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Abstract: Biodegradable polymers have been used as carriers in drug delivery systems for more
than four decades. Early work used crude natural materials for particle fabrication, whereas more
recent work has utilized synthetic polymers. Applications include the macroscale, the microscale,
and the nanoscale. Since pioneering work in the 1960’s, an array of products that use biodegradable
polymers to encapsulate the desired drug payload have been approved for human use by international
regulatory agencies. The commercial success of these products has led to further research in the
field aimed at bringing forward new formulation types for improved delivery of various small
molecule and biologic drugs. Here, we review recent advances in the development of these materials
and we provide insight on their drug delivery application. We also address payload encapsulation
and drug release mechanisms from biodegradable formulations and their application in approved
therapeutic products.

Keywords: biodegradable materials; biopolymer; liposome; encapsulation methods; degradation
mechanisms; therapeutic products

1. Introduction

The fabrication of micro- or nano-particle formulations to address challenges in drug
delivery has been of interest for decades. Compared with traditional drug delivery systems,
microparticle and nanoparticle drug delivery platforms have a number of advantages [1,2],
including the ability to: (a) load multiple drugs into the micro- or nano-particles in one
step, (b) attach targeting ligands, (c) increase the circulation half-life of the encapsulated
drug and/or reduce its non-specific toxicity [3,4].

To successfully design and develop a polymeric drug formulation, there are three main
issues that need to be taken into consideration, namely, the physicochemical properties
of the drug(s) of interest, the properties of the polymeric carrier, and the drug delivery
system [5].

In general, polymeric drug delivery systems may be categorised into one of three types,
namely, colloidal carriers [6], implantable networks or hydrogels [7,8], and polymer drug
conjugates [9]. Selection of a suitable polymer that is compatible with the encapsulated
drug(s) of interest is vitally important for achieving the desired product performance
in vivo. In other words, the encapsulated drug candidate’s properties including chemistry,
hydrophobicity/hydrophilicity and potency, need careful analysis as the drug release
profile is influenced by the drug properties, the interaction between the drug and polymer
and the release environment [10]. Additionally, the physicochemical characteristics of the
polymeric formulation (e.g., particle size and shape, hydrophobicity and hydrophilicity,
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surface charge) also affect the in vivo performance and biodistribution of the polymeric
formulation [11].

In the following sections of this review, we discuss the evolution of biodegradable
polymeric drug delivery systems, methods used for encapsulation of drugs with biodegrad-
able polymers, drug release mechanisms from polymeric formulations, and successful
commercial products on the market.

2. The Evolution of Biodegradable Polymeric Drug Delivery Systems

Over the past 60 years, there have been four eras in the evolution of polymeric drug
delivery systems. Apart from the maturing of nanotechnology and synthetic polymer
chemistry, the size of the delivery apparatus has become progressively smaller, from
macroscale to microscale and nanoscale, as summarized in Figure 1.

Figure 1. Schematic diagram summarizing the evolution of polymeric drug delivery systems (modi-
fied from Kamaly et al., 2016 [10]).

Research on drug incorporation into solid polymers for medical applications began
in the mid-1960’s [12]. Because the field of nanotechnology was not mature at that time,
drug delivery using this approach could only be applied on the macroscale. An example is
use of a local drug depot device to achieve spatiotemporal control of drug delivery [10].
In these early applications, only readily accessible natural materials were used and some
of them were non-biodegradable polymers. Hence, drug release was mainly driven by
diffusion of the drug from the depot due to lack of degradation of the polymer matrix [13],
and the implanted device needed to be removed after drug release was complete. Along
with the development of synthetic polymer chemistry, more and more biodegradable
polymers were utilized to evolve the macroscale devices to new versions to minimize
side effects. One successful example approved by the United States (USA) Food and
Drug Administration (FDA) in the 1990’s was Gliadel®, an implanted copolymer disk
(prolifeprospan 20) with the cytotoxic drug (carmustine) encapsulated for the treatment of
glioblastoma multiforme [14,15].

2.1. Polyesters

Since the pioneering work of Langer and Folkman in the 1970’s, biodegradable poly-
mers have been developed and become widely accepted as a mature system to deliver
encapsulated drugs in a controlled manner [16]. Synthetic biodegradable polymers such as
polyesters are widely used due to their biodegradability, biocompatibility, and their ease
of processing [17,18]. They have glass transition temperatures or melting points above
37 ◦C, which enable them to retain a solid form in the in vivo environment. Among them,
poly(lactide-co-glycolide) (PLGA) is the most popular polymer carrier used in microparticle
systems. PLGA polymers degrade by random hydrolysis of ester bonds with encapsulated
drug released by bulk erosion mechanisms. Their degradation periods vary from days to
years according to their molecular weight and lactic acid to glycolide residue ratios [19].
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Generally, a higher proportion of lactide units, high molecular weight, and increasing crys-
talline content leads to a longer degradation time [20]. This means that various polymeric
carriers can be used to design and fabricate particles to achieve a range of different release
durations and so produce the desired therapeutic drug concentration profile.

2.2. Poly(ortho esters)

Poly(ortho ester) polymeric formulations are designed to achieve steady drug release
subsequent to hydrolysis of polymer chains on the surface of the polymer. Poly(ortho
ester) biopolymers were developed in the early 1970’s and their main applications were in
surgical repair materials and sutures [21]. In this decade, their applications in drug delivery
systems for delivery of analgesics, DNA vaccines, and antiproliferative drugs have been
studied widely [22].

The first generation of poly(ortho esters) were fabricated by the addition of DETOSU
(3,9-bis(ethylidene-2,4,8,10-tetraoxaspiro [5.5]undecane) to a diol to form a DETOSU-based
poly(ortho ester). Ester hydrolysis takes place within the aqueous environment and the
hydrolysis rate can be adjusted by inclusion of acidic or basic units into the polymer matrix.
For example, acid-catalysed hydrolysis increased microparticle degradation rate and a
zero-order release of 5-fluorouracil over a 15-day period was achieved [23]. In another
case, basic excipients stabilized the matrix bulk and facilitated surface-only erosion. By this
approach, controlled release of tetracycline over a period of weeks was achieved for the
treatment of periodontal disease [24].

Diffusion of acidic excipients out of the polymer matrix leads to unpredictable release
kinetics. To address this issue, a new biopolymer structure containing the glycolide se-
quence was designed and self-catalysed hydrolysis without excipients was achieved [25].
Modification of a diol group by conjugation with an N-methyldiethanolamine can render
the polymers pH sensitive in acidic environments [26]. Furthermore, because the poly(ortho
ester) is highly hydrophobic, very limited water can penetrate into the matrix, which leads
to a relatively low hydrolysis rate. By using poly(ethylene glycol) as the diol, polymer
hydrophilicity was increased, which led to increased erosion rates [21].

2.3. Polyanhydrides

Polyanhydride biopolymers were introduced and developed with the motivation of
achieving more stable degradation rates compared with other biopolymers. The anhydride
bond linkages on the surface are very water sensitive but the polymer matrix is hydrophobic,
preventing water penetration into the bulk, and so the predominant effect is surface
erosion with a stable rate achieved [27]. In brief, the structure of the poly(anhydride) is
comprised of two main components, an aliphatic segment, normally based on sebacic
acid (SA) and an aromatic part, typically based on p-(carboxyphenoxy)-propane (CPP)
and p-(carboxyphenoxy) hexane (CPH). The aliphatic poly(anhydride) degrades within
days, whereas the aromatic poly(anhydride) degrades within years [28], and hence the
degradation rate can be adjusted by varying the ratio of polymer units in the material.

The degradation product of polyanhydrides is a non-toxic diacid that can be readily
metabolized and/or eliminated from the body, and therefore polyanhydrides demonstrate
excellent biocompatibility [29]. This led to development of a polyanhydride controlled
release product containing the chemotherapeutic agent, carmustine (Gliadel®), which
was approved by the FDA for the treatment of brain cancer in 1996 [30]. Additionally, a
polyanhydride implant loaded with gentamicin sulphate (Septacin®) [31] was developed
for sustained local delivery for the treatment of osteomyelitis [14].

Apart from the classic CPP-SA or CPH-SA polyanhydrides, alternatives of CPP and/or
CPH anhydrides with poly fatty acid dimers have been developed. As the fatty acid dimers
deposit onto the surface of poly matrices in parallel with the degradation process, they
can impede the diffusion of small molecule drugs and achieve a longer release period [32].
Furthermore, modification of the anhydride group by linking with imines and/or esters is
potentially beneficial [33].
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2.4. Polyamides, Polydopamine, and Polyphenol

Polyamides were introduced for prolonged delivery of drug cargos, with amide acid
derived polymers being the most widely used [34]. Although they display biocompatibility
in animals and produce relatively non-toxic products after metabolism [35,36], applications
are restricted due to the intrinsic hydrolytic stability of the amide bond and cleavage rates
rely highly on the presence of amidase enzymes. However, by modifying the amide acid
group and conjugating the drug via a carboxylate bond [37], polymer–drug conjugates can
be designed as insoluble particles [38], which can penetrate into cells and release the drug
payload by enzymatic degradation over a long period [39,40]. In this decade, there has been
interest in the application of materials such as polydopamine (PDA) and polyphenol. PDA
is a nature inspired polymeric pigment that exhibits excellent photo-responsive properties
and it has active surface functionality for drug loading [41,42]. Polyphenols are widely
used in tissue engineering and drug loading based on their unique polyphenolic structures
and inherent biocompatible, bioadhesive, antioxidant, and antibacterial properties [43].

2.5. Phosphorous-Containing Polymers

In contrast to other biodegradable polymers, phosphorous-containing polymers are
distinct due to their degradation kinetics determined by the structural modification of the
side-chain rather than the polymer backbone [44]. Use of phosphorus-based materials
(polyphosphates, polyphosphonates, polyphosphazenes, polyphosphoesters, phospho-
nated poly(meth)acrylates, etc.) in biomedical applications is increasing due to their good
biodegradability and biocompatibility [45,46]. Crommen et al. reported that control of the
degradation rate may be achieved by the selection of various amine groups in the side
chain [47]. As the degradation products such as phosphate, ammonia, and ethanol are
non-toxic, phosphorous-containing polymers are employed as the carrier for controlled
delivery of multiple drugs and peptides [48]. For example, a polyphosphazene-based
polymeric formulation loaded with naproxen produced sustained release over a 4-week
period [49].

2.6. Liposomes

The earliest nanoscale research began with liposome and polymer-drug conjugates.
First generation liposomes were introduced in the early 1980s and the aim was to reduce car-
diac uptake whilst preserving the anti-tumour activity of adriamycin [50]. However, due to
its relatively rapid uptake into the bloodstream, this pioneering formulation type achieved
only a limited therapeutic benefit, thereby impeding more widespread application [51–53].
The second generation of liposomes was developed as a means to enhance the stability and
circulation time in the bloodstream. As poly(ethylene glycol) (PEG) was introduced into
the structure to form sterically-stabilized liposomes, they are normally named PEGylated
liposomes [54]. The PEG chain connected on the surface of the liposome establishes a steric
barrier preventing opsonisation, leading to a longer half-life [52] as well as reduced drug-
related side effects [55–57]. However, the general drawback of PEGylated liposomes is that
they impair the approaching ability and interaction with target membranes [58]. To address
this problem, a large variety of liposomal structures that shed their PEG coat have been
designed such as attaching PEG to short acyl chains or co-administration with uncoated
vesicles to act as a sink [59]. Promising ligand-targeted liposomes have emerged in this
decade aimed at delivering drugs selectively to designated cell types or organs in vivo
that express or over-express specific ligands at the site of the disease [60,61]. Generally,
liposomes are phospholipid vesicles comprised of a discrete aqueous phase core enclosed
by one or more concentric lipid bilayers (Figure 2).
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Figure 2. Schematic illustration of different types of liposomal drug delivery systems: (A) Conven-
tional liposome, (B) PEGylated liposome, (C) Ligand-targeted liposome, (D) Theranostic liposome
(adapted from Sercombe, L., et al. Frontiers in Pharmacology, 2015 [54]).

Many types of ligands are possible including peptide, protein, antibody, small molecule,
and carbohydrate. Although the application of ligand-targeted liposomes is potentially
broad, limitations on the performance of immunoliposomes have been reported [62,63].
To overcome the limitations of currently available site-specific liposomal carriers, a new
generation of liposomal platforms has been designed and introduced [64]. The key strategy
integrates advantages of different types of liposomes and establishing a hybrid structure.
For instance, adding PEG chains to immunoliposomes can sterically stabilize and improve
their pharmacokinetics [65–67].

Compared to conventional formulations, liposome formulations should demonstrate
better efficacy and/or reduced side effects compared with their conventional counterparts
or existing therapies in clinical trials before successfully entering the market. Apart from
products currently marketed (Table 1), there are a number of liposomal formulations
currently in clinical trials, and these are also summarized in Table 1. Although there are
still some challenges to be overcome, liposomal formulations have a promising future.

Table 1. Liposome based products on the market and in clinical trials.

Encapsulated
Drug

Regulatory
Approval Year Product Name Treatment Annual Sales Delivery System References

Small interfering
ribonucleic acid 2018 Onpattro® Peripheral

never disease
166.4 million

(2019)
Liposomal
injection [68]

Daunorubicin
and cytarabine 2017 Vyxeos®

Therapy-
Related Acute

Myeloid
Leukemia
(t-AML)

~100 million
(2018)

Liposomal
injection [69]

Irinotecan 2015 Onivyde®

Metastatic
pancreatic ade-
nocarcinoma

(mPAC)

~40 million
(2016)

Liposomal
injectable

suspension
[70]

Doxorubicin 2013 Lipo-Dox® Some types of
cancers

~800 million
(2015)

Liposome
injection [71]
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Table 1. Cont.

Encapsulated
Drug

Regulatory
Approval Year Product Name Treatment Annual Sales Delivery System References

Bupivacacine 2011 Experal®
Pain

management
331 million

(2018)

Liposomal
injectable

suspension
[72]

Cytarabine 2007 DepoCyt® Anti-neoplastic 7.2 million
(2016)

Liposome
injection [73]

Morphine Sulfate 2004 DepoDur® Pain-
management

1.1 million
(2005)

Liposome
injection [73]

Inactivated
hemaglutinine 1997 Inflexal V® Influenza Liposome

injection [73]

Daunorubicin 1996 DaunoXome® Cancer 4.4 million
(1997)

Liposome
injection [74,75]

Amphotericin B 1996 Amphotec® Fungal 27 million
(1997)

Lyophilized
powder (Lipid

complex)
[76,77]

Doxorubicin 1995 Doxil® Cancer 82.4 (2000) Liposome
injection [78]

Amphotericin B 1995 Abelcet® Fungal ~69 million
(2001)

Lipid complex
injection [79]

Prostaglandin E-1
Cisplatin and its

analogue
L-NDDP

Topotecan

Phase II
Phase II
Phase II
Phase I

Liprostin
SPI-077

Aroplatin
Brakiva

Cardiovascular
diseases

Lung, head and
neck cancers

Chemotherapeutic
Relapsed solid

tumor

Target release
Target release
Target release
Target release

Liposome
injection [80]

Liposome
injection [81]

Liposome
injection [82]

Liposome
injection [83]

NCT00053716
NCT00004083
NCT00081549
NCT00054444

Vinorelbine Phase II LipoVNB Advanced
Malignancy Target release Liposome

injection [84] NCT02925000

Doxorubicin Phase III ThermoDox Hepatocellular
Carcinoma Target release

Lyso-
Thermosensitive

liposomal [85]
NCT02112656

Paclitaxel Phase III EndoTAG-1

Pancreatic
cancer

Triple negative
breast cancer

Target release Liposome
injection [86,87] NCT03126435

MUC1 peptide Phase III Stimuvax Non-small cell
lung cancer Target release

Liposomal
injectable

suspension [73]
NCT00409188

Amikacin Phase III Arikayce Lung infection High efficacy
target release

Liposomal
inhalation

nebulizer [88]
NCT01315678

Source from clinicaltrials.gov (accessed on 25 November 2021).

2.7. Dendrimers

Dendrimers are a class of well-defined highly-branched macromolecules in contrast
to linear polymers. Their architecture is comprised of a common core and discrete den-
dritic branches radiating out in layers around a central core until a spherical structure is
established [89–91]. In these unique structures (Figure 3), drugs of interest can be con-
tained within the void space of the interior and/or connected onto the surface by chemical
modification. Dendrimers have been employed in biomedical applications, including as

clinicaltrials.gov
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drug carriers by encapsulation and/or conjugation [92–94], as well as being utilized as a
part of a formulation or as complexing agents [95–97]. Furthermore, dendrimers as con-
trast/imaging agents carrying magnetic resonance imaging (MRI) agents and fluorophores
have attracted strong interest in research and development [98–100].

Figure 3. Schematic diagram of the general structure of dendrimers. The architecture is comprised of
core and interior branching radiating out in layers. The drug of interest can be filled into the void
space and/or connected onto the surface (adapted from Pharmaceutical Technology, 2008 [101]).

Compared with traditional linear polymer carriers, there are many advantages for
dendrimer carriers. Firstly, by controlled synthesis and their monodisperse nature, an
exact number of drugs can be loaded into the carriers and subsequently delivered [102].
Secondly, as dendrimer carriers can undergo two encapsulation processes, physically
absorbed and chemically attached, their drug loading abilities are enhanced [91]. Finally,
their physicochemical properties are highly correlated with their structures and determine
their pharmacokinetics [103,104]. Thus, a predictable and repeatable release profile can be
achieved with appropriate modification and optimization of their structure.

However, there are some challenges in translation of dendrimer platforms from the
research laboratory to the marketplace. The dendrimer platforms are complex systems with
multiple components such as dendritic branches, linkers, and encapsulated drugs, and so
the design and synthesis processes are complex. For example, with the same components,
linking via an ester bond or via an amide bond of the same drug with two possible sites,
these dendrimers display totally different activities in vivo [105,106]. Furthermore, the
cytotoxicity and permeability profile are correlated with concentration and surface charge,
which means evaluation is challenging and it needs to be conducted on a case-by-case basis.

In summary, dendrimer carriers have considerable potential in biomedical applica-
tions. Notably, most of the first generation of dendrimer-based products are used as
imaging agents or as diagnostic devices [107,108]. The first dendrimer-based product in
the therapeutics field (Vivagel®) [109] has antiviral and antibacterial properties and is
approved for clinical use in Australia and New Zealand. The phase 3 clinical trial results
for both the treatment of bacterial vaginosis (BV) (2012) and the prevention of recurrent BV
(2017) strongly supported their marketing applications. The New Drug Application (NDA)
for VivaGel® BV was submitted to the FDA in 2019 under the Fast Track designation.
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2.8. Layered Double Hydroxy Carriers

Layered Double Hydroxides (LDHs) belong to the group of layered materials, also
known as anionic clays [110]. Compared with other members in the layered materials
group, they are lamellar solids with inorganic components [111,112]. The first generation of
LDHs comprised natural material, identified, and reported in Sweden in 1842 [113]. After
that, a wide range of layered materials was developed and introduced. Generally, they are
constructed by brucite-like hydroxide sheets expanding the two-dimensional layers and
the exchangeable anions between the layers (Figure 4), which form a three-dimensional
structure altogether [114]. The brucite-like layers are typically composed of divalent or
trivalent cations with positive charge, whereas the interlayer galleries are made up of
anions and water molecules compensating the charge via electrostatic interaction [115].

Figure 4. Schematic illustration of loading the cisplatin prodrug, disuccinatocisplatin (DSCP), into
Layered Double Hydroxides through ion exchange (adapted from Ma, R., et al. Journal of Materials
Chemistry B, 2014 [116]).

A large number of divalent or trivalent cations can be used to build the layers (Mg2+,
Zn2+, Ni2+, Al3+, Ga3+, Fe3+, or Mn2+, etc.), whereas the compositions of the interlayer
gallery can be selected from simple or complex anions (CO3

2−, NO3−, Cl−, SO4
2−, or

RCO2−, etc.), anionic coordination compounds, and even polyoxo materials [117–121]. The
LDH hybrid matrix demonstrates a tunable structure and morphology [111], and with
modification of the ordering of cations and charge density of the layers, the physicochem-
ical properties of the interlayer gallery can be consequently adjusted, leading to better
biocompatibility [122], which is vitally important for incorporating drug(s) of interest and
designing the drug delivery system.

Employed as carriers in drug delivery systems, a wide range of molecules can be
intercalated with LDHs such as amino acids, peptides, ATP (adenosine triphosphate),
vitamins, and even polysaccharides [114,123]. Because of their unique structures built by
cation layers and anion interlayers, drug molecules can be loaded into the interlayer gallery
by anion exchange. By adjustment of surface charge, their chemical stability can be adjusted
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to various environments [124], leading to controlled release in both rate and site. For
instance, in 2004, Choy et al. reported the use of LDHs as a reservoir for folate derivatives
facilitating a significant increase in drug delivery efficiency [125]. In another example, a
significant decrease in release rate was achieved with a fluvastatin–LDH hybrid [126]. The
underpinning rationale was that hydrophobic LDH hybrids have slower release compared
with hydrophilic hybrids driven by fast anion exchange and intraparticle drug diffusion.
It is important to note that size and morphology can be precisely controlled with LDH
hybrids [127,128] and targeted delivery of drugs to tumour tissue with sustained drug
release has been achieved [129–131].

Since 2000, the use of LDHs as carriers in drug delivery systems has become increas-
ingly attractive [132]. Most therapeutic agents intercalated as guests can be categorized
as targeting diseases, such as anti-cancer, anti-inflammatory, and cardiovascular therapy,
and so on. Chemotherapy drug–LDH hybrids have been designed and utilized in the past
decade [133]. Examples include methotrexate (MTX), 5-fuorouracil, folinic acid, camp-
tothecin (CPT), and podophyllotoxin (PPT) [133,134]. In a series of papers by Choy et al.,
MTX–LDH hybrids demonstrated a significantly higher penetration rate through the cell
membrane [135] and lower cytotoxicity for certain cells [136]. Additionally, the in vitro
study of MTX–LDH by Oh et al. showed that the MTX–LDH could achieve the same drug
efficacy as MTX alone in spite of the 5000-fold lower concentration in the two osteosarcoma
cell lines [137]. In other work by Chakraborty et al. the MTX released from MgAl-MTX–
LDH hybrids showed relatively low release best described by first order kinetics with total
release completed within 8 days via diffusion and crystal dissolution mechanisms [138].
5-Fluorouracil (5-Fu) is a neutral weak acid and an anti-metabolite chemotherapeutic drug.
The first 5-Fu associated LDH hybrid was reported in 2005 by Wang et al. [139], which
was followed in 2008 by Choy et al. [140]. In their work, the drug–LDH hybrids inhibited
cancer cell proliferation more effectively than the parent drug [140]. Moreover, the release
profile of 5-Fu-LDH hybrids was pH sensitive such that at the same temperature, there was
a higher amount of 5-Fu released at pH 7.2 compared with pH 4.8 [141].

Camptothecin (CPT) and podophyllotoxin (PPT) are cancer therapeutics that inhibit
the enzyme, topoisomerase [142]. However, their utility is limited by poor water solubility
and low bioavailability, fast metabolic inactivation, and drug resistance [114]. To address
these issues, LDH-hybrids were formed. For example, the poor dispersion of CPT was im-
proved by its incorporation into MgAl-LDH with the net result being a marked reduction in
survival time of glioma cells in vitro [143]. Moreover, CPT–LDH hybrids prepared by a re-
construction method (intercalation of CPT into a layered gallery by reconstruction) showed
enhanced solubility and increased release time in vitro [144]. For PPT–LDH hybrids, they
strongly inhibited tumour cell growth compared with bare PPT due to increased circulation
time as well as superior tumour cell killing [145,146]. Non-steroidal anti-inflammatory
drugs (NSAIDs) are aromatic organic compounds. Generally, they have readily ionisable
carboxylic acid groups, which allow them to intercalate into the layer gallery of an LDH
host via ion-exchange [147,148]. NSAID–LDH hybrids significantly improve drug solubility
in an aqueous environment as well as their absorption rate in living organisms [111,149].
A wide range of NSAIDs, including ibuprofen, fenbufen, naproxen, diclofenac, and in-
domethacin have been successfully intercalated into LDH hosts through precipitation, ion
exchange, and reconstruction methods [133,150–153].

Apart from hosting anti-cancer and anti-inflammatory drugs, cardiovascular drugs
employed as guests with LDHs have been well investigated [154]. For instance, captopril
intercalated with LDH hybrids showed sustained release over 140 min under various
pH conditions in vitro (pH 4.60 and pH 7.45, respectively). Notably, release at pH 7.45
was devoid of an initial burst, which is vitally important in controlled delivery [155].
Moreover, the LDHs can be used as carriers for DNA vaccines to enhance in vivo antibody
responses [156]. In tumour-bearing mice, DNA/LDH hybrids markedly inhibited tumour
growth and prolonged mean survival time [157]. Furthermore, for dental treatment, zero
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initial burst and remarkably long steady release (up to one year) was achieved by fluoride-
LDH hybrids [158,159].

In summary, the unique structure of LDHs means that multiple drug classes can
be accommodated in their interlayer gallery or attached to their surface [160]. Drug–
LDH hybrids not only successfully deliver the drug(s) of interest to specific cells with an
enhanced penetration rate in vitro, but they may also demonstrate steady release without
side-effects in vivo [160], both of which are essential for practical applications in drug
delivery. However, there are hurdles still to be overcome and improved with regard to
drug–LDH hybrid products. For instance, due to the restricted interlayer space [161], only
small molecule drugs can be loaded whereas large molecules can only be attached to the
surface, which limits the drug-loading rate. Designing and synthesizing LDH-hybrids is
challenging as the structures are complex, and there are potential problems with rapid
aggregation [162] and decomposition [163].

2.9. Metal–Organic Framework Carriers

Metal–organic frameworks (MOFs) are hybrid inorganic–organic materials that have
emerged in the past decade, whereby the structure (Figure 5) is formed by self-assembled
metals and organic linkers under mild conditions [164]. Generally, the metal containing
nodes are made of a single-metal, transition metal, or a group of metals while the organic
linkers are made of polycarboxylates, phosphonates, sulphonates, imidazonates, and
phenolates, etc. [165,166]. Multi-dentate linkers such as di-carboxylates or tri-carboxylates
allow the aggregation of metal ions into their cluster. After metal ions are locked into their
position in the network vertex by carboxylates, rigid frameworks are established [167].
Their distinct physiochemical properties such as high pore volumes, tuneable pore size,
and large surface areas enable them to encapsulate a wide range of drug agents, especially
for large molecule drugs [168], leading to potential applications in drug delivery [169–172].

Figure 5. Schematic illustration of MOFs structure and functional applications (adapted from
Jiao et al., 2019 [173]).

Generally, there are two main methods for encapsulating drugs into MOFs, namely,
non-covalent and covalent [174]. The non-covalent method is the traditional method that is
used widely and involves impregnating the porous MOFs into a solution of drug molecules
and trapping the drug [175]. The advantage is that the method can be applied to a variety
of drugs, regardless of their hydrophilic or hydrophobic physicochemical properties. How-
ever, as drug encapsulation is an inherently reversible process, premature release of the
drug(s) of interest may be observed [176]. To overcome this problem, covalent methods
have been developed [177], whereby the drug molecule is entrapped by tethering it to
the MOF surface via a covalent bond [178]. For example, loading of cisplatin into an
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amino-functionalized MIL-101 (Fe) using a covalent method and covered with a silica layer,
achieved relatively high loading (12.8%) and a prolonged release time (up to 14 h) [179].
For use of this method, the MOF surface should have specific functional groups [180]
that interact with the functional group(s) of the drug(s) of interest to facilitate covalent
attachment [181,182]. Additionally, the chemical bond should be cleavable from the MOFs
under specific biological conditions [164,183,184]. Typically, the release of encapsulated
drug is via diffusion through the pores on the surface as well as degradation of the ma-
trix [185–187]. There are three factors that significantly affect the release profile: (i) the
interaction between the drug and the matrix surface; (ii) the size of pores on the surface;
and (iii) the kinetics of matrix degradation [188]. Thus, controlled release may be achieved,
by controlling interactions between encapsulated drugs and MOFs, modulation of the pore
size and surface area as well as regulation of degradation rate [189–191].

There are several advantages distinguishing the MOFs from other materials. Firstly,
their physicochemical properties can be adjusted along with the modification of the metal
and organic linker components [192,193], which means that the pore size and surface
morphology are highly tunable [194]. Secondly, as the surface area is large compared with
other materials, the potential drug loading capacity is relatively high [195]. Furthermore,
the pore size on the surface is large (up to 6 nm), enabling them to accommodate large
molecule drugs [196]. However, for practical drug delivery applications, non-toxic or
low toxicity MOFs with good biocompatibility properties need be developed. Moreover,
systematic assessment of stability and a comprehensive understanding of the release
mechanisms of drug–MOF hybrids in vitro and in vivo are essential for development of
clinical applications [183].

Typically, for drug delivery applications, MOFs are categorized as individual MOF
carriers or stimuli-responsive MOF carriers [183]. The first example of a drug loaded
MOF hybrid was reported in 2006 [197]. Ibuprofen was successfully loaded into MIL-
100(Cr) and MIL-101(Cr) and their drug loading and release profiles were investigated.
MIL-101(Cr) demonstrated extremely high drug loading (up to 60%) and sustained release
for up to 6 days [197]. Since the MIL-101(Cr) is toxic due to the chromium ions, biomedical
applications are not feasible. Subsequently, a less-toxic MOF material, MIL-53(Fe) was
developed. Following loading with ibuprofen, the release profiles in vitro displayed slow
sustained release for up to 3 weeks [198]. Based on these findings, a wide range of anticancer
and antiviral drugs were investigated with relatively high loading achieved [199], namely,
24% for azidothimidine triphosphate [200] and 16.1% for cidofovir [197,201]. As zinc ions
have low-toxicity, Zn-based MOFs have also been investigated. For instance, 5-fluorouracil
loaded Zn-MOFs demonstrated high loading (up to 34%) as well as prolonged release
for up to a week [202]. Apart from neutral drugs, loading of cationic drugs such as
procainamide HCl, which has a short half-life in vivo, into Zn-MOFs, resulted in prolonged
release ranging from 20 h to 72 h [203]. Furthermore, based on zirconium-based MOFs, co-
delivery of cisplatin and multidrug resistance (MDR) gene-silencing siRNAs demonstrated
enhanced chemotherapeutic activity compared with bare cisplatin in vitro [204].

Stimuli-responsive MOFs are also promising for achieving controllable release in
response to specific stimuli, such as pH, ions, temperature, magnetic field, light, and
pressure [183]. Among them, pH-responsive MOFs are well investigated, especially for
cancer therapy [205,206]. Based upon the low pH of the tumour microenvironment, the
release of drug–MOF hybrids could be triggered within this acidic microenvironment,
showing enhanced anticancer efficacy as well as being non-toxic to healthy cells [207,208].
For instance, doxorubicin (DOX) loaded gadolinium-based MOFs demonstrate pH-sensitive
release at 44% within 5 days at pH 5.4, whereas only 22% was released after 5 days at
pH 7 [209].

In the past decade, multifunctionalized MOFs with a core-shell structure have been
widely investigated. Coated with a thin silica layer, drug MOF hybrids showed controlled
release. This along with adjustment of the silica shell thickness and increased cellular
uptake, led to enhanced anticancer efficacy [210]. Moreover, for stabilizing and slowing
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down the release rate, novel lipid layers based on cholesterol or 1, 2-distearoyl-sn-glycero-
3-phosphoethanolamine-Poly(ethylene glycol) (DSPE-PEG) have been developed. With
lipid or lipid-PEG layers, the initial burst release is reduced [211].

In summary, due to their tunable structure and high loading capacity, MOFs are a
promising platform for drug delivery systems [181]. However, for practical applications
and potential marketable products, they are in their relative infancy.

3. Drug Encapsulation Methods and Mechanisms Underpinning Degradation of
Biodegradable Polymeric Based Formulations

To achieve highly efficient and tunable biodegradable polymeric formulations, multi-
ple techniques have been developed and investigated in drug delivery systems. However,
to effectively deploy these systems to produce therapeutic products, there are a number of
challenges remaining to be addressed including relatively low drug loading, undesirable
release profile in vivo, and control of particle size [212]. These topics are addressed below.

3.1. Emulsion Method

Solvent emulsion extraction/evaporation is one of the most common methods used to
produce polymeric microspheric particles [213] and it is widely used due to advantages
in terms of simplicity, non-temperature sensitive, and good performance in particle size
control [212]. Since reports of the first generation of oil-in-water (o/w) methods decades ago,
there have been a large number of improvements aimed at encapsulating substances with a
diverse range of physicochemical properties (e.g., hydrophobic, hydrophilic, large/small
molecular weight). Generally, a single emulsion (o/w) can be applied to hydrophobic
drugs while double emulsions (w/o/w) can be applied to hydrophilic drugs. In brief,
for the single emulsion method, the drug for encapsulation is dissolved in the solvent
phase to which is added the anti-solvent phase with stirring and homogenisation to form
the polymeric microspheric particles loaded with drug [214,215]. For most hydrophobic
drugs, the procedures usually comprise three steps: (a) the polymer is dispersed and
emulsified into an aqueous phase with emulsifier; (b) the solvent of the emulsion droplets
is diffused into the aqueous phase; and (c) the solvent is removed by evaporation and
the particles are solidified in the aqueous phase [216]. The type and concentration of
emulsifier added into the aqueous phase and/or organic solution, plays a crucial role in
determining the polymeric formulation properties in terms of quality, actual drug loading,
encapsulation efficiency, drug release, pharmacokinetics, and cellular uptake/interaction,
etc. [217–219]. The typical surfactants (stabilizers) commonly used are poly(vinyl alcohol)
(PVA), PEG, PEG-lipid, proteins, and carbohydrates [220–222]. Furthermore, the stirring
speed and evaporation time of the organic solvent used has a significant impact on the size
distribution of the particles formed [223], which potentially can affect product injection
ability (for parenteral formulations), biodistribution, side-effects, and the release profile of
the encapsulated drug [224,225].

In some cases, the drug candidates are hydrophilic and/or are in the form of water-
soluble salts. Hence, a water-in-oil-in-water method (w1/o1/w2) can be used to encapsu-
late hydrophilic drugs within biopolymeric particles. Unfortunately, in most cases, the
encapsulation efficiency (EE) is poor for hydrophilic small molecules at approximately
20~30% [226,227]. To address this issue, non-ionic surfactants may be added [222] or the hy-
drophilic salt form of the drugs of interest can be converted to the corresponding free base
forms for weakly basic drugs or to the free acid forms for weakly acidic drugs [228], with
the EE increasing to 90% and 56%, respectively. Another variant of the emulsion method
is the water-in oil-in-oil method (w1/o1/o2) where the w2 water phase is replaced by an
organic solvent that is immiscible with the first organic phase and acts as an anti-solvent to
the polymer and the drug [229]. For the drug of interest (e.g., methotrexate), the EE was
moderately increased from 44% to 51%, but a major drawback was the large amount of the
o2 phase used, such as paraffin, which brings in problems such as solvent residues in the
microspheres and problems in recycling and un-friendly environmental issues [229].
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3.2. Nano-/Micro-Precipitation Method

The nano-/micro-precipitation method, also called the solvent displacement [230]
or dialysis method [231], is widely employed to produce polymeric particles as drug
carriers [72]. The main difference between this method and the emulsion method is that the
particle formulation process is not under high energy/shear, but is driven by spontaneous
diffusion of the organic solvent into the anti-solvent, normally water. In brief, particle
production can be described by the following steps: (i) choosing a water miscible solvent
as the polymer/drug dissolving phase; (ii) mixing the polymer/drug phase with water
and the droplets or particles are formed through the process called the “Ouzo” effect [232];
and (iii) removing the organic solvent by evaporation, extraction, or a combination of
both [233–236].

Because the solvents selected for dissolving the polymer/drug should be easily re-
movable and water miscible, the commonly preferred solvents are acetone, acetonitrile
(ACN), dimethylformamide (DMF), dimethylsulphoxide (DMSO), and tetrahydrofuran
(THF) [235]. The mixing process can also be categorized into three types: (a) pouring
anti-solvent (water) into the organic solution in one-shot, (b) adding the water into the
organic solution dropwise, or vice versa, and (c) slow dialysis of the organic solution with
water. For producing nanoparticles, the concept of the “Ouzo” region (Figure 6) has been
proposed [237]. Within the “Ouzo” region, nanoparticles are more prone to be produced
rather than microparticles [238,239], and vice versa, which is a vital strategy in fabricating
particles with a desirable size range.

Figure 6. “Ouzo” region of PLGA in two different solvents (adapted from Beck-Broichsitter et al.,
2016 [237]).

Overall, the nano-/micro-precipitation method is to some extent, an alternative or
modification of the classic emulsion method. Additionally, as this technique is straight-
forward, fast, and easy to duplicate in practice, commercially available equipment is
available for large scale production, making it a preferred and recommended method [240].

3.3. Dissolvable Hydrogel Template Method

The hydrogel template method was developed by Acharya et al. in the last decade [241].
Although it is not widely used as yet, the method demonstrates advantages in terms of high
drug loading and a sustained release profile [241]. Because the size and shape of the wells
on the master template can be precisely controlled, the microparticles produced with this
method display a narrow size distribution and morphology in every dimension [242,243].
Generally, the method is summarized as shown in Figure 7.
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Figure 7. Schematic diagram of the hydrogel template fabrication process for producing drug-loaded
microparticles: Steps (a–e): (a) PDMS intermediate template with 20 µm diameter vertical posts
was formed using a designed silicon wafer master template with patterns of 20 µm diameter wells;
(b) casting hydrogel solution on the surface of the PDMS template; (c) hydrogel template with
20 µm diameter wells; (d) casting drug/polymer solution into the wells of the hydrogel template;
(e) dissolution of the hydrogel template; and (f) collection of the microparticles (adapted from Zhu.
et al., 2019 [244]).

Firstly, a silicon wafer is produced as the master template with wells precisely con-
trolled in size and shape. These can be fabricated by photolithography or electron beam
lithography [241]. Water-soluble materials, normally poly(vinyl alcohol) (PVA) or gelatin
can be employed as the hydrogel mould through an imprinting process. After that, a
solution of polymer and drug is evenly spread onto the surface of the hydrogel mould to fill
the cavities. This is then left at room temperature for a couple of minutes to remove solvent
and solidify the particles. After solidification, the hydrogel template can be dissolved in
water and particles can be collected by centrifugation and freeze-drying [241].

As an emerging technique, the hydrogel template method has some drawbacks in
terms of unstable process control. It is unsuitable for large scale production and restricted
to hydrophobic drugs or the corresponding base/acid form of small molecules only [242].
However, the advantages of high drug EE and sustained release profile are notable [241,242].
Recently, an instrument called a SpinSwiper has been developed to manufacture micropar-
ticles with more consistency and improving batch to batch reproducibility. With these
improvements, the hydrogel template method could be applied to a large number of drug
candidates and it potentially has broad applications in the future [245].

3.4. Microfluidics Method

The microfluidics method, similar to the hydrogel template method, was developed in
recent years along with availability of microfluidics devices. Apart from the precise control
of particle size range and morphology, this method demonstrates significant advantages in
building structures and fabricating microencapsulated particles with multiple components
in a one-step emulsification by the microfluidic device [246,247]. Additionally, the particles
already formed can be re-encapsulated in the same device to cover them with a double
layer with core-shell structures [248]. Recently, based on this ability in fabricating multiple
layered structures, particles with a PLGA (poly(lactide-co-glycolide)) surface and a PCL
(polycaprolactone) core have been reported [249]. Due to their distinct behaviours in
degradation, a potentially superior release profile could be achieved [250]. Generally, the
method is summarized in Figure 8.
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Figure 8. Schematic illustration of the microfluidics method. Nanoparticles are formed in the central
channels of the microchips where the continuous phase meets the dispersed phase (adapted from
Han. et al., 2016 [212]).

Normally, the microfluidics system is comprised of two main parts, the syringe pump
used to precisely control the flow rate of various solvent inputs, and the microchips with
multiple channels, in which the continuous phase and the dispersed phase meet and gener-
ate particles. For traditional microchips, they are made of PDMS (polydimethylsiloxane),
which is less tolerant to high pressure and so vulnerable to breaking [251]. Recently, a
glass–PDMS system has been introduced that has broad applications for a wider range of
drugs with improved efficiency and higher quality [251,252].

Notably, the droplets size can be precisely controlled in the range 20–100 µm [253]
and 100–300 nm [246] along with controlling the flow rates and the concentration of drug
and the polymer solution. Particle aggregation in the fabrication and collection process
is potentially a serious problem. Aggregation of particles in the microchips could block
the channels and even cause breakages. Aggregation of particles in the collection process
will affect the size range and generate undesirable particles [254]. The efficiency of particle
production is always the main problem with this technique as only one droplet can be
generated at a time [212,255]. Recently, a reliable and versatile system called the Droplet
Parallel has been introduced to the market (Dolomite Microfluidics, Royston, UK). With
the connection of several microchips, up to 30,000 droplets can be generated per second,
which greatly boosts method efficiency and the possibility of large-scale production in a
broad range of real applications [256,257].

3.5. Supercritical CO2 Method

Supercritical CO2 (scCO2) is a fluid state only formed when it is at/above its critical
temperature and pressure [258,259]. Due to the desirable properties of scCO2 in terms
of it being chemically inert, non-toxic, and non-flammable, it is the most widely used
supercritical fluid and has been applied in a broad range of industries, such as food, natural
oil, and drug manufacture [260,261]. Recently, in the biomedical field, scCO2-assisted drug
microencapsulation has been used to produce drug-eluting implants and drug particles for
oral dosing [262,263]. Generally, the supercritical CO2 method is summarized in Figure 9.
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Figure 9. Schematic illustration of the supercritical CO2 method. The drug of interest is dissolved
in scCO2 and impregnated into the polymer, and the non-impregnated drug is removed with CO2

through depressurization. (Adapted from Xu., et al. Drug Delivery and Translation Research, 2021 [264].)

The supercritical CO2 process involves three steps: (i) dissolving the drug candidate
in scCO2; (ii) CO2 sorption and impregnation of the drug into the polymer; and (iii) re-
moving the CO2 and non-impregnated drug through depressurization. For drug loading,
there are several influences due to the interaction and relationship between drug/polymer,
polymer/scCO2 and scCO2/drug. For example, the drug solubility in scCO2 affects the
percent loading [265,266]; the polymer can interact with CO2 and has good chain mo-
bility therein [262]; and the interaction strength between the drug and polymer such as
via H-bonding and solubility [267]. Furthermore, the effect of temperature and pressure,
contact time and diffusive process, and depressurization rate all affect the percent drug
loading [268]. The supercritical CO2 method is an eco-friendly and cost-efficient tech-
nique [269]. Compared with traditional polymeric particle formulation methods, use of
toxic organic solvents and elevated temperatures are avoided in the formulation process,
which broadens the application to temperature sensitive drug candidates [270,271], and so
it has a bright future.

3.6. Other Emerging Methods

In the past decade, there are a number of other emerging methods with promise
for improving drug delivery systems, all of which have pros and cons. For example,
the spray-drying method shows advantages in a wide array of applications for both
hydrophilic and hydrophobic drugs [272], but it is not suitable for temperature sensitive
drugs [273]. Another method involves use of suitable polymer additives to form polymer–
drug conjugates [274] as a means to improve biodistribution and pharmacokinetics of
the encapsulated drug [255]. Furthermore, nanoparticles-in-microparticles [275–277], and
polymer-brush products [278–280] are exciting approaches for future research.

4. Drug Release Mechanisms from Biodegradable Polymeric Formulations

Control of drug release kinetics is mainly aimed at achieving a steady drug concen-
tration in the circulating bloodstream with concentrations within the therapeutic range,
i.e., between the minimum effective concentration (MEC) and minimum toxic concentra-
tion (MTC) [281]. Within this range, steady drug release per unit time from carriers is
both effective and well-tolerated, and is called zero-order release kinetics [10]. The drug
release profile is affected by several factors including the properties and ratio of compo-
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sitions for drug, polymer, and their additives, the physical and/or chemical interactions
among the multiple components, and even the formulation methods [282]. According
to the drug release mechanism, they can be categorized in terms of diffusion-controlled
release, degradation-controlled release, and solvent-controlled release [283]. In a classic
drug release process, the drug molecule moves from within the polymer matrix to the
outside of the particle and finally it reaches the surrounding environment [284]. In the
early stage of drug release, the drug molecule is released via diffusion through water-filled
pores in the particle [285], mainly driven by the chemical potential gradient or osmotic
pressure [286]. However, once polymer degradation commences, polymer erosion may
occur on the polymer matrix surface (surface erosion) or within the matrix after water pen-
etrates into the polymer bulk (bulk erosion) [287,288]. Although there are some examples
of drug release associated with diffusion-controlled release only [289–291], most examples
of drug release from biodegradable polymers involve the combination of diffusion and
degradation/erosion simultaneously [287,292].

While zero-order drug release from polymeric particles is preferable to give the de-
sired drug release profile [293,294], the actual drug release from biodegradable polymers
is usually bi-phasic or even tri-phasic [287]. In a typical tri-phasic release process, there
is an initial burst release whereby the non-encapsulated drug or drug encapsulated near
the polymer surface is rapidly released by hydration [295]. The second phase and the third
phase could be a slow/rapid process, driven by polymer degradation and erosion [296].
Notably, the first phase of burst release is not always a necessity [297] and in some circum-
stances, the release speeds of the second and third phases are interchanged. This is shown
schematically in Figure 10.

Figure 10. Schematic diagram showing typical drug release profiles over a 28-day period. The green
and black lines show zero order drug release with and without initial burst release respectively. The
orange line shows rapid phase 2 and slow phase 3 release, whereas the blue line shows slow phase 2
release followed by rapid phase 3 release (modified from Fredenberg., et al., 2011 [287]).
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In drug delivery system applications, biodegradable polymers with hydrolysable
bonds such as ester-, amide-, and anhydrides are widely studied [298–300]. Following
hydrolytic and/or enzymatic breakdown of bonds in the polymer backbone, polymer
degradation begins and initiates the onset of release of their encapsulated drugs [301].
Notably, in the realm of degradable polymers, people occasionally confuse the term ‘degra-
dation’ with ‘erosion’. For the term, degradation, it specifically refers to bond cleavage,
whereas the term, erosion, commonly refers to depletion of material [302]. In other words,
the degradation is a chemical process while the erosion is a physical phenomenon, which is
mostly dominated by dissolution and diffusion processes at the polymer surface [33]. In
general, biodegradable polymers can be classified as bulk erosion polymers and surface
erosion polymers [303]. They have distinct erosion processes in the release environment
that affect the drug release profile [302]. In some circumstances, the erosion mechanism for
a particular biodegradable polymer may change from one to the other [304]. Typically, most
poly(esters), for example, PLGA (poly(lactide-co-glycolide)) and PLA (poly(lactic acid)),
undergo degradation by a bulk erosion process, which means the simultaneous degradation
of entire matrices [305]. For some poly(ortho esters) [306] and poly(anhydrides) [14], they
undergo surface erosion by a mild process from the surface into the core [21], which lead to
a relatively slow degradation and water diffusion process [307].

5. Successful Commercial Products Based on Biodegradable Polymers

Compared with non-biodegradable polymers, the main advantage of biodegradable
polymers are that they are metabolized and removed from the body via normal endogenous
metabolic pathways and so accumulation in the body is avoided [308–310]. Biodegradable
polymers are widely used to encapsulate active pharmaceutical ingredients [311] and for
other biomedical applications [312], as well as in products for the cosmetics and personal
care market [313,314]. Although the original concept for development of controlled release
drug formulations was first introduced in 1952 [315], it was three decades before the first
generation of drug delivery systems gained regulatory approval for human use [316,317]
(Table 2). In 1986, sustained-release triptorelin (Decapeptyl® SR) comprising injectable
PLGA microspheres was approved for the treatment of prostate cancer [318,319] (Table 2).
This was followed in 1989 by approval of a prolonged-release formulation of leuprolide
(Lupron Depot®) by the United States (US) Food and Drug Administration (FDA) for the
palliative treatment of advanced prostate cancer [320] (Table 2). In 2018, annual sales of
Lupron® were estimated at USD892 million [321] (Table 2). Since the first generation, more
than 20 products based upon biodegradable polymers have been approved for human
use by the US FDA and the European Medicines Agency (EMA) and eleven of them were
approved in this decade (Table 2). For example, an extended-release PLGA microsphere
injectable suspension formulation of the corticosteroid, triamcinolone acetate (Zilretta®)
was approved by the FDA in 2017 for the management of osteoarthritis knee pain for 3
months [322] (Table 2). Two years later in 2019, annual total sales were USD70 million.
Triptorelin pamoate (Triptodur®) is also an extended-release injectable suspension formula-
tion approved by the FDA in 2017 for the treatment of central precocious puberty (CPP)
in paediatric patients aged 2 years and older [323]. It is the first gonadotropin-releasing
hormone agonist administered by intramuscular injection at six-monthly intervals, which
provides great convenience to patients. Other prolonged-release products comprising
drugs encapsulated in biodegradable polymers and that have regulatory approval are
summarised in Table 2.



Appl. Sci. 2022, 12, 935 19 of 33

Table 2. Prolonged-release products involving drugs encapsulated in biopolymer formulations and
that have received regulatory approval.

Encapsulated Drug Regulatory
Approval Year

Product
Name

Therapeutic
Indication

Duration of
Action Annual Sales

Prolonged
Release

Formulation
Reference

Cabotegravir,
Rilpivirine 2020 Cabenuva

Human Immun-
odeficiency Virus

(HIV)
2 months Injectable

suspension [324]

Buprenorphine
2018
2017
2017

Buvidal®

Sublocade™
Sublocade®

Opioid use
disorder

1 week/month
1 month
1 month

~70 million
(2019) Subcutaneous

injection

[325]
[326]
[327]

Triamcinolone
acetonide 2017 Zilretta® Osteoarthritis

knee pain 3 months ~73 million
(2018)

Injectable mi-
croparticles [322]

Triptorelin 2017 Triptodur®
Central

precocious
puberty

6 months Intramuscular [323]

Exenatide 2017 Bydureon
Bcise® Type 2 diabetes 1 week 584 million

(2018)
Injectable mi-
croparticles [328]

Paliperidone
palmitate 2015 Invega

Trinza® Schizophrenia 1 month 604 million
(2018)

Injectable
nanocrys-

talline
[329,330]

2009 Invega
Sustenna® Schizophrenia 1 month 424 million

(2010)

Injectable
nanocrys-

talline
[331–333]

Aripiprazole
lauroxil

2015
2013

Aristada®

Abilify
Maintena®

Schizophrenia 4–8 weeks

17.3 million
(2016)

2.3 billion
(2018)

Injectable
nanocrys-

talline

[334]
[335,336]

Lanreotide 2014 Somatuline®

Autogel
Acromegaly 2 weeks 1.1 billion

(2019)
Depot, Mi-
croparticles [337,338]

Pasireotide pamoate 2014 Signifor®

LAR
Acromegaly 4 weeks 72 million

(2018)
Injectable mi-
croparticles [339]

Exenatide synthetic 2012 Bydureon® Type 2 diabetes 1 week 151 million
(2013)

Injectable mi-
croparticles [340,341]

Bupivacaine 2011 Exparel® Local anaesthetic 3 days 76.2 million
(2013)

Injectable
liposome

suspension
[342]

Olanzapine
pamoate 2009 Zyprexa

Relprevv® Schizophrenia 2–4 weeks 5.03 billion
(2010)

Injectable mi-
crocrystalline [332,343]

Naltrexone 2006 Vivitrol®
Alcohol

dependence 4 weeks 7 million
(2007)

Injectable
microsphere [344]

Risperidone 2003 Risperdal
Consta® Schizophrenia 2 weeks 737 million

(2018)
Injectable

microsphere [345]

Leuprolide acetate 2002 Eligard® Advanced
prostate cancer 1, 3, 6 months ~30 million

(2003)
Injectable

suspension [322,346]

Minocycline 2001 Arestin® Periodontitis 3 weeks ~120 million
(2018) Microparticles [320,322,347]

Triptorelin pamoate 2000 Trelstar® Advanced
prostate cancer

1 and 3
months

~400 million
(2018)

Injectable
suspension [348]

Cytarabine 1999 Depocyt® Lymphomatous 2 and 4 weeks ~5 million
(2002)

Injectable
liposome

suspension
[73,349–351]

Octreotide 1997 Sandonstatin®

LAR
Some types of

cancers 4 weeks ~1.6 billion
(2019)

Injectable mi-
croparticles [322,352]

Risperidone 1993 Risperdal® Schizophrenia 2 Weeks 172 million
(1994)

Injectable mi-
croparticles [335,353]
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Table 2. Cont.

Encapsulated Drug Regulatory
Approval Year

Product
Name

Therapeutic
Indication

Duration of
Action Annual Sales

Prolonged
Release

Formulation
Reference

Bromocriptine 1991 Parlodel®

LAR

Prolactin-
secreting
tumour

4 weeks ~800 million Injectable mi-
croparticles [354,355]

Leuprolide acetate 1989 Lupron
Depot®

Peptide prostate
cancer 1, 3, 4 months ~800 million

(2017)
Injectable mi-
croparticles [347,356]

Goserelin acetate 1989 Zoladex® Prostate cancer 4 weeks ~900 million
(2018)

Injectable
microparticle [345,357]

Triptorelin 1986 Decapeptyl®

SR
Prostate cancer 1, 3, 6 months ~400 million

(2018)
Injectable mi-
croparticles [354,355]

6. Conclusions

Biodegradable polymers have been used to develop an array of controlled-release
therapeutic products. However, many challenges remain to be addressed including low
drug payload, unsatisfactory release rate, narrow range of drugs suitable for encapsulation,
and translation from laboratory to industrial scale. Nevertheless, the commercial success
of approved products along with emerging research in nanomaterials are promising for
producing novel controlled-release therapeutic products. Investigation on newer strategies
to simplify the manufacturing process is ongoing.
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