feature set of healthy people increased fivefold, from 116
to 696.

3.5.6. Transfer Learning

Deep neural networks require a large amount of data to ensure model analysis accuracy
and resistance to overfitting. Unfortunately, most researchers struggle to collect enough
data during the data collection process, limiting the performance of DL models [65]. The
emergence of transfer learning lends strong support to the advancement of DL algorithms.
It allows the transfer of knowledge learned from a domain pattern to a new domain, and
performs classification [66]. The ImageNet database, which contains 14 million images
classified into 1000 categories, has been used to train our deep neural network pre-training
model. To match the classification task presented in this paper, we reduced the number
of fully connected layer outputs from 1000 to 2 and set the fully connected layer’s initial
weight and bias to 10.

3.6. Evaluation Metrics

To assess the performance of each neural network classifier, we use accuracy (Acc),
sensitivity (Se), specificity (Sp), area under curve (AUC), and time consumption (Tc). Acc,
Se, and Sp are crucial clinical parameters that serve as a reference for us when we evaluate
model performance. Acc is defined as the proportion of correctly classified samples to all
samples. Se represents the classifier’s ability to identify patients. Sp denotes the classifier’s
ability to identify healthy individuals. AUC is used to evaluate the model’s performance
with unbalanced data, which is one of our primary metrics for assessing model performance.
Tc is used to evaluate how much computer resources each neural network consumes.

Acc =
TP + TN

TP + FN + TN + FP
(8)

Se =
TP

TP + FN
(9)

Sp =
TN

TN + FP
(10)

where, TP is a true positive signal, FN is a false negative signal, TN is a true negative signal,
and FP is a false positive signal.
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4. Results

We obtained four datasets from the preprocessing and feature analysis of the KS
signal, which are the segmented-based CWT (ST-CWT) data set, the segmented-based
MFCC (ST-MFCC) data set, the unsegmented-based CWT (UST-CWT) data set, and the
unsegmented-based MFCC (UST-MFCC) data set. After data augmentation, each dataset
contained 996 healthy KS images and 696 patient KS images. The pre-trained AlexNet,
VGG19, ResNet50, and Xception networks are used for HF prediagnosis studies based on
the four data sets. Model validation was accomplished using a fivefold cross-validation
method, and model performance was measured using average Acc, Se, Sp, and Tc.

The model’s optimization function is SGDM in the calculation; because performance
across model structures is inconsistent, the learning rate, bachSize setting, and max epoch
were re-optimized and matched. Following our optimization, the parameters of each neural
network were as follows:

AlexNet: learning rate 2 × 10−4, bach size 128, and maximum epoch 20.
VGG19: learning rate 1 × 10−4, bach size 32, and maximum epoch 15.
ResNet50: learning rate 4 × 10−3, bachSize 64, and maximum epoch 10.
Xception: learning rate 5 × 10−4, bach size 32, and maximum epoch 15.
The computing resources are small workstations equipped with an Intel XEON Plat-

inum 8260L CPU and an NIVIDIA RTX4000 graphics card.
Table 2 shows a comparison of classification results for each neural network model on

the ST-CWT and ST-MFCC datasets. It can be seen that Xception had the best performance
in the ST-CWT datasets, with AUC, Acc, Se, and Sp of 0.979, 93.4%, 94.3%, and 92.2%,
respectively. It was followed by VGG19, with AUC (0.965), Acc (89.0%), Se (91.5%), and Sp
(85.5%). The ResNet50 came third, and its AUC, Acc, Se, and Sp were 0.962, 89.8%, 91.1%,
and 87.9%, respectively. AxleNet came last, with AUC (0.947), Acc (87.0%), Se (91.8%), and
Sp (80.2%). AlexNET, VGG19, ResNet50, and Xception had Tcs of 3 min, 9 min, 6 min, and
55 min, respectively.

Table 2. Performance of four types of neural networks in the ST-CWT datasets.

Classifier Acc (%) Se (%) Sp (%) AUC Tc (min)

AlexNet 87.0 91.8 80.2 0.947 3
VGG19 89.0 91.5 85.5 0.965 9

ResNet50 89.8 91.1 87.9 0.962 6
Xception 93.4 94.3 92.2 0.979 55

As shown in Table 3, when using the ST-MFCC datasets for HF prediagnosis, Xception
performed the best, with AUC (0.988), Acc (95.0%), Se (98.6%), and Sp (89.9%). It was
followed by Resnet50, with AUC (0.977), Acc (95.0%), Se (91.1%), and Sp (97.7%). The
VGG19 achieved AUC (0.976), Acc (93.0%), Se (94.8%), and Sp (90.5%), and AlexNet
obtained AUC (0.951), Acc (90.4%), Se (94.4%), and Sp (84.8%). The average Tc for AlexNET,
VGG19, ResNet50, and Xception was 3 min, 9 min, 6 min, and 55 min, respectively.

Table 3. Performance of four types of neural networks in the ST-MFCC datasets.

Classifier Acc (%) Se (%) Sp (%) AUC Tc (min)

AlexNet 90.4 94.4 84.8 0.951 3
VGG19 93.0 94.8 90.5 0.976 9

ResNet50 95.0 91.1 97.7 0.983 6
Xception 95.0 98.6 89.9 0.988 55

The ROC curve, which is based on the confusion matrix, is not only a comprehensive
index that reflects the continuous variables of sensitivity and specificity, but also an im-
portant reference for evaluating the prediction ability of the binary classification model.
Figure 8a shows the receiver operating characteristic (ROC) curves of the four neural
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networks when classifying HF using the ST-CWT and ST-MFCC data sets. When using the
ST-CWT dataset, the four classifiers ranked based on the ROC curve are Xception, VGG19,
ResNet50, and AlexNet, with AUC values of 0.979, 0.965, 0.962, and 0.947, respectively.
When the ST-MFCC dataset is used, the four classifiers are ranked in the following order:
Xception, ResNet50, VGG19, and AlexNet, with AUC values of 0.988, 0.983, 0.976, and
0.951, respectively.
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The effect of unsegmented KS signal characteristics on HF prediagnosis was investi-
gated. Tables 4 and 5 show the performance of the four neural networks on the UST-CWT
and UST-MFCC datasets. As shown in Table 4, when the UST-CWT dataset is used for
classification, Xception got AUC (0.979), Acc (94.3%), Se (95.7%), and Sp (92.4%). Resnet50
came in second, with an AUC of 0.974, Acc of 92.2%, Se of 90.5%, and Sp of 93.4%. The
AUC, Acc, Se, and Sp obtained by VGG19 were 0.968, 91.1%, 96.4%, and 83.6%, respectively,
and the AlexNet got AUC (0.966), Acc (90.9%), Se (94.9%), and Sp (85.2%). The average Tc
for each model was as follows: Xception (55 min), ResNet50 (6 min), VGG19 (9 min), and
AlexNet (3 min).

Table 4. Performance of four types of neural networks on the UST-CWT datasets.

Classifier Acc (%) Se (%) Sp (%) AUC Tc (min)

AlexNet 90.9 94.9 85.2 0.966 3
VGG19 91.1 96.4 83.6 0.968 9

ResNet50 92.2 90.5 93.4 0.974 6
Xception 94.3 95.7 92.4 0.979 55

Table 5. Performance of four types of neural networks in the UST-MFCC datasets.

Classifier Acc (%) Se (%) Sp (%) AUC Tc (min)

AlexNet 89.3 93.9 82.8 0.956 3
VGG19 93.0 97.5 86.5 0.979 9

ResNet50 95.4 92.0 97.8 0.988 6
Xception 96.0 97.5 93.8 0.989 55

Table 5 demonstrates that, when the UST-MFCC dataset is applied for HF prediagnosis,
Xception obtained AUC (0.989), Acc (96.0%), Se (97.5%), and Sp (93.8%). ResNet50 got
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AUC (0.988), Acc (95.4%), Se (92.0%), and Sp (97.8%). The classification performance of
VGG19 ranked third, with an AUC of 0.979, Acc of 93.0%, Se of 97.5%, and Sp of 86.5%.
The AUC, Acc, Se, and Sp obtained by AlexNet were 0.956, 89.3%, 93.9%, and 82.8%. The
average Tc for AlexNET, VGG19, ResNet50, and Xception was 3 min, 9 min, 6 min, and
55 min, respectively.

Figure 8b shows the ROC curves of four neural networks when classifying HF using
UST-CWT and UST-MFCC data sets. Using the UST-CWT dataset, the four classifiers
ranked as follows: Xception, ResNet50, VGG19, and AlexNet, with AUC values of 0.979,
0.974, 0.968, and 0.966, respectively. When the UST-MFCC dataset was used, the four
classifiers performed in the following order: Xception, ResNet50, VGG19, and AlexNet,
with AUC values of 0.989, 0.988, 0.979, and 0.956, respectively.

5. Discussion

The convenience and non-invasiveness of KS acquisition formed the foundation of
our work. On this basis, we employed a DL network to conduct HF prediagnosis research
with KS as the research object, which is a significant effort in the field of KS research.
Four feature sets were used to study the application of KS signal in HF prediagnosis in
detail, including the ST-CWT dataset, ST-MFCC dataset, UST-CWT dataset, and UST-MFCC
dataset. DL architectures AlexNet, VGG19, ResNet50, and Xception were used to classify
these four datasets. A fivefold cross-validation was used for each model validation, and the
performance of each DL classifier was evaluated using Acc, Se, Sp, and AUC. The effects
of KS signal segmentation and different feature extraction methods on HF prediagnosis
were investigated.

According to our research, the recognition effect of neural networks on MFCC fea-
tures is better than that of CWT features in the KS-based HF prediagnosis, as shown in
Tables 2 and 3. When the ST-CWT dataset was used, Xception achieved the highest AUC
and ACC of all classifiers (0.979 and 93.4%), followed by VGG19, which had an AUC of
0.965, and Acc of 89.0%. Using the ST-MFCC dataset, Xception achieved an AUC of 0.988,
and an Acc of 95.0%. ResNet50 got an AUC of 0.983 and an Acc of 95.0%. Simultaneously,
VGG19 and AlexNet performed significantly better in classification in the ST-MFCC dataset
than that in the ST-CWT dataset. When the unsegmented signal processing method was
used, the neural network classifier demonstrated the same trend in the CWT and MFCC
datasets, as shown in Tables 4 and 5. In the UST-MFCC dataset, Xception had an AUC of
0.989, and an Acc of 95.09%, while ResNet50 obtained an AUC of 0.988 and an Acc of 95.4%.
In the UST-CWT dataset, Xception’s AUC and ACC were reduced to 0.979, and 94.3%,
respectively; the AUC and ACC of ResNet50 were reduced to 0.974 and 92.2%, respectively.

The average Acc comparison of the classifiers on the four datasets is shown in Figure 9.
As we can see, the classification performance of the four classifiers in the unsegmented
CWT and the MFCC datasets is better than that obtained by the segmentation method.
Therefore, it is reasonable to conclude that although the silent period characteristics of KS
signals are very weak, they are significant components of KS, and this component has a
non-negligible effect in HF prediagnosis tasks. Based on the classification accuracy of the
four classifiers across all data sets, we find that Xception performs exceptionally well, and
its overall performance outperforms the other three classifiers. The ResNet50 network,
which exhibits outstanding classification performance on these four data sets, is likewise
regarded as a potent classifier in KS-based HF pre-diagnosis. Combining the ROC curve
comparison results in Figure 8, we believe that Xception and ResNet50 are two excellent
deep neural network algorithms in the KS-based HF prediagnosis task.
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Furthermore, we believe that, in addition to the AUC and ACC, the computational
scale and Tc are important parameters for evaluating the model’s performance. According
to the comparison of the four models (Tables 2–5), while Xception has the highest AUC and
ACC, it consumes significantly more computing time than the other three models, which is
obviously not conducive to the model’s deployment and promotion in portable devices. As
a result, we think that ResNet50 may be a better choice in terms of practical application.

Scholars have been widely concerned about the early diagnosis of HF, and many
researchers have made outstanding contributions to the early diagnosis of HF. These
research findings not only served as a useful reference for our work but also provided us
with a great deal of inspiration and motivation. As shown in Table 6, we chose a typical
acoustic-based HF prediagnosis algorithm and compared their results to our algorithm.
We can see that the accuracy of the proposed algorithm and the HS-based HF algorithm
is basically maintained at the same level, which means our efforts have yielded largely
positive results. The current results give us more confidence in continuing to work in
this area.

Table 6. Comparison of HF classification algorithms based on acoustics.

Authors Data Set Number of Subjects Method Performance

Zheng et al. (2015)
[67] Collected by HS acquisition system 88 healthy volunteers and 64

CHF patients LS-SVM
Acc 95.39%
Se 96.59%
Sp 93.75%

Potes et al. (2016)
[34] Physionet databases 2575 normal signals and 665

abnormal signals AdaBoost and CNN
Acc 86.0%
Se 94.2%
Sp 77.8%

Gjoreski et al.
(2020) [38]

six (A to F) PhysioNet Challenge
datasets & measured HS by

digital stethoscope

3153 signals from PhysioNet
Challenge datasets and 110

healthy people, 51 CHF
recorded by digital stethoscope

Machine-Learning and
end-to-end DeepLearning

Acc 92.9%
Se 82.3%
Sp 96.2%

Yang et al. (2021)
[68]

Acquired from the First Affiliated
Hospital of Chongqing Medical

University

41 healthy volunteers and 30
left ventricular diastolic

dysfunction patients

VGG-16, VGG-19,
ResNet-18, ResNet-50,

DenseNet-121, and
AlexNet

Acc 98.7%
Se 98.6%
Sp 98.8%

Zheng et al. (2022)
[69]

Dataset from First Affiliated
Hospital and the University-Town

Hospital of Chongqing Medical
University

51 healthy volunteers and 224
CHF patients LS-SVM

Acc 82%
Se 82.1%
Sp 95.5%

Our method
Dataset of measured KS from the

Fourth People’s Hospital of
Zhejiang University

116 healthy subjects and 249
CHF patients DeepLearning(DL)

Acc 96.0%
Se 97.5%
Sp 93.8%
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However, it should be noted that the work in this paper is an exploratory study, and
we also recognize that the KS-based HF prediagnosis algorithm is still in its infancy, with
many flaws in the construction of the KS database, the KS generation mechanism, and the
association mechanism between KS and HF, which will be the focus of our future research.

6. Conclusions

In this paper, we propose an innovative HF prediagnosis method to investigate the
use of the KS signal in the early diagnosis of HF. We investigated the effect of signal
segmentation algorithms and different signal features on HF prediagnosis by creating
ST-CWT, ST-MFCC, UST-CWT, and UST-MFCC datasets. Alexnet, VGG19, ResNet50, and
Xception were the four DL networks used for training and classification. All the networks
were validated using a fivefold cross-validation approach, and evaluated using the Acc, Se,
Sp, AUC and Tc.

According to our research, the deep neural network model performed better on
unsegmented datasets than that on segmented datasets. By comparing the differences
between the two data sets, we believe that the KS quiet period signal characteristics
discarded by signal segmentation is the main cause of this phenomenon. Our study
demonstrates that the KS silent period played a crucial role in KS-based HF prediagnosis,
although the human ear is not sensitive to that. Furthermore, in both segmented datasets
(ST-CWT, ST-MFCC) and unsegmented datasets (UST-CWT, UST-MFCC), the performance
of the neural network based on the MFCC feature outperforms the neural network based
on the CWT feature, illustrating the advantage of the MFCC feature extraction method
in the audio recognition field. Our research shows the potential of KS-based noninvasive
HF prediagnosis technology in early warning of HF potential risk groups and prognosis
monitoring of HF patients, implying that KS-based methods can be an important auxiliary
tool for HF detection. Reasonable signal processing, effective feature extraction, and
efficient DL network selection, in our opinion, are the keys to achieving these goals.

This is a preliminary study with a small sample size. In the future, we will conduct
more in-depth research on the mechanism of KS generation, the mechanism of correlation
between KS and HF, and the mechanism of correlation between drugs, basic diseases, and
KS. Prospective testing and blind verification in the test population will also be conducted.
Simultaneously, we will select an efficient DL model and perform optimization and large-
scale database verification based on the existing research foundation to achieve embedded
device migration and community promotion.
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