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Abstract: This paper considers the balance control problems of a configurable inverted pendulum
with an omni-directional wheeled mobile robot. The system consists of two parts. One is an
inverted pendulum, and another one is an omni-directional wheeled mobile robot. The system can
be configured as a rotary inverted pendulum or a spherical inverted pendulum. The objective is
to control the omni-directional wheeled mobile robot to provide translational force on the plane to
balance the spherical inverted pendulum and to provide the moment to balance the rotary inverted
pendulum. Detailed dynamic models of these two systems are derived for the control strategy design
and simulation studies. Stabilizing controllers based on the second-order sliding mode control are
designed for both systems. The closed-loop stability is proved based on the passivity properties.
The proposed control schemes can guarantee semi-globally asymptotical stability over the upper-
half plane. In addition, the conventional sliding mode controllers proposed in our previous work
and Linear-Quadratic Regulator (LQR) controllers based on the linearized system models about
its upright equilibrium point are also used for performance comparison. The effectiveness of the
control strategies is investigated and verified using simulation and experimental studies. In the
simulation studies, different sources of uncertainty and disturbance are investigated. It is shown that
the second-order sliding mode control outperforms the conventional sliding mode control and LQR
control without any uncertainty and disturbance. For robustness to the matched disturbance, the
simulation results show that the second-order sliding mode controller has a less significant steady-
state oscillation in the pendulum’s angular displacement than other controllers. The simulation
results also show that only the second-order sliding mode controller can stabilize the system with a
significant initial deviation from the pendulum’s upright position. Finally, the experimental results
demonstrate that second-order sliding mode control outperforms conventional sliding mode control
and LQR control.

Keywords: inverted pendulum; omni-directional wheeled mobile robot; LQR; sliding mode control

1. Introduction

The inverted pendulum model can be found in many engineering applications such
as walking robots [1], personal transporter [2], and single-wheeled mobile robot [3]. The
dynamics of an inverted pendulum are inherently open loop unstable, nonlinear, underactu-
ated, and non-minimum phase, so balance control of the inverted pendulum is a formidable
challenge. It is widely used as a benchmark for designing and validating different control
techniques. Due to its importance in control engineering, the inverted pendulum has been
often used in control education for many decades. For research and education on the con-
trol, several variants of inverted pendulum systems with distinct mechanism constructions
and actuation have been proposed and studied, such as rotary inverted pendulum [4],
Acrobot [5], Pendubot [6], inertia wheel pendulum [7], cart-pole inverted pendulum [8],
double inverted pendulum [9], triple-link inverted pendulum [10], and spherical inverted
pendulum [11,12], etc. The omni-directional wheeled mobile robot [13,14] is a particular

Appl. Sci. 2022, 12, 10307. https://doi.org/10.3390/app122010307 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010307
https://doi.org/10.3390/app122010307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1909-5946
https://orcid.org/0000-0003-0023-6219
https://doi.org/10.3390/app122010307
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010307?type=check_update&version=1


Appl. Sci. 2022, 12, 10307 2 of 28

class of wheeled mobile robots. This robot uses orthogonal omni-directional wheels, which
provide traction in the direction normal to the wheel shaft, and the wheel can slide pas-
sively in the direction of the wheel shaft. This mobile robot does not have nonholonomic
constraints and can simultaneously perform translational movement along an arbitrary
trajectory combined with any orientation. In [15], an omni-directional wheeled mobile robot
was used to generate the planar control force for balancing a spherical inverted pendulum.

This paper uses second-order sliding mode control [16] to stabilize the inverted pen-
dulum systems. Sliding mode control has been known as a robust and nonlinear control
technique appropriate for compensating matched uncertainties and disturbances in dy-
namical systems [16,17]. Essentially, the state trajectories of the closed-loop system are
constrained to a specific manifold in the state space in finite time and to retain their motion
to slide along the specific manifold for all successive times when sliding mode control uses
switching control actions. The closed-loop system is insensitive to external disturbances
and model uncertainties because the motion of the state trajectory is constrained on a
predefined sliding manifold. The chattering behavior [17] is the main obstacle for the
practical application in the conventional or first-order sliding mode control. The chattering
problems can be effectively attenuated using higher-order sliding mode controls [16,18]
with a relative degree two or higher. Another merit is that higher-order sliding mode
control extends the relative degree of the sliding variable in the conventional sliding mode
control from one to a higher order. Due to its simplicity and low information demand,
second-order sliding mode control is the most widely used in practice [19–21] among the
higher-order sliding mode control.

This paper considers the problems of the control design and experimental validation
of balance control of a configurable inverted pendulum system with an omni-directional
wheeled mobile robot. This system can be configured as a rotary inverted pendulum
system or a spherical inverted pendulum system. The omni-directional wheeled mobile
generates the designed control torque for balancing the rotary inverted pendulum and the
designed control planar force for balancing the spherical inverted pendulum. Figure 1 is
the schematic diagram of the proposed system, (a) is a rotary inverted pendulum system,
and (b) is a spherical inverted pendulum system. For simulation and control design, mathe-
matical models of omni-directional wheeled mobile robot and both inverted pendulums are
derived. To enhance robustness to model uncertainties and disturbance, a coupled sliding
manifold [22] and second-order sliding mode control are applied to design stabilizing
controllers for both inverted pendulum systems. The closed-loop stability is proved based
on the passivity properties of the zero dynamics of the system confined on the sliding
manifold. It is shown that the closed-loop system can be semi-globally asymptotically
stabilized over the upper-half plane. A sufficient condition is derived to guarantee the
semi-globally asymptotical stability of the closed-loop system. The experimental setup
is built for experimental validation and performance evaluation of the designed control
laws. Furthermore, for the performance comparison, conventional sliding mode controllers
proposed in our previous work [15] and LQR controllers [23] for the linearized system
models are also used.

Figure 1. Schematic overview of the proposed systems: (a) is a rotary inverted pendulum, and (b) is
a spherical inverted pendulum.
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The organization of this research is as below: In Section 2, the dynamic models of
an omni-directional wheeled mobile robot, a rotary inverted pendulum, and a spherical
inverted pendulum are presented. In Section 3, the design of the controllers for stabilizing
the systems and stability analysis of the closed-loop system are given. Section 4 describes
the experimental setup. Section 5 presents the results of simulations and experiments.
Finally, Section 6 contains some concluding remarks.

2. Mathematical Modeling

The system dynamics can be divided into two parts: one is the actuation subsystem,
and the other is an inverted pendulum subsystem. The actuation subsystem is an omni-
directional wheeled mobile robot. The system can be configured as two types of the
inverted pendulum subsystems, namely rotary inverted pendulum and spherical inverted
pendulum. In this section, mathematical models will be established for the actuation
subsystem and each inverted pendulum subsystem and finally, from the system model of
the mobile robot, the forces and torque generated by the mobile robot for controlling the
inverted pendulum subsystems are given in terms of the motor control voltages.

2.1. Model of an Omni-Directional Wheeled Mobile Robot

Here is a mathematical model derived for an omni-directional wheeled mobile robot
using Newton’s laws [24]. This mobile robot consists of a rigid circular chassis and three
omni-directional wheels labeled 1, 2, and 3. The wheels were arranged at an equal distance
from the center of the robot chassis and equally spaced at 120◦. All wheels are assumed
to roll without slip. Figure 2 illustrates the basic features of an omni-directional wheeled
mobile robot from the top view.

Figure 2. The omni-directional wheeled mobile robot from the top view.
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The system variables and parameters are defined as below:

ÔW , X̂W , ŶW : world coordinate system.

ÔM, X̂M, ŶM : body coordinate system with the origin attached to the center of mass
of the mobile robot, and the ŶM-axis is aligned to wheel 1.

Mt : mass of the mobile robot with the pendulum.

f1, f2, f3 : reaction force applied by the ground to the omni-directional wheel,
where the direction is vertical to wheel axes 1, 2, and 3, respectively.

Lc : radius of the mobile robot.

Rw : radius of the omni-directional wheels.

δc : angle between wheel 2 and the X̂M-axis of the mobile coordinate sys-
tem; the value is fixed to 30◦.

Iczz : the mobile robot’s moment of inertia about the ẐM-axis.

φ : rotation angle of the mobile robot.

θ1, θ2, θ3 : rotation angle of omni-directional wheels 1, 2, and 3, respectively.

ω1, ω2, ω3 : angular velocity of omni-directional wheels 1, 2, and 3, respectively.

[xW yW ]T : position for the center of mass of the robot relative to the world coordi-
nate system.

The dynamic and kinematic equations of the omni-directional wheeled mobile robot
are given by

ẍW

ÿW

φ̈

 =


Mt 0 0

0 Mt 0

0 0 Iy




cos φ − sin φ 0

sin φ cos φ 0

0 0 1




1 − 1
2 − 1

2

0
√

3
2 −

√
3

2

Lc Lc Lc




f1

f2

f3

 (1)


θ̇1

θ̇2

θ̇3

 =


ω1

ω2

ω3

 =
1

Rw


1 0 Lc

− 1
2

√
3

2 Lc

− 1
2 −

√
3

2 Lc




cos φ sin φ 0

− sin φ cos φ 0

0 0 1




ẋW

ẏW

φ̇

 (2)

Because the electrical time constant of a motor is usually far less than the mechanical
time constant, the relationship between the motor torque τm and control voltage u is hence
based on the reduced-order model of a DC motor and is given blow

τm =
Kt

Ra
u− K2

t
Ra

ωm, (3)

where Ra is the armature resistance, Kt is the motor torque constant, u is the control voltage
and ωm is the angular velocity of the motor. These unmodeled dynamics of the motor
can then be considered as the matched uncertainty [16,17] in the control design. The
relationship between the motor torque and the wheel force f acting on the robot is given by

f =
1

Rw
τm. (4)

The three motors used in this mobile robot are assumed to be identical. Therefore,
combining (3) and (4), the relationship between f , u, and ω of three motors are given by f1

f2
f3

 =
nKt

RwRa

 u1
u2
u3

− n2Kt
2

RwRa

 ω1
ω2
ω3

 (5)
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where u1, u2, u3 are motor control voltages. From (1), (2), and (5), the dynamics of the robot
in the world frame can be re-written as

P̈w = Aw Ṗw + Bw(φ)UC, (6)

where

Pw = [ xW yW φ ]T, Aw =

 a1 0 0
0 a1 0
0 0 a2

, UC = [ u1 u2 u3 ]T ,

Bw(φ) =

 2b1 cos(φ) −b1 cos(φ)−
√

3b1 sin(φ) −b1 cos(φ) +
√

3b1 sin(φ)
2b1 sin(φ) −b1 sin(φ) +

√
3b1 cos(φ) −b1 sin(φ)−

√
3b1 cos(φ)

b2 b2 b2

,

with

a1 =
−3K2

t
2R2

w MtRa
, a2 =

−3K2
t L2

c
R2

w IczzRa
, b1 =

Kt

2Rw MtRa
, b2 =

KtLc

Rw IczzRa
.

2.2. Model of a Rotary Inverted Pendulum

The mathematical modeling of a rotating inverted pendulum as shown in Figure 3 will
be described in this subsection. Here the pendulum rod is mounted to a pivot point off the
robot’s center. The pendulum rod can rotate freely in the vertical plane perpendicular to
the axis connecting the center of the robot and the pivot point. The world frame is denoted
by the coordinate system ÔW X̂WŶW ẐW , the origin ÔW coincides with the center of mass of
the robot, the X̂W-axis aligns with the X̂M-axis of the robot, and the ŶW-axis aligns with
ŶM-axis of the robot. The pendulum’s body frame is o′x′y′z′, the origin o′ coincides with
the pivot point of the inverted pendulum, the z′-axis aligns with the pendulum, and the
x′-axis aligns with the vector ÔWo′.

Figure 3. Rotary inverted pendulum.
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The system variables and parameters are defined as below:

m : the pendulum mass.

l : length of the pendulum from its center of mass to the pivot point.

β : the pendulum’s angular displacement from the vertical upright.

φ : the robot’s rotational angular displacement.

Ipxx, Ipyy, Ipzz : the pendulum’s moment of the inertia about the x′-axis, y′-axis, z′-axis,
respectively.

Rc : distance from the pivot point of the pendulum to the center of the robot.

g : gravitational acceleration.

Iczz : the robot’s moment of the inertia about the ẐW-axis.

τφ : torque exerted by the robot.

Assuming that the robot is controlled to have the rotational motion only. For the
derivation of the system dynamic equations, the Euler-Lagrange method [24] was used.
The form of the Euler-Lagrange equations is

d
dt

[
∂L
∂q̇

]
− ∂L

∂q
= Q, (7)

where Q is the generalized forces, and q is the generalized coordinates, and L is the
Lagrangian function which is defined as

L = T −V, (8)

where T is the kinetic energy and V is the potential energy. For this system, q is selected as

q =
[

β φ
]T, (9)

Q is given by

Q =
[

0 τφ

]T. (10)

From (7), the dynamic equations are given by

(ml2 + Ipxx)β̈ + mlRc cos βφ̈ + (Ipzz −ml2 − Ipyy) sin β cos βφ̇2 −mgl sin β = 0, (11)

mlRc cos ββ̈ + (ml2sin2β + mRc
2 + Ipyysin2β + Ipzzcos2β + Iczz)φ̈

+ mlRc sin ββ̇− 2(Ipzz −ml2 − Ipyy) sin β cos βφ̇ = τφ.
(12)

2.3. Model of a Spherical Inverted Pendulum

The mathematical model of a spherical inverted pendulum system is given in this
subsection. Figure 4 shows the basic physical symbol description. Assuming that the robot
is controlled to have the horizontal movement only. Here the pendulum rod is connected
with a universal joint fixed at the robot’s center. Thus, the pendulum rod can freely rotate
around the plane axes. The world coordinate system is denoted ÔW X̂WŶW ẐW , the moving
frame is denoted ÔMX̂MŶMẐM, and the body frame on the pendulum is oxpypzp which is
attached to the pendulum with the origin located at the robot’s center of mass.
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Figure 4. Spherical inverted pendulum.

The system variables and parameters are defined as below:

M, m : mass of the mobile robot and the pendulum, respectively.

l : length of the pendulum from its center of mass to the pivot point.

x, y : the position of the robot’s center of mass relative to the X̂W-axis and
ŶW-axis, respectively.

α, β : the pendulum’s angular displacement around the X̂M-axis and ŶM-axis,
respectively.

Ipxx, Ipyy, Ipzz : the pendulum’s moment of inertia about the xp-axis, yp-axis, and zp-
axis, respectively.

g : gravitational acceleration.

Fx : control force applied to the X̂M-axis.

Fy : control force applied to the ŶM-axis.

Again, by the Euler-Lagrange Formula (7) the dynamic equations for the system are
derived. For this system, q and Q are chosen as

q =
[

x α y β
]T, (13)

Q =
[

Fx 0 Fy 0
]T. (14)

The dynamic equations of the spherical inverted pendulum are obtained as below:

(m + M)ẍ + (ml cos α cos β)α̈ + (−ml sin α sin β)β̈

+ (−mlα̇ sin α cos β−mlβ̇ cos α sin β)α̇

+ (−mlβ̇ sin α cos β−mlα̇ cos α sin β)β̇ = Fx,

(15)

(ml cos α cos β)ẍ + (ml2cos2β + Ipyycos2β + Ipzzsin2β)α̈

+ (−ml2 β̇ sin β cos β− Ipyy β̇ sin β cos β + Ipzz β̇ sin β cos β)α̇

+ (−ml2α̇ sin β cos β− Ipyyα̇ sin β cos β + Ipzzα̇ sin β cos β)β̇

−mgl sin α cos β = 0

(16)

(m + M)ÿ + (ml cos β)β̈−mlβ̇2 sin β = Fy, (17)

(−ml sin α sin β)ẍ + (ml cos β)ÿ + (ml2 + Ipxx)β̈

+ (ml2α̇ sin β cos β + Ipyyα̇ sin β cos β− Ipzzα̇ sin β cos β)α̇

−mgl cos α sin β = 0.

(18)
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2.4. Relationship between Control Forces, Control Torque, and Control Voltages

In the dynamic equations of the rotary or spherical inverted pendulum system, the
control input of the system is the planar force or torque generated by the omni-directional
wheeled mobile robot. Therefore, the relationship between the control input of the inverted
pendulum systems and the acceleration of the omni-directional wheeled mobile robot are
given by:

ẍ =
Fx

Mt
, (19)

ÿ =
Fy

Mt
, (20)

φ̈ =
τφ

ICzz
, (21)

where Mt is the mass of the robot with the inverted pendulum and ICzz is the moment of inertia
of the robot with the inverted pendulum about the ẐM-axis. From (6), (19), (20) and (21), we can
obtain the result below: 

Fx

Mt

Fy

Mt

τφ

ICzz


= Aw Ṗw + Bw(φ)UC. (22)

Finally, in order to obtain the relationship between the control torque, the control force,
and the control voltage, using inverse dynamics we obtain

uc =

 u1
u2
u3

 =



cos φ

3b1
(

Fx

Mt
− a1 ẋ)

−
√

3 sin φ− cos φ

6b1
(

Fx

Mt
− a1 ẋ)

−
√

3 sin φ− cos φ

6b1
(

Fx

Mt
− a1 ẋ)

sin φ

3b1
(

Fy

Mt
− a1ẏ)

−−
√

3 cos φ + sin φ

6b1
(

Fy

Mt
− a1ẏ)

−
√

3 cos φ + sin φ

6b1
(

Fy

Mt
− a1ẏ)

1
3b2

(
τφ

ICzz
− a2φ̇)

1
3b2

(
τφ

ICzz
− a2φ̇)

1
3b2

(
τφ

ICzz
− a2φ̇)


. (23)

3. Using Second-Order Sliding Mode Control to Design the Stabilizing Controllers

The design of the stabilizing controllers for the rotary inverted pendulum and spherical
inverted pendulum using second-order sliding mode control is given in this section.

3.1. Controller Design for a Rotary Inverted Pendulum

The design of the stabilizing controller for the rotary inverted pendulum system using
second-order sliding mode control is presented in this subsection. From (11) and (12), and
by introducing dφ1 which may include the external disturbances and uncertainties of the
unmodeled dynamics, the dynamic equations of the rotary inverted pendulum system are
rewritten as follows:
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β̈ =
1
∆

{
(ml2 + IPyy − IPzz)φ̇

2 sin β cos β [(ml2 + IPyy)sin2β + IPzzcos2β

+ mRc
2 + ICzz] + 2mlRc(ml2 + IPyy − IPzz)φ̇ sin βcos2β

+ m2l2Rc
2 β̇ sin β cos β + gml sin β[(ml2 + IPyy)sin2β + IPzzcos2β

+ mRc
2 + ICzz]−mlRc cos β(τφ + dφ1)

}
,

(24)

φ̈ =
1
∆

{
−mlRc(Ipyy − Ipzz + ml2)φ̇2 sin βcos2β

− 2φ̇ sin β cos β[ml2(Ipxx + Ipyy − Ipzz) + m2l4 − Ipxx Ipzz + Ipxx Ipyy]

−mlRc(Ipxx + ml2)β̇ sin β− gm2l2Rc sin β cos β+(ml2 + Ipxx)(τφ + dφ1)
}

,

(25)

where

∆ =
(

ml2 + IPyy

)(
ml2 + IPxx

)
sin2β−

(
m2l2Rc

2 −ml2 IPzz − IPxx IPzz

)
cos2β

+
(

ml2 + IPxx

)(
mRc

2 + ICzz

)
.

In order to obtain the regular form [25], consider the following change of variables

zφ = φ− ϕ(β), (26)

where

ϕ(β) = −
ml2 + Ipxx

mlRc
ln

1 + tan(β/
2)

1− tan(β/
2)

. (27)

From (26) and (27), the system Equations (24) and (25) can be rewritten as

z̈φ = H(β, φ̇) tan β, (28)

β̈ = vs(β, β̇, φ̇, τφ) + dφ, (29)

where

H(β, φ̇) =
g

Rc
+

φ̇2

mlRc cos β

{(
ml2 + IPyy − IPzz

)
cos2β +ml2 + IPxx

}
, (30)

vs(β, β̇, φ̇, τφ) =
1
∆

{
[(IPzz −ml2 − IPyy)φ̇

2 sin β cos β + gml sin β][(ml2 + IPyy)sin2β

+IPzzcos2β + mRc
2 + ICzz]

+mlRc cos β[2(ml2 + IPyy − IPzz)φ̇ sin β cos β + β̇mlRc sin β−τφ]
}

. (31)

dφ =
−mlRc cos β

∆
dφ1 (32)

Select the following coupled sliding variables [22]:

sφ = k(żφ + azφ) + (β̇ + bβ) (33)

where k, a, and b are constant parameters. For ensuring semi-globally asymptotical stability
of the closed-loop system over the upper-half plane, a sufficient condition for determining
k, a, and b will be derived in the sequel. After differentiating sφ, we have

ṡφ = k(z̈φ + ażφ) + β̈ + bβ̇

= k[H(β, φ̇) tan β + ażφ] + vs(β, β̇, φ̇, τφ) + bβ̇ + dφ.
(34)
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From (34), the system Equations (28) and (29) have a relative degree of one with respect
to sφ. The following control inputs is defined

v = vs(β, β̇, φ̇, τφ) + k[H(β, φ̇) tan β + ażφ] + bβ̇. (35)

then from (34) and (35), we obtain

ṡφ = v + dφ. (36)

The super-twisting algorithm [16,26,27] is one of the most widely used second-order
sliding mode controllers that is designed for systems of relative degree one. Assuming that
the global bound of the unknown disturbance dφ is give by

∣∣dφ

∣∣ ≤ δ
∣∣sφ

∣∣ 1
2 (37)

for some constant δ > 0. The super-twisting sliding mode controller is given by

v = −λ
∣∣sφ

∣∣ 1
2 sgn(sφ) + v1, (38)

v̇1 = −Wsgn(sφ), (39)

where the usual signum function is represented by the function sgn(·) and, λ and W are
constant gains satisfying the following conditions:

λ > 2δ,

W > λ
5δλ + 4δ2

2(λ− 2δ)
.

(40)

It can be shown that in the presence of disturbances, the control law (38) and (39)
guarantees the convergence of the closed-loop state trajectory onto the sliding manifold
sφ = 0 and ṡφ = 0 in a finite time. Note that unlike the conventional sliding mode control,
the super-twisting algorithm given in (38) and (39) is a continuous control that can attenuate
the chattering problems effectively. Finally, according to (35) and (31), the control torque is
given by

τφ =
−1

mlRc cos β
{[v− kH(β, φ̇) tan β− każφ − bβ̇] · ∆

+ φ̇2 sin β cos β[(Ipzz −ml2 − Ipyy)(mRc
2 + ml2sin2β + Ipyysin2β + Ipzzcos2β)−ml2 Iczz]

− gml sin β(ml2sin2β + Ipyysin2β + Ipzzcos2β + mRc
2 + ICzz)

−m2l2Rc
2 β̇ sin β cos β− 2mlRc(ml2 + Ipyy − Ipzz)φ̇ sin βcos2β}.

(41)

For translational motion, a controller needs to be designed to keep the position of
the mobile robot without any translational movement. For this purpose, the translational
motion of the mobile robot in the X and Y axes is designed by the PD controller as follows:

Fx = −Kx1 ẋ− Kx2x,

Fy = −Ky1ẏ− Ky2y.
(42)

where Kx1, Kx2, Ky1 and Ky2 are positive constants. Finally, substituting the control
torque (41) and control forces (42) into (23), the corresponding control voltages for the three
motors can be obtained.
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Stability Analysis of Zero Dynamics

Closed-loop stability analysis the rotary inverted pendulum system using the proposed
control scheme is presented in this subsection. From (34), the equivalent control [17] for
ṡφ = 0 is given by

ueq = −k[H(β, φ̇) tan β + ażφ]− bβ̇− dφ. (43)

Substituting (43) into (29), we obtain

β̈ = −bβ̇− każφ − k[H(β, φ̇) tan β]. (44)

Since the sliding mode sφ(t) = 0 is established for all t ≥ t0, it gives

żφ + azφ = −k−1(β̇ + bβ). (45)

From (45), we have

zφ(t) = zφ(t0)e−a(t−t0) − k−1
∫ t

t0

[β̇(τ) + bβ(τ)]e−a(t−τ)dτ,

= zφ(t0)e−a(t−t0) − k−1[β(τ)e−a(t−τ)]tt0
+ k−1

∫ t

t0

β(τ)
d

dτ
e−a(t−τ)dτ − k−1b

∫ t

t0

β(τ)e−a(t−τ)dτ,

= [zφ(t0) + k−1β(t0)]e−a(t−t0) − k−1β(t) + k−1(a− b)
∫ t

t0

β(τ)e−a(t−τ)dτ.

(46)

From (45) and (46), it gives that

żφ = −azφ − k−1(β̇ + bβ),

= −a
{
[zφ(t0) + k−1β(t0)]e−a(t−t0) − k−1β + k−1(a− b)

∫ t

t0

β(τ)e−a(t−τ)dτ

}
− k−1(β̇ + bβ).

(47)

Substituting (47) into (44), it follows that

β̈ =− bβ̇− ka
{
− a
{
[zφ(t0) + k−1β(t0)]e−a(t−t0) − k−1β

+ k−1(a− b)
∫ t

t0

β(τ)e−a(t−τ)dτ
}
− k−1(β̇ + bβ)

}
− k[H(β, φ̇) tan β],

=(a− b)β̇ + (ab− a2)β + a2(a− b)
∫ t

t0

β(τ)e−a(t−τ)dτ

− kH(β, φ̇) tan β + ka2[zφ(t0) + k−1β(t0)]e−a(t−t0).

(48)

Denote

w(t) =
∫ t

t0

β(τ)e−a(t−τ)dτ. (49)

By taking time derivative of w(t) and let w(t0) = 0, we have

ẇ(t) =
d
dt

∫ t

t0

β(τ)e−a(t−τ)dτ,

= β(τ)e−a(t−τ)|τ=t +
∫ t

t0

∂

∂t
[e−a(t−τ)]β(τ)dτ,

= β(t) +
∫ t

t0

−ae−a(t−τ)β(τ)dτ,

= β(t)− aw(t).

(50)
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Thus form (48)–(50), it follows that the zero dynamics of the system constrained to the
manifold of sφ = 0 and ṡφ = 0 are given by{

β̈ = (a− b)β̇ + (ab− a2)β + a2(a− b)w− kH(β, φ̇) tan β + ka2[zφ(t0) + k−1β(t0)]e−a(t−t0),

ẇ = β− aw .
(51)

During the sliding mode, the system dynamics become insensitive to the matched
disturbances, and the effects of the disturbance are completely eliminated, as seen in (51).

To show that the zero dynamics (51) over the upper-half plane is semi-globally asymp-
totically stable, the stability of the following system is first investigated:{

β̈ = (a− b)β̇ + (ab− a2)β + a2(a− b)w− kH(β, φ̇) tan β,

ẇ = β− aw .
(52)

Note that the unforced system (52) is the zero dynamics (51) in the absence of external
excitation. Also note that in (52), the nonlinear term is

H(β, φ̇) tan β =

{
g

Rc
+

φ̇2

mlRc cos β

[(
ml2 + IPyy − IPzz

)
cos2β + ml2 + IPxx

]}
tan β (53)

Define the state vector as

xz =

 x1
x2
x3

 =

 β
β̇
w

. (54)

The configuration of the Lur’e system [28] can be used to formulate the system (52)
as follows:

ẋz =

 0 1 0
(ab− a2) (a− b) a2(a− b)

1 0 −a

xz +

 0
k
0

uz, (55)

yz = [ 1 0 0 ]xz, (56)

uz = −ψ(t, yz) = −H(β, φ̇) tan β. (57)

Note that in (57) ψ is a time varying nonlinearity, whose time variation depends on
φ̇. From (41), the system has a singularity at β = ±π

2 . Therefore, the domain of the open

upper-half plane |β| ≤ π
2 − ε is considered, where ε is sufficiently small and 0 < ε � π

2 .
For |β| ≤ π

2 − ε, the nonlinearity ψ(t, yz) lies in the sector of [g1, K2] with g1 � K2 < ∞

and g1 = g
Rc

. Denote G0(s) to be the transfer function from uz to yz. Here

G0(s) =
k(s + a)
s2(s + b)

. (58)

The following lemma is based on the circular criterion [28].

Lemma 1. The system (55)–(57) is asymptotically stable for xz ∈
{

xz ∈ R3
∣∣∣|x1| ≤ π

2 − ε
}

, if
1 + K2G0(s)
1 + g1G0(s)

is strictly positive real.
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Remark 1. Let

G1(s) =
1 + K2G0(s)
1 + g1G0(s)

,

=
s2(s + b) + K2k(s + a)
s2(s + b) + g1k(s + a)

.
(59)

A sufficient condition of a, b, and k for having G1(s) be strictly positive real is given below. For
transfer function G1(s) to be strictly positive real, G1(s) is analytic in Re[s] ≥ 0 and Re[G1(jω)] > 0
for all ω ∈ R. Based on the Routh-Hurwitz criterion [29], we have{

k > 0,

b > a > 0,
(60)

to guarantee G1(s) to be Hurwitz stable, i.e., analytic in Re[s] ≥ 0. Now consider

Re[G1(jω)] = Re

[
(−bω2 + K2ka) + jω(−ω2 + K2k)
(−bω2 + g1ka) + jω(−ω2 + g1k)

]
,

=
(−bω2 + K2ka)(−bω2 + g1ka) + ω2(−ω2 + K2k)(−ω2 + g1k)

(−bω2 + g1ka)2 + ω2(−ω2 + g1k)2 .
(61)

Denote the denominator of (61) to be

∆G1(ω) = (−bω2 + g1ka)2 + ω2(−ω2 + g1k)2. (62)

Then, we have

Re[G1(jω)] =
ω6 + [b2 − k(K2 + g1)]ω

4 + [K2g1k2 − bka(K2 + g1)]ω
2 + K2g1k2a2

∆G1(ω)
. (63)

If {
b2>k(K2 + g1),

K2g1k2 > bka(K2 + g1),
(64)

it gives that Re[G1(jω)] > 0 for all ω ∈ R. By simply choosing
k = K2 + g1,

b > K2 + g1,

ab < K2g1,

(65)

it follows that inequalities of (64) are satisfied such that Re[G1(jω)] > 0 for all ω ∈ R. From (60)
and (65), it follows that G1(s) is strictly positive real if

b > a > 0,

k = K2 + g1,

b > K2 + g1,

ab < K2g1,

(66)

The condition (66) shows that for given K2 > g1 > 0 there always exist a, b, and k such that
G1(s) is strictly positive real.

Consider the following system

ẋz = fz(t, xz) + Ae−a1(t−t0), (67)
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where xz ∈ Rn, f : R+ × Rn → Rn is a sufficiently smooth vector field and fz(t, 0) = 0 for
t > t0 ≥ 0, A is an n× 1 matrix, a1 > 0 and t > t0 ≥ 0.

Lemma 2. Consider the system as defined in (67) and assume a continuously differentiable function
V0(t, xz) : R+ × Rn → R exists which satisfy

c1‖xz‖2 ≤ V0(t, xz) ≤ c2‖xz‖2,
∂V0

∂t
+

∂V0

∂xz
fz(t, xz) ≤ −c3‖xz‖2,∣∣∣∣∂V0

∂xz
A
∣∣∣∣ ≤ c4‖xz‖,

(68)

where c1, c2, c3, and c4 are some positive constants. Then, the globally exponential stability at the
origin of the system (67) is obtained.

Proof. Consider the following first-order linear differential equation

ξ̇(t) = −a1ξ(t), t ≥ t0 ≥ 0, (69)

Then the solution of (69) is

ξ(t) = c0e−a1(t−t0), t ≥ t0 ≥ 0, (70)

where c0 = ξ(t0) 6= 0 is a constant. The system (67) can be written using the augmented
state ξ as  ẋz = f (t, xz) +

A
c0

ξ,

ξ̇ = −a1ξ.
(71)

Now, the following Lyapunov candidate functions is considered

V(t, xz, ξ) = V0(t, xz) +
1
2

ηξ2, (72)

where η is a positive constant. The derivative of V along the trajectory of (71) is given by

V̇(t, xz, ξ) =
∂V0

∂t
+

∂V0

∂xz
[ fz(t, xz) +

A
c0

ξ]− a1ηξ2,

=
∂V0

∂t
+

∂V0

∂xz
fz(t, xz) +

1
c0

∂V0

∂xz
Aξ − a1ηξ2,

≤ −c3‖xz‖2 +
c4

|c0|
‖xz‖ · |ξ| − a1η|ξ|2,

= −c3

[
‖xz‖ −

1
2

c4

c3|c0|
|ξ|
]2
−
(

a1η − 1
4

c2
4

c3c2
0

)
|ξ|2.

(73)

By denoting

xza =

[
xz
ξ

]
. (74)

and choosing η such that

a1η − 1
4

c2
4

c3c2
0
> 0, (75)
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we have

V̇(t, xz, ξ) ≤ −c5‖xza‖2 ≤ −c6V(t, xz, ξ) (76)

where c5 and c6 are a positive constants. It concludes that the origin of the system (67) is
globally exponentially stable.

Now, we are ready to state the stability of the zero dynamics of (51).

Theorem 1. (stability of zero dynamics): The transfer function G1(s) =
s2(s + b) + K2k(s + a)
s2(s + b) + g1k(s + a)

is strictly positive real with the appropriately chosen parameters of a, b, and k. Then, the semi-global

asymptotic stability can be obtained over the upper-half plane for the equilibrium point of the zero
dynamics (51).

Proof. The zero dynamics (51) can be written as

ẋz = fz(t, xz) + Ae−a(t−t0), (77)

with

xz =

 x1
x2
x3

 =

 β
β̇
w

, (78)

fz(t, xz) =

 x2
(a− b)x2 + (ab− a2)x1 + a2(a− b)w− kH(x1, φ̇) tan x1

x1 − ax3

, (79)

A =

 0
ka2[zφ(t0) + k−1β(t0)]

0

. (80)

According to Lemma 1 and Kalman-Yakubovich-Popov lemma [30], there is a Lya-
punov candidate function V(xz) =

1
2 xz

TPxz with positive definite matrix P when G1(s) is
strictly positive real. Along the trajectories of the unforced system ẋz = fz(t, xz), the time

derivative of V(xz) is given by

V̇(xz) =
∂V
∂xz

fz ≤ −k3xT
z Pxz, (81)

where k3 > 0, and for some ε > 0, xz ∈ Ω = {xz ∈ R3
∣∣∣|x1| ≤ π

2 − ε}. Now, for the forced
system (77), with

λmin(P)‖xz‖2 ≤ V(xz) ≤ λmax(P)‖xz‖2, (82)

∂V
∂xz

fz ≤ −k3xT
z Pxz, (83)

∣∣∣∣ ∂V
∂xz

A
∣∣∣∣ ≤ k4‖xz‖, (84)
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where λmin(P) and λmax(P) denote the minimum and maximum eigenvalue of P, respectively,
and k4 > 0. It follows immediately from Lemma 2 that the equilibrium point of the zero
dynamics (51) is semi-globally asymptotically stable over Ω= {x ∈ R3

∣∣∣|x1| ≤ π
2 − ε}.

Theorem 2. (stability of the closed-loop system): The sliding variables (33) and the controller
defined by (38), (39), and (41) ensure that the equilibrium point of the rotary inverted pendulum
system is semi-globally asymptotically stable in the upper-half plane.

Proof. It can be known from Theorem 1 that the semi-globally asymptotic stability can
be obtained over the upper-half plane for the zero dynamics of the closed-loop system.
It implies that β → 0, β̇ → 0 as t → ∞. Therefore, on the sliding manifold sφ = 0,
from (33), we have żφ + azφ → 0 as t → ∞. Because a > 0, it gives that zφ → 0, żφ → 0
as t → ∞. From β → 0, β̇ → 0, zφ → 0, żφ → 0, and (26), it follows that φ → 0, φ̇ → 0 as
t→ ∞. This concludes that on the sliding manifold, the closed-loop system is semi-globally
asymptotically stable over Ω.

3.2. Controller Design of Spherical Inverted Pendulum

The design of the stabilizing controller for the spherical inverted pendulum system
using second-order sliding mode control is presented in this subsection. Clearly, the
dynamics given in (15)–(18) are highly nonlinear and dynamically coupled. The system
model simplification is required because the system model is too complex to be used
directly in the control design. By symmetry of the system, the spherical inverted pendulum
system can be viewed as a two-dimensional extension of the traditional cart-pole inverted
pendulum system [31]. The angular displacements α and β are small for balance control,
so cross-coupling is neglectable. The system can be simplified and decoupled into two
independently cart-pole inverted pendulum systems as follows

(m + M)ẍ + (ml cos α)α̈− (mlα̇ sin α)α̇ = Fx, (85)

(ml cos α)ẍ + (ml2 + IPyy)α̈−mgl sin α = 0, (86)

(m + M)ÿ + (ml cos β)β̈− (mlβ̇ sin β)β̇ = Fy, (87)

(ml cos β)ÿ + (ml2 + IPxx)β̈−mgl sin β = 0, (88)

From (85)–(88), we can see that two cart-pole inverted pendulum systems in the
X-axis and Y-axes are identical. Next, only the controller design of the cart-pole inverted
pendulum system in the X axis is addressed. By introducing a disturbance or uncertainty
dx1 which may include external disturbance, parametric perturbation, and unmodeled
dynamics, the dynamic Equations (85) and (86) is rewritten as follows

ẍ =
(ml2 + Ipyy)(mlα̇2 sin α)−m2l2g sin α cos α

m2l2 + Mml2 + (m + M)IPyy −m2l2cos2α

+
ml2 + Ipyy

m2l2 + Mml2 + (m + M)IPyy −m2l2cos2α
(Fx + dx1),

(89)

α̈ =
−m2l2α̇2 sin α cos α + (m + M)mgl sin α

m2l2 + Mml2 + (m + M)IPyy −m2l2cos2α

+
−ml cos α

m2l2 + Mml2 + (m + M)IPyy −m2l2cos2α
(Fx + dx1).

(90)

To obtain the regular form for the system of (89) and (90), the following change of
variables is used

zx = x− ϕ(α), (91)

where
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ϕ(α) = −
ml2 + Ipyy

ml
ln

1 + tan(α/2)
1− tan(α/2)

. (92)

Then the regular form is given by

z̈x = H(α, α̇) tan α, (93)

α̈ = vs(α, α̇, Fx) + dx, (94)

where

H(α, α̇) =g +
ml2 + Ipyy

ml cos α
α̇2, (95)

vs(α, α̇, Fx) =
−m2l2α̇2 sin α cos α + (m + M)mgl sin α

(m + M)(ml2 + Ipyy)−m2l2cos2α

+
−ml cos α

(m + M)(ml2 + Ipyy)−m2l2cos2α
Fx,

(96)

dx =
−ml cos α

(m + M)(ml2 + Ipyy)−m2l2cos2α
dx1. (97)

The following coupled sliding variable is chosen:

sx = kx(żx + axzx) + (α̇ + bxα) (98)

where kx, ax, and bx are constant parameters. By referring to the condition of (68), the
appropriate kx, ax, and bx can be selected to guarantee that the closed-loop system is
asymptotically stable. Differentiating sx yields

ṡx = kx(z̈x + ax żx) + α̈ + bx α̇

= kx[H(α̇, α̇) tan α + ax żx] + vs(α, α̇, Fx) + bx α̇ + dx.
(99)

System Equations (93) and (94) whose relative degree is one relative to sx. Define the
following control input

v = vs(α, α̇, Fx) + kx[H(α, α̇) tan α + ax żx] + bx α̇. (100)

then obtain

ṡx = v + dx. (101)

Again, the following super-twisting sliding mode controller is used

v = −λx|sx|
1
2 sgn(sx) + v1, (102)

v̇1 = −Wxsgn(sx), (103)

where λx and Wx are positive constant gains. Finally, from (100) and (96), the control force
is given by

Fx =
−1

ml cos α
{[v− kx H(α, α̇) tan α− kxax żx − bx α̇][(m + M)(ml2 + Ipyy)−m2l2cos2α]

+ m2l2α̇2 sin α cos α− (m + M)mgl sin α}.
(104)

In the same way, the cart-pole inverted pendulum system in the Y-axis also uses the
same design method to obtain the control force Fy. Stability analysis of the closed-loop
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system is omitted since it follows along the same limes as the proofs of Theorem 1 and
Theorem 2.

It is supposed that the controlled omn-idirectional wheeled mobile robot only has
planar motion without any rotational movement in the balance control of the spherical
inverted pendulum system. Therefore, in order to keep the mobile robot not rotating
during the balancing process, a controller needs to be designed for the rotational motion.
To this end, a proportional-derivative (PD) controller for the rotational motion control of
the mobile robots is designed as follows:

τφ = −Kφ1φ̇− Kφ2φ, (105)

where Kφ1 and Kφ2 are positive constants. In this way, the mobile robot is controlled to
have the rotation angle φ to be zero. Finally, by substituting the plane control forces Fx and
Fy and the control torque τφ into (23), the control voltages of the motors can be obtained.

4. Explanation of the Experimental Device

An experimental setup which can be configurated as a rotary inverted pendulum or a
spherical inverted pendulum on an omni-directional wheeled mobile robot was built as
shown in Figure 5. A two-axis gimbal mechanism is used to enable the pendulum rod to
rotate in pitch and yaw direction for the spherical inverted pendulum. One of the rotation
axes can be fixed for the rotatory inverted pendulum. This gimbal mechanism can be
mounted on the center or off-center of the platform of the mobile robot. Optical encoders
measure the angular displacement of the pendulum with a resolution of 2000 pulses/rev.
The robot is driven by brushed dc motors with optical encoders with a resolution of
500 pulses/rev. The designed control laws are implemented on an in-house embedded
system based on a digital signal processor. There are two quadrature decoders and a
pulse width modulation (PWM) generator for the digital signal processing board. The
PWM driver circuits are used to drive each brushed dc motor. The sampling rate of
the system is set to 1 kHz. The quadrature signal is generated by the optical encoder
measuring the angular displacement of the pendulum, and then this signal inputs to the
quadrature decoder on the digital signal processing board. The optical encoder mounted
on the motor generates quadrature signals, which are then input to a quadrature decoder
circuit implemented on a Field Programmable Gate Array (FPGA) board. The difference
in consecutive encoder counts read per unit time is used to estimate the angular velocity
of the pendulum and wheels. For noise caused by this differential action, a low-pass filter
is used to attenuate it. A dead reckoning algorithm is used to determine the position and
orientation of the mobile robot.
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(b)

Figure 5. Experimental setup: (a) is a rotary inverted pendulum system, and (b) is a spherical inverted
pendulum system.

5. Simulation and Experimental Results

The simulation studies are conducted using the Simulink software to verified designed
control schemes. The designed sliding mode control laws are implemented and tested
on the experimental setup show in Figure 5. Based on the linearized system models, the
classical LQR (Linear Quadratic Regulator) controllers are designed and applied to the
systems for performance comparison. Conventional sliding mode controllers based on our
previous work [15] are also designed and tested for performance comparison.

5.1. Simulation Results of Rotary Inverted Pendulum

The simulation results for the rotary inverted pendulum system are shown in Figures 6–8.
From the simulation results, the LQR controller, conventional sliding mode controller, and
second-order sliding mode controller all can stabilize the rotary inverted pendulum system.
Moreover, from Figure 6, the system with the LQR controller and conventional sliding mode
controller have more significant overshoots in the angular displacements of the pendulum
and robot. Figures 7 and 8 shows that the system with LQR controller and conventional
sliding mode controller have significant position deviation of the robot. From the simulation
results, it can be seen that the system with second-order sliding mode control has better
performance, in terms of less overshoot, faster convergence in the pendulum angle, and less
position deviation of the robot. Table 1 summarizes the simulation results of the maximum
deviations of the pendulum’s angle, the robot’s rotation angle, and robot’s position. A
sinusoidal disturbance with a frequency of 10 rad/s is added to the control torque in the
simulation to show the robustness of the sliding mode control schemes. Figure 9 shows that
all three controllers can balance the rotary inverted pendulum even with the disturbance,
but both sliding mode controllers have a less significant steady-state oscillation in the
pedulum’s angle and the robot’s rotation angle than the LQR controller. To access the
control system’s robustness to the pendulum’s initial deviation, a large initial deviation
from its upright position is considered in the simulation. Figure 10 shows that the proposed
second-order sliding mode controller allows an initial deviation of 40◦ of the pendulum
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from its upright position, whereas for the conventional sliding mode controller and LQR
controller, the system is no longer stabilizable and the response becomes divergent.

Table 1. The simulation results of the maximum deviations of the pendulum’s angle, the robot’s
rotation angle, and the robot’s positions.

Controller
Maximum Deviation of
the Pendulum’s Angle

Maximum Deviation of the
Robot’s Rotation Angle

Maximum Deviation of the
Robot’s Positions

β φ x y

LQR −4.0◦ 88◦ 0.050 m 0.040 m

Conventional SM −3.9◦ 70◦ 0.018 m 0.011 m

Second-order SM −2.1◦ 48◦ 0.007 m 0.007 m
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Figure 6. The simulation results compare the angle responses of the inverted pendulum on β and the
robot on φ, respectively.
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Figure 7. The simulation results of the rotary inverted pendulum compare the robot’s position
responses on the X-axis and Y-axis, respectively.
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Figure 8. The simulation results compare the robot’s trajectory in the X-Y plane.
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Figure 9. The simulation results with the disturbance compare the angle responses of the inverted
pendulum on β and the robot on φ, respectively.
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Figure 10. The simulation results for the pendulum’s angle with the initial value of 40◦ compare the
angle responses of the inverted pendulum on β.

5.2. Simulation Results of Spherical Inverted Pendulum

For the spherical inverted pendulum system, the simulation results of the pendulum’s
angular displacement response, the robot’s position response, the robot’s rotation angle
response, and the robot’s trajectory are shown in Figures 11–13, respectively. The simulation
results show that the spherical inverted pendulum system is stabilized by all the designed
control laws. Moreover, from Figure 11, the system with LQR controller and conventional
sliding mode controller have more significant overshoots in the angular displacements of
the pendulum. Figures 12 and 13a show that the system with the LQR controller also has a
significant position deviation of the robot. Figure 13b shows that the second-order sliding
mode controller has less overshoot and faster convergence in the rotation angle of the robot.
From the simulation results, it can be seen that the system with second-order sliding mode
control has better performance in terms of less overshoots and faster convergence in the
angular displacements of the pendulum and rotation angle of the robot. Table 2 summarizes
the simulation results of the maximum deviations of the pendulum’s angles, the robot’s
rotation angle, and the robot’s positions. Sinusoidal disturbances with a frequency of
10 rad/s are added to the control forces in the simulation to show the robustness of the
sliding mode control schemes. Figures 14 and 15 show that all three controllers can balance
the rotary inverted pendulum even with the disturbances, but both sliding mode controllers
have a less significant steady-state oscillation in the pendulum’s angular displacements and
robot’s positions than the LQR controller. Figure 16 shows that the proposed second-order
sliding mode controller allows an initial deviation of 30◦ of the pendulum from its upright
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position, whereas for the conventional sliding mode controller and LQR controller, the
system is no longer stabilizable and the response becomes divergent.

Table 2. The simulation results of the maximum deviations of the pendulum’s angles, the robot’s
rotation angle, and the maximum deviations of the robot’s positions.

Controller

Maximum Deviation of the
Pendulum’s Angles

Maximum Deviation of the
Robot’s Rotation Angle

Maximum Deviation of the
Robot’s Positions

α β φ x y

LQR −2.2◦ −5.0◦ 1.1◦ 0.14 m 0.29 m

Conventional SM −2.2◦ −4.5◦ 0.4◦ 0.09 m 0.19 m

Second-order SM −1.6◦ −2.9◦ 0.1◦ 0.10 m 0.20 m
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Figure 11. The simulation results compare the angle responses of the inverted pendulum on α and
β, respectively.
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Figure 12. The simulation results of the spherical inverted pendulum compare the robot’s position
responses on the X-axis and Y-axis, respectively.
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Figure 13. The simulation results compare (a) the robot’s trajectory in the X-Y plane and (b) the
rotation angle responses of the robot.
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Figure 14. The simulation results with the disturbance compare the angle responses of the inverted
pendulum on α and β, respectively.
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Figure 15. The simulation results with the disturbance compare the robot’s position responses on the
X-axis and Y-axis, respectively.
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Figure 16. The simulation results for the pendulum’s angle with the initial value of 30◦ compare the
angle responses of the inverted pendulum on α and β, respectively.

5.3. Experimental Results of Rotary Inverted Pendulum

For the rotary inverted pendulum system, the experimental results are shown in
Figures 17–19. From the experimental results, the LQR controller, conventional sliding
mode controller, and second-order sliding mode controller all can stabilize the rotary
inverted pendulum system. In Figure 17, for second-order sliding mode control, in the
steady-state the pendulum oscillates slightly within a range of ±2◦ in the β angle, and the
rotation angle of the robot oscillates within a range of −20◦ to +30◦ in the angle of φ. For
LQR control, in the steady-state the pendulum oscillates slightly within a range of ±5◦ in
the β angle, and the rotation angle of the robot oscillates within a range of −40◦ to +30◦ in
the angle of φ. For conventional sliding mode control, in the steady-state the pendulum
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oscillates slightly within a range of ±3◦ in the β angle, and the rotation angle of the robot
oscillates within a range of−75◦ to +30◦ in the angle of φ. It show that second-order sliding
mode control has better performance in terms of less steady-state variations in angular
displacement of the pendulum and rotation angle of the robot. Figures 18 and 19 show
that the LQR-controlled system has apparent robot position deviation. Table 3 summarizes
the experimental results of the steady-state oscillating range of the pendulum’s angle, the
steady-state oscillating range of the robot’s rotation angle, and the maximum deviation of
the robot’s positions.

Table 3. The experimental results of the steady-state oscillating range of the pendulum’s angle,
the steady-state oscillating range of robot’s rotation angle, and the maximum deviation of the
robot’s positions.

Controller

Steady-State Oscillating Range
of the Pendulum’s Angle

Steady-State Oscillating Range
of Robot’s Rotation Angle

Maximum Deviation of the
Robot’s Positions

β φ x y

LQR ±5◦ −40◦ to +30◦ 0.020 m 0.016 m

Conventional SM ±3◦ −75◦ to +30◦ 0.008 m 0.005 m

Second-order SM ±2◦ −20◦ to +30◦ 0.007 m 0.003 m

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

10
LQR
Conventional Sliding Mode
Second-Order Sliding Mode

Time (s)

P
en

d
u

lu
m

 a
n

g
le

 
(d

g
e)

 

0 2 4 6 8 10 12 14 16 18 20
-80

-60

-40

-20

0

20

40
LQR
Conventional Sliding Mode
Second-Order Sliding Mode

Time (s)

R
o

b
o

t 
ro

ta
ti

o
n

 a
n

g
le

 
(d

g
e)

 

-

-

-

-

-

Figure 17. The experimental results compare the angle responses of the inverted pendulum on β and
the robot on φ, respectively.
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Figure 18. The experimental results of the rotary inverted pendulum compare the robot’s position
responses on the X-axis and Y-axis, respectively.
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Figure 19. The experimental results compare the robot’s trajectory in the X-Y plane.

5.4. Experimental Results of Spherical Inverted Pendulum

For the spherical inverted pendulum system, the experimental results of the pendu-
lum’s angular displacement response, the robot’s position response, the robot’s rotation
angle response, and the robot’s trajectory are shown in Figures 20–22, respectively. The
experimental results show that the spherical inverted pendulum system can be stabilized
by all the designed control laws. It can be seen from Figure 20 that for the second-order
sliding mode control in the steady-state, the pendulum swings slightly on α in the range of
±1◦ and on β in the range of ±1◦ when the pendulum is in the upright position. For LQR
control in the steady-state, the pendulum swings slightly on α in the range of ±3◦ and on
β in the range of ±2.5◦ when the pendulum is in the upright position. For conventional
sliding mode control in the steady-state, the pendulum swings slightly on α in the range
of ±2◦ and on β in the range of ±2◦ when the pendulum is in the upright position. From
Figures 21 and 22a, LQR control has significant position deviation of the robot, and second-
order sliding mode control has less position deviation of the robot. Figure 22b shows that
the rotation angle φ of the robot has a slight variation around 0◦ in these control strategies,
and second-order sliding mode control has fewer variations. Overall it shows that second-
order sliding control gives better performance over LQR control and conventional sliding
mode control. Table 4 summarizes the experimental results of the steady-state oscillating
range of the pendulum’s angles, the steady-state oscillating range of robot’s rotation angle,
and the maximum deviation of the robot’s positions.

Table 4. The experimental results of the steady-state oscillating range of the pendulum’s angles,
the steady-state oscillating range of robot’s rotation angle, and the maximum deviation of the
robot’s positions.

Controller

Steady-State Oscillating
Range of the

Pendulum’s Angles

Steady-State Oscillating
Range of Robot’s
Rotation Angle

Maximum Deviation of the
Robot’s Positions

α β φ x y

LQR ±3◦ ±2.5◦ ±0.65◦ 0.020 m 0.019 m

Conventional SM ±2◦ ±2.0◦ ±0.48◦ 0.015 m 0.021 m

Second-order SM ±1◦ ±1.0◦ ±0.30◦ 0.009 m 0.013 m
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Figure 20. The experimental results compare the angle responses of the inverted pendulum on α and
β, respectively.
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Figure 21. The experimental results of the spherical inverted pendulum compare the robot’s position
responses on the X-axis and Y-axis, respectively.
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Figure 22. The experimental results compare (a) the robot’s trajectory in the X-Y plane and (b) the
rotation angle responses of the robot.

6. Concluding Remarks

This paper used an omni-directional wheeled mobile robot to balance the configurable
inverted pendulum system. The stabilizing control laws of the systems were designed,
realized, and experimentally tested. The system’s mathematical models were derived for
the control design. The controllers were designed based on the second-order sliding mode
control. The results showed that the proposed control law guarantees the closed-loop
system to be semi-globally asymptotically stable in the upper-half plane. The experimental
setup was built, and the controllers were realized. The designed control system demon-
strated to be effective in simulation and experimental results. In the simulation studies, for
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the rotary pendulum system without any uncertainty and disturbance, the second-order
sliding mode control yields a smaller pendulum angle deviation, a smaller robot rotation
angle deviation, and a smaller robot position deviation than other controllers. For the sys-
tem with the sinusoidal matched disturbance, the simulation shows that the second-order
sliding-mode controller also has a less significant steady-state oscillation in the pendulum’s
angle and a less significant steady-state oscillation in the robot rotation angle than other
controllers. Furthermore, only the second-order sliding mode controller can stabilize the
system with an initial deviation of 40◦ of the pendulum from its upright position. For the
spherical pendulum without any uncertainty and disturbance in the simulation studies,
the second-order sliding mode control also yields smaller pendulum angle deviations, a
smaller robot rotation angle, and a smaller robot position deviation than other controllers.
For the system with the sinusoidal matched disturbance, the simulation shows that the
second-order sliding mode controller also has a less significant steady-state oscillation in
the pendulum’s angle and a less significant robot position oscillation than other controllers.
Furthermore, only a second-order sliding mode controller can stabilize the system with
an initial deviation of 30◦ of the pendulum from its upright position. It is shown in the
experimental results that the second-order sliding mode control is more effective than the
LQR control based on the linearized system model and the conventional sliding mode
control of our previous work.
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