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Abstract: This study aimed to analyze feature importance by applying explainable artificial intel-
ligence (XAI) to postural deformity parameters extracted from a computer vision-based posture
analysis system (CVPAS). Overall, 140 participants were screened for CVPAS and enrolled. The
main data analyzed were shoulder height difference (SHD), wrist height difference (WHD), and
pelvic height difference (PHD) extracted using a CVPAS. Standing X-ray imaging and radiographic
assessments were performed. Predictive modeling was implemented with XGBoost, random forest
regressor, and logistic regression using XAI techniques for global and local feature analyses. Correla-
tion analysis was performed between radiographic assessment and AI evaluation for PHD, SHD, and
Cobb angle. Main global features affecting scoliosis were analyzed in the order of importance for
PHD (0.18) and ankle height difference (0.06) in predictive modeling. Outstanding local features were
PHD, WHD, and KHD that predominantly contributed to the increase in the probability of scoliosis,
and the prediction probability of scoliosis was 94%. When the PHD was >3 mm, the probability of
scoliosis increased sharply to 85.3%. The paired t-test result for AI and radiographic assessments
showed that the SHD, Cobb angle, and scoliosis probability were significant (p < 0.05). Feature
importance analysis using XAI to postural deformity parameters extracted from a CVPAS is a useful
clinical decision support system for the early detection of posture deformities. PHD was a major
parameter for both global and local analyses, and 3 mm was a threshold for significantly increasing
the probability of local interpretation of each participant and the prediction of postural deformation,
which leads to the prediction of participant-specific scoliosis.

Keywords: feature importance; explainable artificial intelligence; scoliosis; predictive modeling

1. Introduction

Normal spinal posture is essential for maintaining spine health and biomechanical
function including longevity. However, changes in physiological spinal curvature oc-
cur through natural aging or pathological processes because of various causes [1]. Early
functional changes gradually accelerate, leading to irreversible and structural spinal defor-
mation. Functional or structural spinal deformation affects spinal posture balance, causing
uneven height differences between the shoulders and pelvis, and changes the axis of nor-
mal weight distribution causing deformation that protrudes unilaterally from the coronary
plane of the spine. This imbalance in weight distribution further increases the difference in
the asymmetric height between the shoulder and pelvis, causing structural deformation
and pain in the spinal curve where pressure is concentrated [2,3]. The normal physiological
spinal curvature can be restored through functional changes by removing or improving
the factors that cause posture asymmetry. Maintaining spinal health is very important to
detect posture imbalance before spinal deformation progresses irreversibly and results
in structural spinal deformation. Specifically, early diagnosis of scoliosis should include
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not only structural scoliosis but also functional posture changes, and the normal posture
should be restored by mitigating the cause of spinal deformation.

Some parameters are related to scoliotic detection. The parameters can be extracted
through radiographic assessment and screening. Generally, the Cobb angle, age, weight,
spinal vertebral rotation angle, pelvic height difference (PHD), and shoulder height dif-
ference (SHD) have been used for scoliosis diagnosis and scoring [4–7]. The presence,
degree, and severity of scoliosis can be determined by identifying and calculating some
characteristic features among various parameters.

The presence, degree, or severity of scoliosis is basically evaluated by measuring
the curvature of the spine through X-ray imaging [8]. However, other studies have been
conducted to evaluate the structural deformity by various methods than direct use of
X-ray imaging [9,10]. Various predictive investigations of scoliosis have been reported in
recent artificial intelligence (AI) research trends [11–14]. Alharbi et al. studied scoliosis
prediction by using deep learning and calculating the Cobb angle (average error of 2.9◦)
using 800 X-ray images to replace manual Cobb angle measurement through radiographic
assessment [11]. Yang et al. conducted deep learning research related to the screening
system using non-ionizing radiation. They developed a machine learning algorithm that
can identify cases with a curve ≥20◦ using 3640 unclothed back images [14].

Adolescent idiopathic scoliosis (AIS) is the most common spinal disease in adolescents,
with a worldwide prevalence of 0.5–5.2% [2,15,16]. The aforementioned studies used
artificial intelligence to develop high levels of prediction accuracy and performance but
could not explain the inference process of the predictive models. Thus, it is necessary to
apply the explainable artificial intelligence (XAI) technique that can explain the inference
of the results like a white box given the black box characteristics of the machine learning
model [17].

Spinal deformity diagnosis requires X-ray imaging to identify or monitor the disorder.
During this process, the patients are exposed to radiation [8]. However, mild scoliosis
can be observed without the use of regular radiation, and moderate-to-severe scoliosis
can be detected at an early stage, providing an opportunity for treatment and posture
correction using the detection system of postural deformity utilizing non-ionizing radiation.
In this process, the aforementioned method using artificial intelligence can be applied.
Various artificial intelligence studies have been published to quantitatively detect spinal
deformities or scoliosis using only the radiographic images, but this study is characterized
as an artificial intelligence study using feature importance analysis based on parameters
extracted from a computer vision-based posture analysis system (Table 1).

Table 1. Artificial intelligence research using feature importance analysis to detect spinal deformity.

Authors Feature
Importance Dataset Modeling Outcome

Alharbi et al.
[11] None Radiographic

images Deep learning Scoliosis angle
measurement

Pasha et al. [12] None Radiographic
images

Machine
learning

Surgical
outcome

Tajdari et al. [13] None Radiographic
images

Machine
learning

Biomechanic
prediction

Yang et al. [14] None Radiographic
images Deep learning Scoliotic area

prediction

This study

Shoulder height
difference, wrist
height difference,

pelvic height
difference, etc.

Tabular data Machine
learning

Feature
importance
analysis and

postural
deformity
prediction
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In this study, postural deformity as a result of prediction probability was derived
for the early detection of suspected scoliosis through artificial intelligence models based
on skeleton point information extracted from the computer vision-based posture analysis
system (CVPAS) using non-ionizing radiation. Moreover, contributions of prognostic
factors to the results were analyzed by the inference process for the prediction outcomes.

2. Materials and Methods

In this section, the acquisition of dataset, the artificial intelligence models used, ex-
plainers, and evaluation method with a research diagram are described.

2.1. Data Acquisition and Participant Characteristics

First, 140 participants who visited the institutions for scoliosis examination from
January 2020 to January 2021 were included. In these participants, the following difference
metrics in upper and low body skeletal points were measured: shoulder height difference,
elbow height difference (EHD), wrist height difference (WHD), pelvic height difference,
knee height difference (KHD), and ankle height difference (AHD). A computer vision-based
posture analysis system (PA3017; Driom, Incheon, South Korea) was used, and scoliosis
diagnostic analysis results were obtained (Figure 1). The Cobb angle, shoulder height
difference, and pelvic height difference were radiographically measured in standing body
X-ray images.
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Figure 1. Participant data acquisition using computer vision-based posture analysis system for
predictive modeling analysis.

2.2. Predictive Models and Model Explainers

Second, three machine learning models with two model explainers for predictive
interpretation were used in this study. Extreme gradient boosting (XGBoost) is a decision
tree-based ensemble machine learning algorithm using a gradient boosting framework.
Gradient descent is used as the boosting method in the ensemble model [18]. Herein, a
tree-based decision branch was used in the schematization. Random forest regressor is
an ensemble method for learning multiple decision trees. Random forest can rank the
importance of parameters (shoulder height difference, pelvic height difference, ankle height
difference, etc.) for the predictive outcome to cause scoliosis [19]. Logistic regression
was used to create a predictive model for the outcome by functionalizing the relationship
between the dependent variable and the independent variable [20]. Briefly, as a method of
explaining the dependent variable as a linear combination of independent variables, given
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input data, the result of the corresponding data was divided into a specific classification,
that is, whether scoliosis will appear or not.

Shapley additive explanations (SHAP) originate from the method of calculating the
contribution of each player to the outcome in game theory and can explain the contribution
of prognostic factors affecting the prediction result in a machine learning model [21].
Local interpretable model-agnostic explanation (LIME) is a method that enables local
interpretation of factors that contribute to the results of the machine learning model.
Moreover, by calculating the contribution of individual parameters in the local data space,
it is a method for interpretation with improved accuracy for each local case [22].

2.3. Research Process for Predictive Modeling

Third, XGBoost classifier, random forest regressor, and logistic regression were used
for scoliosis predictive modeling (Figure 2). A 5-fold cross-validation method was used to
maximize the use of data available for training and model testing. Relationships between
features were evaluated using mutual information (MI) metrics. Shapley additive expla-
nations and local interpretable model-agnostic explanation explainers were also used to
implement an artificial intelligence model that can be explained in black box AI. Shapley
additive explanations enable global interpretation of parameters for predicting scoliosis,
and local interpretable model-agnostic explanations allow local interpretation for individ-
ual participants. Consequently, model visualization, feature analysis for parameters, and
scoliosis prediction probability were analyzed. Paired t-test analysis was also performed
on pelvic height difference, shoulder height difference, and scoliosis outcomes among the
parameters for the Cobb angle, pelvic height difference, and shoulder height difference
obtained through radiographic assessment and parameters obtained using a CVPAS with
significance at p-value < 0.05. Python 3.8.3, scikit-learn 0.23.1 for predictive modeling,
SHAP 0.36.0, and LIME 0.2.0.1 modules were used in the programming environment. IBM
SPSS 25.0 was used for statistical analysis (Supplementary Materials).
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were performed through the predictive modeling process using the explainable artificial intelligence
technique. Radiographic assessment results and major parameters acquired from computer vision-
based posture analysis systems were evaluated, and correlation analysis was also performed.
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3. Results

In this section, the results of predictive modeling performance, feature analysis for the
parameters, and global and local interpretation are presented.

3.1. Radiographic Assessment and Statistical Analysis

First, the results of participant characteristics analysis are shown in Table 2. For the
scoliosis curve, thoracic, thoracolumbar, and lumbar types were combined. When the Cobb
angle was <10◦, the normal type was indicated. The radiographic assessment results of
the participants were analyzed to obtain the Cobb angle (mean 6.16◦ ± 8.50), SHD (mean
1.12 ± 3.27 mm), and PHD (mean 2.89 ± 4.22 mm). The values of the parameters for
predictive modeling are continuous variables. Moreover, the results obtained through the
three variables and the posture analysis system, and the results obtained through the paired
t-test, are shown in Figure 3. Significant parameters were SHD, Cobb angle, and scoliosis
(p < 0.001).

Table 2. Participant characteristics and parameters using a computer vision-based posture analysis
system for predictive modeling analysis.

Category Characteristics Mean p-Value Data Type Values

Parameters
from

computer
vision-based

posture
analysis
system

Age (years) 24.94 ± 17.36 0.245 Float 3 to 69

Sex
Male 59 (42.14%)

0.549 Binary 1: Male,

Female 81 (57.86%) 2: Female

Height (cm) 153.43±18.57 0.671 Float 94 to 186

Weight (kg) 51.51±18.13 0.966 Float 14.6 to 98

SHD (mm) 4.91±4.78 0.142 Float 0 to 31

EHD (mm) 6.41±5.30 0.041 Float 0 to 36

WHD (mm) 7.29±7.26 0.017 Float 0 to 58

PHD (mm) 2.49±2.73 <0.01 Float 0 to 21

KHD (mm) 3.94±3.73 <0.01 Float 0 to 27

AHD (mm) 6.03±6.16 <0.01 Float 0 to 39

LLD (mm) 4.54±4.73 0.005 Float 0 to 34.33

Radiographic
assessment

Cobb angle 6.16◦±8.50

NA

SHD (mm) 1.12±3.27

PHD (mm) 2.89±4.22

Curve
type

Normal
range 61 (43.57%)

Thoracic 39 (27.86%)

Thoraco-
lumbar 22 (15.71%)

lumbar 18 (12.86%)
Note: SHD: shoulder height difference; EHD: elbow height difference; WHD: wrist height difference; PHD: pelvic
height difference; KHD: knee height difference; AHD; ankle height difference; LLD: leg length discrepancy;
Normal range: Cobb angle within 10 degrees; NA: not applicable.
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3.2. Predictive Modeling Performance

Second, the performance of each machine learning model used for predictive modeling
is shown in Table 3. The maximum scores of the training and test split sets due to k-fold
cross-validation are described. The mean accuracy, sensitivity, specificity, and area under
the curve (AUC) of the three models were 0.79 ± 0.00, 0.78 ± 0.05, 0.80 ± 0.02, and
0.77 ± 0.11, respectively.

Table 3. Model performances for the predictive modeling.

Models Accuracy Sensitivity Specificity AUC

Logistic regression 0.78 0.72 0.83 0.63

Random forest
regression 0.79 0.83 0.77 0.89

XGBoost classifier 0.79 0.79 0.79 0.79

mean 0.79 ± 0.00 0.78 ± 0.05 0.80 ± 0.02 0.77 ± 0.11

3.3. Model Visualization for the Predictive Model

Third, results of the visual analysis of the scoliosis predictive model using the afore-
mentioned parameters are presented in Figure 4. The model architecture was visualized by
charting the decision-making process for XGBoost. It can help users better understand the
flow of judgment going on inside the model. The metric is important not only to describe
the performance of the model, but to understand the thresholds of each feature and the
output values by each node. In detail, XGBoost classifier considers ankle height difference
when PHD (mm) is greater than the threshold value of 1.5 mm and develops the scoliosis
probability based on the PHD value of 2.5 mm (the most right outer branch and leaf). It also
indicated that the tree was constructed using PHD, SHD, ankle height difference, weight,
height, age, and their respective threshold values for scoliosis prediction.
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3.4. Feature Analysis for the Parameters and Global Interpretation

Fourth, in order to identify relevant features of the model in the dataset, it is necessary
to remove less important features that do not significantly contribute to the occurring spinal
deformity. Key feature selection is the process of selecting the features that contribute the
most to the output. Thus, feature importance by Shapley additive explanations gives a score
for each feature in the data, and the higher the score, the more important or relevant the
feature to spinal deformity. PHD, ankle height difference, and elbow height difference were
analyzed as factors affecting scoliosis (in this order) in predictive modeling (Figure 5A).
Red and blue bars mean positive and negative effects, respectively. That is, the greater the
difference in PHD, the greater the probability of scoliosis diagnosis, and the younger the
age, the greater the predictive probability of scoliosis. However, this importance cannot be
applied to each participant. Meanwhile, the contribution was analyzed in the order of PHD,
age, knee height difference, and wrist height difference in a specific participant (participant
#15) with a predictive probability of scoliosis of 90%. That is, the interpretation indicates
that the order of factors is different from Figure 5A (Figure 5B).
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3.5. Scoliosis Prediction and Local Interpretation

Fifth, scoliosis prediction results and feature importance for each participant are
indicated in Figure 6. Participant #120 (female of 25 years old) was diagnosed with lumbar
scoliosis with a Cobb angle of 11◦ on radiographic assessment. For this participant, the
predictive probability of scoliosis was 94%, and PHD, wrist height difference, and knee
height difference (green bars: positive effect) analyzed with high height differences were
examined as important factors that predominantly increased the probability of scoliosis
(Figure 6A). Conversely, in a 20-year-old woman with a Cobb angle of 0◦ and healthy spine
curve, the predictive probability of scoliosis was 9%, and PHD and wrist difference of low
height (red bars: negative effect) were analyzed as important factors that contributed to
lowering the probability of occurrence of scoliosis (Figure 6B).

Conversely, the distribution of predictions using detailed numerical values, in which
PHD was one of the dominant parameters that affected scoliosis, was analyzed (Figure 7).
If the PHD is <2 mm, the prediction probability is small at 24.6%. However, if the PHD is
>3 mm, the probability of diagnosing scoliosis sharply increases to 85.3%.

Finally, mutual information (MI) metrics were evaluated in Table 4. MI is a measure of
the similarity between two features in the same dataset. In Table 4, PHD (0.22) and knee
height difference (0.09) are the most dependent factors, but wrist height difference (0.00)
and ankle height difference (0.00) are independent factors. This means that PHD and knee
height difference are related to the lower extremities in body parts. However, age and
weight factors are less dependent. They relate to the output of spinal deformities in the
same dataset.
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Table 4. The mutual information (MI) of the parameter.

Parameters MI Scores

PHD (mm) 0.22

KHD (mm) 0.09

Age 0.08

LLD (mm) 0.06

Weight (kg) 0.05

EHD (mm) 0.02

WHD (mm) 0.00

Sex 0.00

Height (cm) 0.00

SHD (mm) 0.00

AHD (mm) 0.00
Note: SHD: shoulder height difference; EHD: elbow height difference; WHD: wrist height difference; PHD: pelvic
height difference; KHD: knee height difference; AHD; ankle height difference; LLD: leg length discrepancy;
normal range.

4. Discussion

The clinical decision support system (CDSS) is leading the paradigm shift in modern
medical diagnosis and treatment [23]. Recently, in various studies for screening scoliosis,
machine learning or deep learning methods have been implemented in radiographic image
analysis to classify and predict an early diagnosis of changes in the spinal curvature [13,14].
Tajdari et al. reported that CDSS applying mechanical neural network modeling to the
spinal model of each patient was very useful for the early detection of AIS [13,14].

With further improvements in CDSS development and utilization, more studies are
being conducted for the development and application of parameters such as age, height,
weight, gender, gait features, electromyography, and mechanical characteristics of the spine
for screening prediction [10,13,24,25].

In this study, postural parameters for scoliosis detection such as PHD, SHD, and WHD
were evaluated using an AI prediction algorithm combined with CVPAS and CDSS, and
the AI model predicted the scoliosis of each participant and analyzed features related
to scoliosis.

4.1. Scoliosis Screening System Combined with AI

By inferring the causal relationship between the results of predictive modeling and
parameters, this study is different from studies that combine physical information with
adapted participant-specific skeletal points and their difference, and AI was provided by
a CVPAS [11,14] in Table 5. However, if three-dimensional (3D) image information can
be extracted in addition to Cobb angle measurement and SHD and PHD obtained from
the scoliosis screening system, it will be possible to further improve both geometrical and
analytic accuracy. For example, Pasha et al. used 3D spinal alignment (vertebral positions
and rotations) data, and Tajdari et al. used participant-specific spinal bone geometry using
surface registration [12,13]. When using 3D images for the input dataset, AI models that
process tabular data should be replaced with neural network-based models. In this study,
we tried to analyze postural features such as PHD, SHD, and WHD using the explainable
artificial intelligence algorithm, and to provide an explainability for the prediction results
using the SHAP and local interpretable model-agnostic explanation methods for each
participant’s spinal deformity probability (Table 5).
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Table 5. AI studies for scoliosis or postural deformity analysis.

Authors Aim Dataset (n) AI models Evaluation Results Year Reference

Pasha et al.

To predict the 3D
radiographic

outcomes of the
spinal surgery in

AIS

371 Random
forest

Accuracy
and AUC

The surgical factors,
upper and lower

instrumented
vertebrae, and the
operating surgeon

were important
surgical predictors

(Accuracy = 75% and
Max AUC = 0.86)

2021 [12]

Tajdari et al.

To propose a
mechanistic

machine learning
algorithm in

order to study
patient-specific

AIS curve
progression

353
Mechanistic

neural
network

RAE

Age identification
using X-ray images
(RAE for 68 months
(1.37%), 84 months

(2.55%) and 127
months (0.87%))

2021 [13]

Alharbi et al.

Scoliosis
prediction by

using deep
learning

800
Convolutional

neural
network

Accuracy

Absolute Cobb
angledifference < 5◦ in

69 images, 5◦–10◦ in
50 images, and

10◦–15◦ in 45 images
(Accuracy = 90%)

2020 [11]

Yang et al.

To develop
screening system

using
non-ionizing
radiation in

order to identify
cases with a
curve ≥20◦

3640
Faster-

RCNN and
Resnet

AUC,
sensitivity,
specificity,
and PPV

The level of trunk
asymmetry revealed in
the heat maps (AUC

(0.946), sensitivity
(87.5%), specificity
(83.5%), and PPV

(86.2%))

2019 [14]

Cho et al.

Automatic
cognition of

gaitchanges due
to scoliosis using

gait measures

42
Support
vector

machine

Accuracy,
sensitivity,

and
specificity

Analysis of the lower
limb joint angle based

on gait phase
segmentation and

clustering of scoliosis
patients (Accuracy
(90.5%), specificity

(88.8%), and sensitivity
(91.6%))

2018 [10]

This study

To analyze
feature

importance to
postural

deformity
parameters

extracted from a
CVPAS

140

Logistic
regression,

random
forest, and
XGBoost

with SHAP
and LIME

(XAI)

Accuracy,
AUC,

sensitivity,
and

specificity

PHD was a major
parameter with a

difference of 3 mm
threshold (Mean
accuracy (0.79),

sensitivity (0.78),
specificity (0.80), and

AUC (0.77))

Present -

Note: 3D: three-dimensional; AIS: adolescent idiopathic scoliosis; AUC: area under the curve; ROC: receiver
operating characteristics; RAE: relative approximation error; RCNN: region-based convolutional neural network;
ResNet: residual neural network; PPV: positive predictive value; CVPAS: computer vision-based posture analysis
system; XGBoost: Extreme gradient boosting; SHAP: Shapley additive explanations; LIME: local interpretable
model-agnostic explanations; XAI: explainable artificial intelligence.
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4.2. Use of Explainable Artificial Intelligence for In-Depth Predictive Modeling

AI models have the limitation of being a black box, as it does not reveal information
on the processes and mechanisms [17]. Thus, the interpretability of AI models was in-
troduced [17]. However, there is a trade-off between model interpretability and model
accuracy [26]. For example, rule-based learning and logistic regression have lower model
accuracy than deep learning but higher model interpretability [26]. Meanwhile, the accu-
racy of the prediction result may vary depending on the bias of the input dataset because
the output is predicted based on a model that has been trained and established according
to the characteristics of the input dataset [26]. The accuracy presented in this study used
logistic regression and random forest, as shown in Table 3. The accuracy of the model
is relatively lower than that of deep learning models that show higher accuracy perfor-
mance. However, we used models with better explanatory capabilities to evaluate the
interpretation ability of CDSS combining CVPAS and AI [26]. Ultimately, the optimal
model-specific analysis that can improve both model interpretability and accuracy is re-
quired in developing an AI algorithm through predictive modeling. Therefore, our study
requires an optimized modeling approach adapted to improve both model interpretability
and accuracy in subsequent studies.

4.3. Global vs. Local Interpretation for the Parameters

In Figure 5, global feature importance was analyzed using SHAP. Briefly, it is optimal
to list representative values for parameters sequentially through the generalization of
parameters for all participants. However, this is an analysis of the average effect on all
participants, and results do not apply to each participant. Therefore, to overcome this
limitation, the local interpretable model-agnostic explanations analysis method was used
(Figure 6). LIME enables local interpretation for individual participants, enabling the
analysis of participant-specific parameters. Ultimately, the predictive probabilities of
AI models should be more accurate in each case than their average predictive accuracy.
Meanwhile, the use of the LIME model causes a stability issue. When the model is employed
recurrently under the same conditions it may return different results. However, we did not
conduct further studies to improve the stability of LIME. Note that complementary indices
such as the variables stability index (VSI) and coefficients stability index (CSI) can be used
to evaluate stability improvement for increasing performance of the prediction system [27].

4.4. Limitations of Dataset

How much of the dataset can we use to maximize the accuracy of AI models? It has
been a critical subject of much debate so far. Although we used 140 patients’ data in this
study, we intuitively know that the prediction accuracy of the model can be improved
by using a larger number of datasets with various deviations [28]. One of the reasons for
the difficulty in using AI applications through predictive modeling in clinics includes the
lack of dataset [29]. The distribution of the Cobb angle to predict scoliosis in the study
participants was 6.16◦ ± 8.50 (Table 2). Therefore, the dataset cannot be used as a training
dataset to analyze mild and severe scoliosis (Cobb angle > 40◦). Therefore, the results of
this study can be applied to normal and mild scoliosis predictive modeling. In addition,
this study used a clinical tabular dataset to reveal the correlation between scoliosis-related
parameters by extracting participant characteristics through the CVPAS. Therefore, it was
difficult to apply data augmentation using image rotation and transformation adapting
in deep learning applications using images [30]. However, the data augmentation studies
related to parameters can be considered in the next study. The use of cross validation to
improve accuracy using insufficient datasets will be an example of model optimization.

5. Conclusions

Analyzing the feature importance using explainable artificial intelligence (XAI) to
postural deformity parameters extracted from a computer vision-based posture analysis
system (CVPAS) is a useful prediction method for the early detection of postural deformities.
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It was found that the pelvic height difference (PHD) was the most influential parameter
for both global and local analyses, and 3 mm was the threshold to significantly increase
the probability of local interpretation of each participant and the prediction of postural
deformation, which leads to the prediction of participant-specific scoliosis. Complementary
indices such as the variables stability index (VSI) and coefficients stability index (CSI) can
also be evaluated regarding stability improvement of explainer models in a further study.
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