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Abstract: Since ETSI introduced the architectural framework of network function virtualization
(NFV), telecom operators have paid more attention to the synergy of NFV and cloud computing.
With the integration of the NFV cloud platform, telecom operators decouple network functions
from the dedicated hardware and run virtualized network functions (VNFs) on the cloud. However,
virtualization degrades the performance of VNF, resulting in violating the performance requirements
of the telecom industry. Most of the existing works were not conducted in a cloud computing
environment, and fewer studies focused on the usage of enhanced platform awareness (EPA) features.
Furthermore, few works analyze the performance of the service function chain on a practical cloud.
This paper facilitates the OpenStack cloud with different EPA features to investigate the performance
effects of VNFs on the cloud. A comprehensive test framework is proposed to evaluate the verification
of functionality, performance, and application testing. Empirical results show that the cloud system
under test fulfills the requirements of service level agreement in Rally Sanity testcases. The throughput
of OVS-DPDK is up to 8.2 times as high as that of OVS in the performance test. Meanwhile, the
hardware-assisted solution, SR-IOV, achieves the throughput at near the line rate in the end-to-end
scenario. For the application test, the successful call rate for the vIMS service is improved by up to
14% while applying the EPA features on the cloud.

Keywords: enhanced platform awareness; test framework; cloud computing; network function
virtualization; performance evaluation

1. Introduction

In 2012, the European Telecommunications Standards Institute (ETSI) launched an
industry working group to comply with the Network Function Virtualization (NFV) frame-
work and standardization [1]. The primary goal of NFV technologies is to decouple network
functions from the dedicated hardware to be run on commodity servers as software. With
the help of NFV, telecom operators exploit commercial off-the-shelf servers and virtualiza-
tion technologies to provide a variety of network functions. Therefore, telecom operators
reduce capital expenditure while improving flexibility from the benefits of NFV technolo-
gies [2]. Cloud computing also provides scalability and availability for NFV services to
be more reliable in business operations [3,4]. These advantages are attractive for telecom
operators towards NFV on the cloud.

OpenStack, an open-source cloud operation system, plays a critical role in network
function virtualization infrastructure (NFVI) and virtualized infrastructure managers
(VIM) [5] of the ETSI framework. Telecom operators build an on-premises cloud on
multiple nodes and deploy virtual network functions (VNFs) on top of the NFVI. However,
the network functions in virtual machines (VMs) require a hypervisor or virtual machine
manager (VMM) to mediate available virtual and physical resources. This extra layer brings
challenges to the performance degradation of VNFs [6] on a cloud system. The performance
on computation and networking is dramatically reduced without any improvement.

Many works attempt to improve the efficiency of virtual resources on the cloud
from different perspectives. The workflow scheduling problem is addressed in [7–9] to
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improve the workload execution on the cloud system. The authors of [10–14] focus on VM
placement to improve the power consumption for the cloud system. Some works [15–19]
further take the load-balancing issue into consideration for better resource utilization in
VNF placement. Previous works have proposed effective mechanisms and algorithms to
improve the resource management of VNF on the cloud. However, rare works emphasize
performance enhancement techniques from scratch for system virtualization.

Intel Corp. devotes massive efforts to enhanced platform awareness (EPA) [20] for
virtualization technologies. The bottlenecks of computation performance are enhanced by
CPU pinning for allocating dedicated CPU cores to a virtual machine (VM), and hugepages
for improving effective memory access. A practical cloud system with enhanced tech-
nologies for computation has been preliminarily verified in [21]. For the enhancement
of network performance, Open vSwitch with DPDK (OVS-DPDK) and single root I/O
virtualization (SR-IOV) are two effective technologies to overcome the communication bot-
tleneck. However, most of the previous works mainly focus on the perspective of network
devices [22–25] rather than a comprehensive verification of the overall cloud system under
test (SUT).

In addition, a telecom service usually requires chaining of network functions, named
the service function chain (SFC) [26], to serve the NFV application. The length of a service
chain has an impact on network performance. When the path of a service chain contains
only one VNF on the cloud system, the packets are sent from a traffic generator to the target
VNF via a physical network interface controller (NIC). The packets are then transmitted
back to the traffic generator through a physical top-of-rack (TOR) switch. This communica-
tion scenario is called a physical–virtual–physical (PVP) flow. If the SFC is compounded
by two VNFs, the packets are sent from a traffic generator to one VNF and forwarded to
another VNF before transmitting back to the traffic generator. This scenario is a typical
physical–virtual–virtual–physical (PVVP) flow. When the service path becomes longer, the
workload of components in this path is heavier. Thus, the performance is deteriorated, but
less attention has been paid to this in the literature.

Considering the telecom service as the use case, the telecom operators replace the pro-
prietary hardware with commodity servers for hosting VNFs for the SFC. Before deploying
telecom services on the cloud, the operator has to verify and validate if the cloud system
is adequate for the carrier-grade services. According to the ETSI testing specification [27],
both functionality and performance tests are the basis of the verification process on the NFV
cloud. The functional tests aim to check if the system works correctly. After verifying that
the system is operational, evaluating the performance of the system is also necessary. In
many use cases, network performance is a critical concern in deploying and orchestrating
cloud services. However, the performance is degraded due to the virtualization overhead.
Telecom operators need a systematic approach to verify the network performance with
different enhanced technologies of the cloud system.

In this regard, this paper investigates the enhancement of network techniques to
mitigate the deterioration in a practical cloud system. A comprehensive testing framework
is proposed to evaluate the cloud system with different EPA technologies in three areas,
which are functionality, performance, and application. The functionality tests focus on
instantiating VMs, building a tenant network, and the connectivity of VMs. In performance
tests, both PVP and PVVP scenarios are considered to estimate the network throughputs.
As for the application test, this paper not only deploys a virtual IP multimedia subsystem
(vIMS) on the cloud, but also evaluates the performance of the vIMS via a session initiation
protocol (SIP) stress benchmark. The performance metric of successful call rate is measured
for the vIMS test. Empirical results show that the throughput of the PVP test performs near
the line rate when applying the SR-IOV acceleration, while OVS-DPDK approaches 90%
of the line rate when packet size is 1518. Increasing the number of lcores and pmd-cpus
further enhances the performance by about 50% in OVS-DPDK. In addition, the successful
call rates in vIMS validations with different techniques are similar in lower call rates. When
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the call rate exceeds 100, the improvement brought by OVS-DPDK is up to 14%. To sum
up, the contributions of this paper are:

• Proposing a comprehensive testing framework to investigate a practical cloud system
on different areas of performance effects.

• Conducting performance comparisons between the generic and the enhanced cloud
system for NFV.

• Considering both PVP and PVVP packet paths for different SFC scenarios.
• Deploying the vIMS application on the enhanced cloud system to show effective performance.

The rest of this paper is organized as follows. Section 2 presents the background and
discusses related works to support our research. The comprehensive testing framework
and the test methodologies are proposed in Section 3. Section 4 introduces the experiments
and results. Finally, Section 5 concludes this paper with summarizing remarks.

2. Background and Related Works

This section first introduces the background of enhancement technologies and then dis-
cusses the most relevant works to improve the performance of virtualization on the cloud.

2.1. Background

Regarding the virtualization of network functions, VM and container are two common
technologies for running applications on a shared resource. The VM shares the underlying
hardware via the VMM. Each VM is running with a guest operating system and dependen-
cies of the application. On the other hand, the container simply packages the user program
and corresponding dependencies to run the application. Multiple containers on the same
host share the same application runtime environment of an operating system. Therefore,
the container consumes less warmup time and fewer system resources [28]. However,
running a container relies on sharing the host operating system, which may lead the system
to a security issue. Most of the cloud service providers tend to provide the container service
based on a VM for better isolation and easy management in the data center. Tackling the
performance degradation of a VM is a pressing matter. Accordingly, this paper takes the
VNF as an example to verify the proposed framework.

Regarding the enhanced technologies for the computation, EPA features involve
typical mechanisms in the operating system such as CPU isolation, CPU pinning, and
hugepages. The resource allocation scheme with a nonuniform memory access (NUMA)
awarded topology is also considered as the performance impact in cloud computing. As
for network improvement, many technologies are proposed for providing high-speed
networking in the literature. This paper takes Open vSwitch (OVS), OVS-DPDK, and
SR-IOV as examples for accelerating the packet processing in the cloud system. The basic
concept of each enhanced technology adopted in this paper is introduced as follows.

• CPU Isolation

When the system administrator sets the isolated CPU mask, the system cannot assign
regular jobs to the isolated CPU cores. In other words, each isolated CPU core remains idle
if the system does not dispatch any specific process to the isolated CPU core. Therefore,
the system administrator must set the isolated CPU properly; otherwise, the setting wastes
computing resources for the system.

• CPU Pinning

CPU pinning enables the system to assign a job to specific CPU cores. In general,
CPU isolation and CPU pinning are complementary. CPU isolation reserves a set of CPU
resources, while CPU pinning allows the specific process to acquire the dedicated resources.
If the system administrator enables these two settings, the VM process does not have to
compete for CPU resources with others [29]. Accordingly, eliminating the CPU resource
competition keeps the VM process away from the context switch overhead.
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• Nonuniform Memory Access

NUMA is a memory architecture in a multi-CPU computer system. Figure 1 depicts a
host consisting of two NUMA nodes. Each NUMA node has its CPU cores and memory
resources. Memory access is faster if CPU cores access the memory on the same NUMA
node. However, if CPU cores have to access the memory from another NUMA node, the
crossing Quick Path Interconnect (QPI) access results in increasing access latency.
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• Hugepage

The page table in the memory stores the translation between logical and physical
addresses. The system locates the memory address according to the page number and
corresponding frame number in the page table. Accessing a particular memory address
requires several mappings to find the accurate translation. A translation lookaside buffer
(TLB) is responsible for speeding up the effective memory access via caching the recent
address translation. The more the cache hits, the less access time there is for the memory
addressing. Hugepage technology enables a large page size to provide more memory space
for data access [30]. Therefore, the number of TLB misses and page faults is decreased, so
as to accelerate the effective memory access.

• OVS

In the past, VMs did not share a virtio ring with the user space process in a host [31], i.e.,
vswitch. The packet processing had to be handled in the kernel space. Figure 2 illustrates
the network architecture of OVS. ovs-vswitchd is used to set up the OVS data path. The
configuration of ovs-vswitchd is stored in ovsdb. Therefore, ovs-vswitchd connects to the
ovsdb-server to retrieve the configuration. When a cloud system adopts the OVS network,
the OVS kernel module looks up the flow table when a packet is received. If the flow
matches a network rule, the packet is processed according to the actions associated with the
flow. When the packet does not match any rule in the flow table, the OVS kernel module
queues the packet to the user space. This procedure introduces context switches and results
in slowing down the packet processing.
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• OVS-DPDK

The data plane development kit (DPDK) aims to accelerate the packet processing. The
network architecture of OVS-DPDK is shown in Figure 3. With the help of vhost-user, VMs
share the memory space with user space processes in the host. Sharing memory between
two processes is implemented by a file descriptor. The file descriptor can be accessed by the
vhost process (i.e., virtual switch). The NIC driver, such as UIO or VFIO [32], is responsible
for OVS-DPDK to handle the user space interrupt. Therefore, OVS-DPDK can process the
packets in user space and pass them through the kernel. The kernel bypass eliminates
the overhead of system calls and context switches. OVS-DPDK also provides a poll mode
driver (PMD) [33] to poll the network queue. The dedicated CPU cores assigned to PMD
are helpful to alleviate the interrupt overhead.
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• SR-IOV

With the help of the input–output memory management unit (IOMMU), the VM can
access Peripheral Component Interconnect (PCI) devices directly, called PCI passthrough.
Direct memory access (DMA) remapping [34] allows the VM access to physical memory
via the virtual address. When a VM accesses the network device, the interrupt remapping
is triggered to send an interrupt to the VM instead of the host. With DMA and interrupt
remapping, the network interface is assigned directly to a VM so that the VMM will not
affect the performance.

In this regard, accessing the NIC directly to a VM can significantly improve the
network performance. However, allocating a dedicated physical NIC for each VM is too
expensive. The SR-IOV is proposed to tackle this problem. As shown in Figure 4, a NIC
with SR-IOV support can provide physical function (PF) and virtual function (VF) [35].
The PF has all the functions of the NIC and is responsible for managing the VFs. The
VF is a simplified PCIe function and allows the VM to access the physical NIC directly.
Accordingly, the network performance of a VM can be improved in the cloud system.
However, SR-IOV is a hardware-assisted technique, and it is not easy to live-migrate a VM
with an SR-IOV VF. Procuring the specific NIC is also necessary while adopting the SR-IOV,
so as to increase the cost of capital expenditure and management efforts for the cloud.
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2.2. Related Works

Although NFV realizes flexible deployment, virtualization technology introduces the
performance overhead. Rojas-Cessa et al. [36] estimated the performance of virtualized
and nonvirtualized routers to show the degradation caused by virtualization. Their work
revealed the performance impact of the number of cores and different packet sizes. The
experimental results also demonstrate the benefit of using multicores. On the other hand,
the performance degradation of traditional Linux I/O for high-speed networking has been
discussed in previous works [37–39]. The main reasons are summarized as the long paths,
the frequent interrupts, and the repeated data replications. Therefore, researchers try to
reduce the duplication of packets between the physical NIC and the user space process.
Previous works focus on reducing or avoiding hardware interruptions after the physical
NIC receives packets. This paper attempts to investigate the enhanced technologies on
packet acceleration for a cloud system.
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In the past, the virtual switch ran as a user space process and could not share the
memory with VMs. Owing to this limitation, the virtual switch had to receive packets
from the kernel space. However, moving the packets between kernel space and user space
introduces too many context switches to deteriorate the performance of VMs. To relieve the
bottleneck, Virtual Open System Corp. designed the vhost-user for VM to share its memory
with a virtual switch. Paolino et al. [31] then proposed a virtual switch, named Snabbswitch,
and evaluated the performance of the virtual switch, such as OVS, OVS-DPDK, VFIO, and
SR-IOV. In that work, the authors considered the scenarios of one VM and two VMs, in
which each VM is enhanced with a 1G hugepage. However, only the process of Snabbswitch
is allocated with the dedicated CPU cores. In addition, the experiments in their work were
not conducted in a cloud system.

Pitaev et al. [40] compared the performance of three different I/O architectures: OVS-
DPDK, FD.io VPP, and SR-IOV. The experimental environment contains a host and a packet
generator. The target VM is deployed directly on the KVM hypervisor rather than a cloud
system. The results show that SR-IOV is better than OVS-DPDK or FD.io VPP in IPv4
forwarding and the SFC scenario. In addition, the limitation of OVS-DPDK or FD.io VPP is
that enough cores must be bound for PMD to maintain high throughputs. This constraint
also restricts the maximum number of available VMs. The container technique is becoming
more popular. G. Ara et al. [41] evaluated the network performance of various vswitches
such as Linux-bridge, OVS-DPDK, VPP, and SR-IOV in containers. The results demonstrate
that SR-IOV outperforms OVS-DPDK in terms of throughput.

R. Bonfiglia et al. [23] also tested the effects of OVS-DPDK and OVS on VMs and
containers. The throughputs of a VM and a container are similar when both are applied
to the OVS. In addition, the OVS-DPDK performs higher throughputs when compared to
the OVS. Kourtis, M. A. et al. [22] went further to compare the network performance of a
VNF with/without OVS-DPDK and SR-IOV. The authors used DPI as the VNF for testing.
The results demonstrate that the throughput of a VM with OVS-DPDK or SR-IOV is higher
than that of a VM without the OVS-DPDK or SR-IOV technique. Nevertheless, the previous
works were not conducted on a cloud system. This paper tends to conduct experiments on
a practical cloud system and verify the empirical results, which are rarely given attention.

The authors in [6,42] indicated that the VM in cloud computing has an issue of
performance degradation. F. Callegati [43] et al. compared the performance of the Linux
bridge and OVS in OpenStack. The authors found that the performance of the Linux
bridge is worse than that of OVS. Tsai, M. H. et al. [21] discussed the effect of enabling EPA
on a computing-intensive cloud system. They exploited CPU pinning and hugepages to
improve the computing capability of VMs in NFVI. The results show that the computing
performance of VMs could be enhanced by up to 7%. However, the performance of network
enhancement techniques was not further discussed in the previous work.

To sum up, this paper synthesizes the relevant works on experimental conditions as
shown in Table 1. The conditions include whether the enhanced techniques are applied
or not, and whether the experiments are conducted in a cloud system. This table helps
us find out where the discussion has been inadequate over the years. Based on the table,
hardware accelerator architectures such as SR-IOV are rarely introduced for the verification
on a cloud system. Even if the SR-IOV is adopted, the proposed experimental environment
is not designed for ETSI NFV framework. Furthermore, EPA technologies enhance the
performance of VNFs in either computing or networking. Previous work rarely considers
the corresponding technologies at the same time. Therefore, this paper considers the
OpenStack cloud as the system under test and attempts to assess the effect of EPA features
for the NFV on a practical cloud system.
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Table 1. Summary of related works.

Works Hugepage CPU
Pinning OVS OVS-

DPDK SR-IOV In Cloud

Tsai et al. [21] v v v

Kourtis et al. [22] v

Gallenmuller et al. [24] v

Kawashima et al. [25] v v v

Huang et al. [28] v v

Paolino et al. [31] v v v v

Shanmugalingam et al. [38] v v

Pitaev et al. [40] v v

Ara et al. [41] v v

Callegati et al. [43] v v

Ours v v v v v v

3. Methodology

This paper designs a comprehensive testing framework for the NFV cloud. The goal
is to verify the performance effects of a practical cloud system with different enhanced
technologies. This section first introduces the proposed framework and then discusses the
key factors of the network performance.

3.1. Overview of Testing Framework

Figure 5 illustrates an implementation of the proposed test framework in this paper.
This framework is aligned with the ETSI NFV framework and mainly contains NFVI, VIM,
VNFM, NFVO, and test host. NFVI is composed of physical servers in the cloud system. The
virtualization layer pools and extracts the physical resources into virtualized resources. The
virtualized resources are allocated and managed by VIM. In this paper, OpenStack plays
the role of VIM. The testing tools build the testing environment via OpenStack services.
Most testing tools are installed in the test host, which is independent of the nodes of a
cloud system. Therefore, the testing is triggered on the host and connected to OpenStack
services via the external network and a TOR switch. Only if the tools are authorized
with a credential file are the test processes then activated and verified on the OpenStack
system. According to the ETSI TST specification, the proposed framework considers a
complete cloud system under test. The verifications of the cloud SUT emphasize three
areas: functionality, performance, and application testing.
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3.1.1. Functionality Verification

In the functionality test, the verification focuses on testing the basic operations of a
cloud system. The main goal is to verify the core service operations in a cloud system via a
set of test tools. For example, the system under test in this paper is an OpenStack cloud. The
Functest [44] provides a set of test cases to verify core services for operating the OpenStack
cloud. If the services of OpenStack are active properly, the testing process further evaluates
the operating performance of each service, e.g., the turnaround time of each test case. This
performance evaluation checks if OpenStack services finish the specific operations in time.
If the operations break the time limits, the relevant services work incorrectly. This paper
applies Rally Sanity to check if the services fulfill the predefined SLA.

For the test cases in Functest, this paper adopts Healthcheck and Rally_Sanity to
test the primary functionalities of an OpenStack cloud system. In Healthcheck test suite,
Connection_check is used to check the connectivity of OpenStack Endpoints. Vping_ssh
tests whether the VM can be accessed via SSH from the external network. Vping_userdata
is used to verify if the VMs can communicate with each other through the internal network.
Rally_Sanity evaluates the operating performance of OpenStack services. The primary
services include Nova, Neutron, Cinder, Keystone, and so on. Nova is used to provide
computing instances. Neutron is responsible for the networking as a service. Cinder
provides the block storage service. Keystone is used to provide the authentication service.
These test cases of Rally_Sanity measure the time taken by each scenario to make sure that
all tests fulfill the SLA.

3.1.2. Performance Verification

In the performance test of a SUT, the verification focuses on testing the network
performance of VNFs. The main goal is to benchmark the target VNF and evaluate the
performance metric. This paper adopts NFVBench [45] to evaluate the throughput of VNFs
on the SUT. In NFVBench, TRex is applied as a traffic generator and a TestPMD as a target
VNF to forward the received packets. When launching the performance test, TRex sends
packets from the test host to the target VNF. Before reaching the VNF, the packets are
transmitted throughout the TOR switch and the OpenStack cloud system. VNF then uses
L2 Forward to send the packets back to the traffic generator.

In practice, a telecom application usually deploys multiple VNFs and connects these
VNFs to the SFC. When the number of VNFs in the SFC increases, the packet path of this
SFC is longer. The length of a packet path has an impact on the network performance. This
paper considers different traffic flows for performance test scenarios: PVP and PVVP tests.
The experiment of the PVP scenario is used to estimate the performance of end-to-end
traffic. As shown in Figure 6, the traffic generator installed on the test host sends out the
packets to the target VM deployed on a cloud system. When the VM receives packets, the
VM sends the packets back to the traffic generator through the TOR switch.

The PVVP scenario is conducted for the multiple VNFs of a simple SFC scenario as
shown in Figure 7. The traffic generator sends out the packets to the first VM. When the first
VM receives packets, the first VM forwards the packets to the other VM via the east–west
traffic in OpenStack. The VM then sends the packets back to the traffic generator through
the TOR switch. Lengthening the packet path increases network communications in the
data plane. If a component in the packet path cannot handle the packets, the throughput
worsens. Therefore, this experiment involves both evaluations of the north–south traffic
and the east–west traffic in the SUT.

3.1.3. Application Verification

Regarding the application test, the verification focuses on deploying the NFV applica-
tion on the cloud system. The main goal is to validate the feasibility and effectiveness of
SUT. This paper applies the Clearwater vIMS to act as the telecom service. The architecture
of Clearwater vIMS is shown in Figure 8.
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The main function of Bono is Proxy Call Session Control Function (P-CSCF). P-CSCF
acts as an edge proxy and is responsible for the network address translation and the
connection between the user equipment and the Clearwater system. Sprout is the SIP
route in Clearwater. Sprout is responsible for user authentication and SIP registration. The
major functions of Sprout are the Interrogating Call Session Control Function (I-CSCF) and
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the Serving Call Session Control Function (S-CSCF). S-CSCF manages and controls the
communications, while I-CSCF sends SIP requests to the appropriate S-CSCF according
to the information stored in Homer. Application servers provide advanced features. The
features include call forwarding, call recording, etc. Homer is used to store the settings files
of the application service. Dime acts as a diameter gateway and is composed of Homestead
and Ralf. Ralf is used to trigger functions, while Homestead is an HSS cache for storing
user information. Vellum is responsible for the state storing and exploits Cassandra to store
all long-lived data. Lastly, Ellis is responsible for user sign-up and password management.

In this paper, the SIP stress is used to benchmark the vIMS application. SIP stress
simulates the phone calls among multiple user equipments (UEs) and records the numbers
of outgoing calls, successful calls, failed calls, etc. The successful call rate is measured as the
performance metric of vIMS. A higher successful call rate indicates better performance. To
deploy the Clearwater vIMS on the cloud system, this paper adopts Cloudify Manager [46]
to manage and orchestrate VNF resources in OpenStack. Deploying vIMS requires cus-
tomized configurations according to the SUT environment, e.g., authentication endpoint,
credential file of the cloud, VM flavor, connection keypair, etc. After setting the correspond-
ing information of the SUT, Cloudify Manager deploys the vIMS template according to the
configurations. After the deployment is successful, the SIP stress is activated.

3.2. Verification Procedures and Factors

The testing framework is made up of open-source tools and is easy to reproduce. First,
the testing tools are containerized and can be run as docker instances on the test host.
Second, each verification has to set the configuration file according to the SUT environment
before running the test case. Finally, the testing tools are launched to perform the SUT
test. In some cases, the SUT system requires some adjustments according to a specific
deployment of the cloud system. For example, the authentication endpoint varies among
different cloud systems. The testing should modify the credential file according to the
cloud system. As another example, enabling DPDK requires a dedicated network interface.
The SUT system has to attach network interface to the provider network with OVS-DPDK.

Figure 9 depicts an overview of the verification procedure in the proposed test frame-
work. Before deploying the SUT system, the first step is to plan and determine which kinds
of EPA features should be enabled on an OpenStack cloud for verification. The second
step is to deploy the OpenStack cloud with corresponding configurations to enable the
accelerating technologies for the SUT test. The third step is verifying and evaluating the
cloud systems with different benchmarking tools. The last step is collecting and validating
the test results. The verification process will be ended until all the enhanced features are
verified and accomplished.
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Once the deployment of a customized OpenStack is complete, the verification and
evaluation process tests the cloud system in terms of functionality, performance, and VNF
application. The functionality tests verify the general operations of a cloud system and the
connectivity of VMs. If the basic functions operate correctly, the next step is to evaluate the
performance test of VNF networks on the cloud. Afterward, the application-level test is
optional to deploy the SFC service and trigger the corresponding tools for a stress test. To
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evaluate the impacts on the SUT verification, this paper conducts the verification factors
from different perspectives: packet size, VM size, and call rate.

• Packet Size

Different applications have different requirements for performance characteristics. The
difference in these characteristics requires different packet sizes in various applications [47].
When the header of each packet is the same, the larger payload results in a larger packet.
The application of interactive video often requires low latency. Therefore, the large packet
size is not suitable for interactive video applications. However, the application using small
packets tends to send out huge amounts of packets. If the virtual switch cannot afford
the massive packets, some packets are dropped and the throughput is decreased. In this
paper, the test framework adopts the NFVBench tool to generate PVP and PVVP traffic to
investigate the throughput impacts on different packet sizes.

• VM Size

In general, packet processing requires CPU resources. For example, a VM running the
VNF uses two cores to forward the packets. The other jobs also consume CPU resources
on the same VM. If the target VNF only has two vCPU cores, the CPU resources are not
sufficient for packet processing. When the number of vCPU cores is too small, the VM is
not able to handle all the packets. As a result, the dropped packets deteriorate the network
throughputs. Therefore, this paper compares the throughputs of 2-core VM and 4-core
VM with OVS-DPDK. This evaluation tool in this experiment is also NFVBench. This
experiment focuses on the importance of resource allocation. In this paper, CPU pinning
and CPU isolation techniques are applied to limit the number of dedicated cores.

• Call Rate

In the application test, this paper applies the vIMS as a VNF application on the cloud.
The test not only deploys cloud vIMS with different enhanced features, but also adopts
the SIP stress test to evaluate the performance of the application. Figure 10 depicts the
sequence of a phone call in this experiment. First of all, UE1 sends out the invite request to
initiate a call session. The 100 trying prevents the retransmissions of invite requests. When
the UE2 receives the invite request, UE2 sends the 180 ringing back and alerts the user. If
the user answers the phone call, UE2 sends a 200 OK. When UE1 receives the 200 OK from
UE2, UE1 replies to UE2 with an ACK. After these steps are accomplished, the call session
is established. When the conversation is finished, both UE1 and UE2 hang up the phone
call by sending the BYE message. When a UE receives a BYE message, the UE replies the
200 OK to the BYE. Afterward, the session is terminated. Throughout the experiment, the
successful call is measured to indicate how many packets are processed without a loss. The
growth of the call rate increases the workload of the application. The successful call rate is
declined when the cloud vIMS cannot afford the workload.
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4. Experiments and Evaluations

In NFV applications, network performance is a critical concern, and enhanced tech-
nologies are proposed to improve packet processing. These technologies bring different
effects of performance improvement to a cloud system. This section firstly verifies the
functional operations of OpenStack cloud and then evaluates the performance of the clouds
with different network enhancement techniques. Lastly, the vIMS application is deployed to
validate effective performance. The cloud system applying the OVS networking is a generic
case to act as the baseline in the experiment. To further improve the performance, the
cloud system enables CPU pinning and hugepages while applying network-accelerating
technologies such as OVS-DPDK or SR-IOV.

4.1. Testbed Environment

Table 2 summarizes the host configurations of the testbed. The test host is equipped
with Intel i7-3770 and 16 G memory. Both control and compute hosts have two Xeon Silver
CPUs and 160 G memory. In addition, all of these hosts have one Intel XXV710 as the
network interface and each host is interconnected via a 10 Gbps TOR switch. The testing
tools are installed in the test host. The OpenStack cloud system is composed of two nodes
in the testbed. The first node acts as the control host for providing the core OpenStack
services, such as Keystone, Nova API, Nova conductor, Neutron, and Glance. The other
node is a compute host for launching VM resources via Nova Hypervisor.

Table 2. Host configurations of the testbed.

Test Host Control Host Compute Host

CPU Intel i7-3770 Xeon(R) Silver 4210 × 2 Xeon(R) Silver 4210 × 2

Cores 4 10 × 2 10 × 2

Memory 4 G × 4 16 G × 10 16 G × 10

Host OS Ubuntu 18.04 Server Ubuntu 18.04 Server Ubuntu 18.04 Server

Physical NIC XXV710 XXV710 XXV710

Table 3 summarizes the settings in the performance experiments, such as network
enhancement techniques, scenarios, packet sizes, and enhanced configurations. In per-
formance testing, this paper focuses on four experiments. The first test compares the
network performance of the cloud systems with different network acceleration techniques.
The second experiment shows the performance of different traffic flows. The traffic flows
include PVP and PVVP scenarios. The third experiment evaluates the throughputs with
different packet sizes. The fourth experiment shows the impact of different VM sizes.
Because OVS-DPDK requires additional configurations of lcore and pmd-cpu, the last
experiment investigates the performance impact of the number of lcores and pmd-cpus in
OVS-DPDK tests.

Table 3. Experimental settings in performance tests.

Network Technique Generic OVS/OVS-DPDK/SR-IOV

Scenario PVP/PVVP

Packet Size 64/128/256/512/1024/1280/1518

vCPU (DPDK) 2/4

lcore + pmd-cpu (DPDK) 2 + 2/4 + 4

Table 4 summarizes the experiment to estimate the performance of vIMS with different
network techniques. The vCPU of a VM is set to 1 or 2. The call rate varies from 80 to 140.
In the OVS-DPDK scenario, all the components are deployed with the features of CPU
pinning and hugepages. This experiment also considers the impact of lcore and pmd-cpu.
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In this experiment, the pmd-cpu and lcore are set to 4. Each NUMA node has 2 lcores and
2 pmd-cpus.

Table 4. Experimental settings in application tests.

Enhancement Tech Generic OVS/OVS-DPDK

vCPU 1/2

Call Rate 80/100/120/140

lcore + pmd-cpu (DPDK) 4 + 4

4.2. Results of Functional Verifications

After the deployment of a cloud system, the first experiment is to verify the operation
of the SUT. All test cases should be passed if no error occurs during the functional tests. The
results of the functionality test are summarized in Table 5. The test cases of Healthcheck
and Rally_Sanity are shown in Appendices A and B. The result of Healthcheck verifies
all the operations of OpenStack are correct. Rally_Sanity checks if all the tests meet the
requirements of the SLA. Because all the scenarios pass the tests of Rally_Sanity, the
OpenStack services can finish their jobs in time.

Table 5. Result of the functionality test.

Test Suite Pass/Total Result of Test Cases

Healthcheck 9/9 Appendix A

Rally_Sanity 56/56 Appendix B

4.3. Results of Performance Verifications

This section presents the performance evaluation and analysis. Firstly, the performance
results of different network techniques are evaluated in the experiments. Afterward, the
impacts of each verification factor are discussed in terms of packet size, VM size, traffic
flow, and enhanced data plane.

4.3.1. Different Network Techniques

The experiment uses a VM with two cores and different improvement technologies.
The test scenario is PVP. As a baseline, the VM in the OVS scenario does not apply enhance-
ment techniques, while the others enable CPU pinning or hugepages. Experimental results
in different packet sizes are shown in Figures 11–13. The reason behind each experiment is
discussed as follows.
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Because OVS receives packets in kernel space, this method still needs a context switch
if a packet does not match any rules. The kernel-user space interrupt degrades the network
performance. As shown in these three figures, the throughputs with OVS are the lowest.
When the packet size is 64, the throughput is only 0.16 Gbps. The throughput varies with
the increment in packet size. The maximum throughput is 2.8 Gbps when the packet size is
1518. These results show a low performance without any enhancement.

The difference between OVS and OVS-DPDK is to exploit vhost-net or vhost-user for
NIC emulation. OVS uses vhost-net to enable the virtual switch to process the packets in
kernel space. This method introduces the overhead of context switches and deteriorates
the performance. On the contrary, OVS-DPDK uses vhost-user to enable the guest to
communicate with the virtual switch. Therefore, OVS-DPDK mitigates the performance
degradation. On the other hand, the VM with OVS is not improved with CPU pinning and
hugepages. CPU pinning helps the VM possess dedicated cores. These cores avoid the VM
sharing CPU resources with other processes in the host. Therefore, the overhead of context
switches is relieved. Hugepages are used to speed up memory access.

Considering the enhancement of the virtual switch, the throughputs of using OVS-
DPDK are better than that of OVS. The throughput of OVS-DPDK is 1.4 Gbps when the
packet size is 64. This throughput of OVS-DPDK is 8.2 times as high as the throughput of
OVS. The maximum throughput with OVS-DPDK is 9.9 Gbps when the packet size is 1518.
This value is 3.5 times as high as the throughput with OVS. Therefore, the throughput of
OVS-DPDK ranges from 3.5 to 8.2 times as high as the OVS. However, the throughputs
with OVS-DPDK are lower than a hardware-based solution.
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SR-IOV is the hardware-assisted solution. This technique improves network perfor-
mance significantly and allows a VM to access the physical NIC directly via the virtual
function. The throughput of SR-IOV approaches 9.5 Gbps when the packet size is 64. When
the packet size is higher than 64, the throughputs are 9.9 Gbps. As shown in the results, the
performance of SR-IOV is near the line rate. With SR-IOV, the system assigns dedicated
virtual functions to the VMs. These virtual functions help the VM access the physical NIC
directly. Therefore, the impact of VMM is relieved.

4.3.2. Different Packet Sizes

As shown in Figures 11 and 13, the throughputs of OVS are 0.16 Gbps and 2.8 Gbps
when the packet sizes are 64 and 1518. In the OVS network, the throughput in packet size
1518 is 16.4 times as high as the throughput in packet size 64. In addition, the throughput
of OVS-DPDK in packet size 64 is only 1.4 Gbps. When the packet size is 1518, the
throughput of OVS-DPDK is 9.93 Gbps. In the OVS-DPDK network, the throughput in
packet size 1518 is 7 times as high as the throughput in packet size 64. Regarding SR-IOV,
the throughputs are 9.5 Gbps, 9.96 Gbps, and 9.96 Gbps when the packet sizes are 64, 512,
and 1518. Therefore, the impact of packet size is less significant when packet processing
capacity is higher.

Because the VM accesses the physical NIC directly, the performance of SR-IOV is near
the line rate in all cases of different packet sizes. On the contrary, the throughputs of OVS
and OVS-DPDK dramatically decrease when the packet size is small. That is because the
sender generates more packets when the packet size is small. A large workload of packet
processing is not affordable for virtual switches because the capacity of each virtual switch
for processing packets is limited. The more packets per second the sender generates, the
more packets are dropped. Therefore, the throughput of small packet size is lower than
that of a large one.

4.3.3. Different VM Sizes

Considering that the packet processing consumes CPU resources, the next experiment
tests the throughputs of VMs with different numbers of cores. Because the throughput of
the VM with SR-IOV is too high while the throughput of the VM with OVS is too low, this
experiment only presents the performance of applying OVS-DPDK, as shown in Figure 14.
Results show that the throughput grows in all packet sizes when the VM size increases.
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The throughputs of a 2-core VM are 1.4 Gbps, 5.9 Gbps, and 9.93 Gbps when the
packet sizes are 64, 512, and 1518, respectively. Regarding a 4-core VM, the throughputs
are 1.42 Gbps, 6.7 Gbps, and 9.96 Gbps when the packet sizes are 64, 512, and 1518,
respectively. The improvement ranges from 0.2% to 16% in this experiment. The reason
is that if the VM only has two CPU cores, the preemption occurs frequently while the
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CPU core is processing. Therefore, the throughput is decreased if the CPU resources are
limited. Increasing the number of CPU cores relieves the overhead of preemption so that
the throughput is enhanced.

4.3.4. Different Traffic Flows

The experiment deploys two VMs with different improvement technologies to evaluate
the throughput, as shown in Figures 15–17. The SR-IOV brings the best performance among
all technologies. The throughputs of OVS and OVS-DPDK increase when the packet is
larger. However, the packet path in this experiment is longer than that of the PVP scenario.
If the traffic flow is longer, the workload of the components in this path is too heavy to
decline the throughputs. When the packet sizes are 64, 512, and 1518, the throughputs of
OVS are 0.147 Gbps, 1 Gbps, and 2.58 Gbps, respectively. The throughputs are 0.8 Gbps, 3.5
Gbps, and 6.2 Gbps of OVS-DPDK when the packet sizes are 64, 512, and 1518, respectively.
Therefore, in the PVVP scenario, the improvement brought by OVS-DPDK ranges from 2.4
to 5.5 times the OVS. Regarding the SR-IOV, the throughputs are above 8 Gbps in all packet
sizes. However, the throughputs of SR-IOV are still the best.
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Regarding packet loss, the loss rate of OVS or OVS-DPDK decreases when increasing
the packet size. Meanwhile, SR-IOV has the lowest drop rate among the other network
technologies. The reason is that SR-IOV mitigates the interference of VMM. Therefore, VM
can access the physical NIC directly. On the other hand, the OVS has the highest drop rate.
That is because OVS introduces a lot of context switches between the kernel-user space.
OVS-DPDK mitigates the context switches between the kernel-user space and polls the
queues of NICs with dedicated cores. Therefore, the drop rate of OVS-DPDK is lower than
that of OVS.

4.3.5. Enhanced Data Plane

Although OVS-DPDK eliminates the context switch in the kernel-user space, the
performance is still affected by the configurations of OVS-DPDK. Applying OVS-DPDK
requires CPU resources for lcore and pmd-cpu. The lcore is used by non-datapath threads
to remove the idle and wrong flows while the pmd-cpu needs to poll the queues of physical
NICs and virtual NICs. If the number of pmd-cpu is too small, the lack of pmd-cpu will
decrease the throughput. Therefore, this experiment is to verify the performance impact of
lcore and pmd-cpu to enhance the data plane.

As shown in Figure 18, the throughput increases when the number of lcore and
pmd-cpu grows. When the packet sizes are 64, 512, and 1518, the throughputs of 2 lcores
and 2 pmd-cpus are 1.4 Gbps, 5.9 Gbps, and 9.9 Gbps. Under the same packet sizes, the
throughputs of 4 lcores and 4 pmd-cpus are 1.9 Gbps, 9 Gbps, and 9.9 Gbps. Therefore,
the throughputs of 4 lcores and 4 pmd-cpus are improved by up to 50%. Furthermore, the
enhancement of increasing lcore and pmd-cpu is even more obvious than increasing the
VM size. The reason is that each VM consumes the virtual NIC resource and increases
the workload of pmd-cpu. When the number of pmd-cpus is small, the pmd-cpu may not
process so many packets. Thus, the packets are dropped if pmd-cpus are not affordable.
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4.4. Results of Application Verifications

After testing the network performance of a SUT, this experiment deploys vIMS as a
cloud application to show the improvement of a virtual switch. Subsequently, the SIP stress
is installed to benchmark the successful call rate (SCR) of the vIMS with different call rates.
A higher successful call rate means better performance.

In this experiment, each component of vIMS has only 1 vCPU. As shown in Figure 19,
the successful call rate declines along with the increment in the call rate. When the call rate
is lower than 100, the workload is affordable for both OVS and OVS-DPDK. Therefore, the
successful call rates are higher than 95%. In addition, the successful call rate is significantly
improved from 72% to 86% by OVS-DPDK when the call rate is 120. That is because
the components of vIMS with OVS-DPDK are enhanced by DPDK, CPU pinning, and
hugepages. These technologies improve both networking and computing. Therefore, the
successful call rate with OVS-DPDK performs better than OVS.
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When the call rate is higher than 120, the missing call rate of OVS ranges from 27%
to 48%. The reason is that interactive video applications tend to use smaller packets [47].
When many small packets are transmitted to the application, the workload of packet
processing is increased. Therefore, the missing call rate also increases when the virtual
switch cannot afford the loading. While applying OVS-DPDK, the missing call rate is
reduced by up to 14%. The next experiment further improves the performance of vIMS
with OVS-DPDK in different VM sizes. Previous experiments illustrate that the VM size
brings impacts on the performance of VNF. Therefore, this experiment increases the number
of CPU cores for each component in vIMS. As shown in Figure 20, the vIMS performance is
improved if the VM size is increased to 2 CPU cores. The successful call rate increases from
61% to 79% when the call rate is 140, which means that the enhancement is 18%.
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5. Conclusions 
As ETSI proposes the NFV architecture using virtualization technologies, the perfor-

mance degradation of virtualization is a challenge to meet the SLA of the telecom indus-
try. This paper attempts to conduct the performance effects of EPA techniques for the NFV 
cloud. The EPA techniques adopted in our testbed include CPU pinning, CPU isolation, 
hugepages, OVS-DPDK, and SR-IOV. This paper further proposes a test framework for 
the comprehensive verification and evaluation of the cloud system under test in terms of 
functionality, performance, and application. The major advantages of this framework are 
threefold. First, this framework is based on open-source projects to eliminate the expendi-
ture on system verification and evaluation. Second, the framework is easy to implement 
and expandable. The testing procedures are triggered on the test host with the test con-
tainers for different benchmarking tools. Third, for the performance testing, the verifica-
tion not only compares the impacts of different network techniques, but also considers the 
length of packet path, different VM sizes, and performance tuning of packet processing, 
e.g., lcore and pmd-cpu. 

Results show that all the cases in functional tests are passed. The test cases in 
Rally_Sanity also fulfill the requirement of SLA. Throughputs of OVS-DPDK are up to 8.2 
times as high as that of generic OVS networking. Regarding the performance at the appli-
cation level, the SCR of vIMS is improved by up to 14% with OVS-DPDK. Our experiments 
further obverted that the throughput is limited when the packet size is small. This deteri-
oration happens when the virtual switch cannot process a huge number of packets. The 
throughput declines when the packets are dropped. Regarding the end-to-end scenarios, 
the length of a traffic flow in PVP or PVVP has different impacts on the throughput with 
different networking techniques. The results and findings of this work are valuable for 
further reference in workload scheduling, resource placement, or load-balancing mecha-
nisms. To extend this work, deploying a feature cloud and verifying the SUT automati-
cally are interesting works. Further research will be to model the specific application per-
formance based on the proposed testing method and the enhanced technologies, which 
are also left for future work. 
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5. Conclusions

As ETSI proposes the NFV architecture using virtualization technologies, the perfor-
mance degradation of virtualization is a challenge to meet the SLA of the telecom industry.
This paper attempts to conduct the performance effects of EPA techniques for the NFV
cloud. The EPA techniques adopted in our testbed include CPU pinning, CPU isolation,
hugepages, OVS-DPDK, and SR-IOV. This paper further proposes a test framework for
the comprehensive verification and evaluation of the cloud system under test in terms of
functionality, performance, and application. The major advantages of this framework are
threefold. First, this framework is based on open-source projects to eliminate the expendi-
ture on system verification and evaluation. Second, the framework is easy to implement
and expandable. The testing procedures are triggered on the test host with the test contain-
ers for different benchmarking tools. Third, for the performance testing, the verification not
only compares the impacts of different network techniques, but also considers the length of
packet path, different VM sizes, and performance tuning of packet processing, e.g., lcore
and pmd-cpu.

Results show that all the cases in functional tests are passed. The test cases in
Rally_Sanity also fulfill the requirement of SLA. Throughputs of OVS-DPDK are up to 8.2
times as high as that of generic OVS networking. Regarding the performance at the appli-
cation level, the SCR of vIMS is improved by up to 14% with OVS-DPDK. Our experiments
further obverted that the throughput is limited when the packet size is small. This deteri-
oration happens when the virtual switch cannot process a huge number of packets. The
throughput declines when the packets are dropped. Regarding the end-to-end scenarios,
the length of a traffic flow in PVP or PVVP has different impacts on the throughput with
different networking techniques. The results and findings of this work are valuable for fur-
ther reference in workload scheduling, resource placement, or load-balancing mechanisms.
To extend this work, deploying a feature cloud and verifying the SUT automatically are
interesting works. Further research will be to model the specific application performance
based on the proposed testing method and the enhanced technologies, which are also left
for future work.
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Appendix A

Table A1. Result of Healthcheck.

Test Cases Project Tier Result

connection_check functest healthcheck PASS

tenantnetwork1 functest healthcheck PASS

tenantnetwork2 functest healthcheck PASS

vmready1 functest healthcheck PASS

vmready2 functest healthcheck PASS

singlevm1 functest healthcheck PASS

singlevm2 functest healthcheck PASS

vping_ssh functest healthcheck PASS

vping_userdata functest healthcheck PASS
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Appendix B

Table A2. Result of Rally_Sanity.

Scenario Errors Success (SLA)

Authenticate.keystone 0 4

Authenticate.validate_cinder 0 4

Authenticate.validate_glance 0 4

Authenticate.validate_heat 0 4

Authenticate.validate_neutron 0 4

Authenticate.validate_nova 0 4

CinderQos.create_and_list_qos 0 4

CinderQos.create_and_set_qos 0 4

CinderVolumes.create_and_delete_snapshot 0 4

CinderVolumes.create_and_delete_volume 0 4

CinderVolumes.create_and_delete_volume-2 0 4

CinderVolumes.create_and_delete_volume-3 0 4

CinderVolumes.create_and_extend_volume 0 4

CinderVolumes.create_from_volume_and_delete_volume 0 4

CinderVolumeTypes.create_and_list_volume_types 0 4

CinderVolumeTypes.create_volume_type_and_encryption_type 0 4

GlanceImages.create_and_delete_image 0 4

GlanceImages.create_and_list_image 0 4

GlanceImages.create_image_and_boot_instances 0 4

GlanceImages.list_images 0 4

HeatStacks.create_check_delete_stack 0 4

HeatStacks.create_suspend_resume_delete_stack 0 4

HeatStacks.create_update_delete_stack 0 4

HeatStacks.list_stacks_and_resources 0 4

KeystoneBasic.add_and_remove_user_role 0 4

KeystoneBasic.create_add_and_list_user_roles 0 4

KeystoneBasic.create_and_delete_role 0 4

KeystoneBasic.create_and_delete_service 0 4

KeystoneBasic.create_and_list_tenants 0 4

KeystoneBasic.create_and_list_users 0 4

KeystoneBasic.create_tenant 0 4

KeystoneBasic.create_tenant_with_users 0 4

KeystoneBasic.create_update_and_delete_tenant 0 4

KeystoneBasic.create_user 0 4

KeystoneBasic.get_entities 0 4

NeutronNetworks.create_and_delete_networks 0 4

NeutronNetworks.create_and_delete_ports 0 4

NeutronNetworks.create_and_delete_routers 0 4

NeutronNetworks.create_and_delete_subnets 0 4

NeutronNetworks.create_and_list_networks 0 4

NeutronNetworks.create_and_list_ports 0 4

NeutronNetworks.create_and_list_routers 0 4
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Table A2. Cont.

Scenario Errors Success (SLA)

NeutronNetworks.create_and_list_subnets 0 4

NeutronNetworks.set_and_clear_router_gateway 0 4

NeutronSecurityGroup.create_and_delete_security_group_rule 0 4

NeutronSecurityGroup.create_and_delete_security_groups 0 4

NovaKeypair.boot_and_delete_server_with_keypair 0 4

NovaServerGroups.create_and_delete_server_group 0 4

NovaServers.boot_server_and_list_interfaces 0 4

NovaServers.boot_server_associate_and_dissociate_floating_ip 0 4

NovaServers.boot_server_from_volume_and_delete 0 4

NovaServers.pause_and_unpause_server 0 4

Quotas.cinder_update 0 4

Quotas.cinder_update_and_delete 0 4

Quotas.neutron_update 0 4

Quotas.nova_update 0 4
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