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Abstract: In recent years, medical data have vastly increased due to the continuous generation of
digital data. The different forms of medical data, such as reports, textual, numerical, monitoring, and
laboratory data generate the so-called medical big data. This paper aims to find the best algorithm
which predicts new medical data with high accuracy, since good prediction accuracy is essential
in medical fields. To achieve the study’s goal, the best accuracy algorithm and least processing
time algorithm are defined through an experiment and comparison of seven different algorithms,
including Naïve bayes, linear model, regression, decision tree, random forest, gradient boosted
tree, and J48. The conducted experiments have allowed the prediction of new medical big data
that reach the algorithm with the best accuracy and processing time. Here, we find that the best
accuracy classification algorithm is the random forest with accuracy values of 97.58%, 83.59%, and
90% for heart disease, M-health, and diabetes datasets, respectively. The Naïve bayes has the lowest
processing time with values of 0.078, 7.683, and 22.374 s for heart disease, M-health, and diabetes
datasets, respectively. In addition, the best result of the experiment is obtained by the combination
of the CFS feature selection algorithm with the Random Forest classification algorithm. The results
of applying RF with the combination of CFS on the heart disease dataset are as follows: Accuracy
of 90%, precision of 83.3%, sensitivity of 100, and consuming time of 3 s. Moreover, the results of
applying this combination on the M-health dataset are as follows: Accuracy of 83.59%, precision of
74.3%, sensitivity of 93.1, and consuming time of 13.481 s. Furthermore, the results on the diabetes
dataset are as follows: Accuracy of 97.58%, precision of 86.39%, sensitivity of 97.14, and consuming
time of 56.508 s.

Keywords: medical big data; naïve bayes (NB); linear model (LM); regression (R); decision tree (DT);
random forest (RF); gradient boosted tree (GBT); J48; correlation feature selection (CFS)

1. Introduction

The rapid increase in digital data has enabled the generation of medical big data. Data
analysis is an important tool, paving the way towards achieving accuracy of big medical
data [1]. Machine learning techniques, in particular, traditional data mining techniques are
used to raise the accuracy and efficiency of medical data analysis. Due to the large size
of the data, these techniques are not suitable for collecting, storing, and analyzing these
datasets [2]. In medical data mining, for example, consultants prepare reports regarding
their patients in order to give an accurate and efficient decision on their patients’ health.
This discovered information is available for consultants and patients to access in order to
reach an accurate diagnosis [3,4].

The high volume of medical data and rapid advances in this field have resulted in the
so-called medical big data. Medical big data have large datasets and do not fit into tradi-
tional database architectures. They require different techniques, tools, and architectures to
deal with past and recent challenges in more effective ways [5]. One way of dealing with
these challenges is through accurate decisions. Machine learning algorithms, which are
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more frequently used, overcome these challenges by extracting knowledge and reaching
new patterns, rather than simply accessing information [6]. In the medical field, the choice
of an effective machine learning algorithm is a critical issue, since each algorithm has an
impact on the accuracy of the result. No one algorithm works best for all issues, due to the
fact that each algorithm has its own characteristics. The most commonly used machine
learning algorithms in mechanical engineering can be separated into the following classes:
Regression, estimation, classification, and clustering. Specifically, the regression or clas-
sification algorithms operate for a significant prediction [7]. The application of big data
analytics in healthcare is important for several reasons [8]:

• Continuous detection of the patient’s health and state. In the case of an unusual event,
an alarm is sent to the patient’s doctor for an early intervention.

• Early detection of disease.
• Prediction of new disease.

Different formats of big data are shown in Figure 1. Big data is composed of four
diverse data formats, including structured, semi-structured, quasi-structured, and unstruc-
tured data formats.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 20 
 

dealing with these challenges is through accurate decisions. Machine learning algo-

rithms, which are more frequently used, overcome these challenges by extracting 

knowledge and reaching new patterns, rather than simply accessing information [6]. In 

the medical field, the choice of an effective machine learning algorithm is a critical issue, 

since each algorithm has an impact on the accuracy of the result. No one algorithm works 

best for all issues, due to the fact that each algorithm has its own characteristics. The most 

commonly used machine learning algorithms in mechanical engineering can be sepa-

rated into the following classes: Regression, estimation, classification, and clustering. 

Specifically, the regression or classification algorithms operate for a significant prediction 

[7]. The application of big data analytics in healthcare is important for several reasons [8]: 

• Continuous detection of the patient’s health and state. In the case of an unusual 

event, an alarm is sent to the patient’s doctor for an early intervention. 

• Early detection of disease. 

• Prediction of new disease. 

Different formats of big data are shown in Figure 1. Big data is composed of four 

diverse data formats, including structured, semi-structured, quasi-structured, and un-

structured data formats. 

 

Figure 1. Big data formats. 

Challenges of Big Data in Healthcare 

Nowadays, the significance of big data analytics lies in raising and evaluating the 

application of big data analytics in the larger prescriptive. Therefore, it is important to 

outline some challenges of big data applications in healthcare. There are many method-

ological issues, such as data quality, data inconsistency, validation, and analytical issues. 

In addition, there is a need to enhance the data quality of electronic health records [9]. In 

the medical field, although disease prediction is one of the essential areas of research, the 

codes are not assigned in many databases. Therefore, these values need to be corrected. 

Another challenge is clinical integration. Big data analytics need to be integrated into a 

database to obtain significant advantages, and clinical integration needs the validation of 

big data analytics. It is important to solve these challenges to enhance the quality of big 

data application in the medical field. This improves patient outcome and reduces the 

waste of resources in healthcare, which should be the real value of big data studies [10]. 

Medical big data faces many challenges, as follows [11]: 

• Collecting patient data continuously from different sources, thus leading to the high 

volume of data. 

• Medical data are almost unstructured or semi-structured. 

Figure 1. Big data formats.

Challenges of Big Data in Healthcare

Nowadays, the significance of big data analytics lies in raising and evaluating the
application of big data analytics in the larger prescriptive. Therefore, it is important to
outline some challenges of big data applications in healthcare. There are many method-
ological issues, such as data quality, data inconsistency, validation, and analytical issues.
In addition, there is a need to enhance the data quality of electronic health records [9]. In
the medical field, although disease prediction is one of the essential areas of research, the
codes are not assigned in many databases. Therefore, these values need to be corrected.
Another challenge is clinical integration. Big data analytics need to be integrated into a
database to obtain significant advantages, and clinical integration needs the validation of
big data analytics. It is important to solve these challenges to enhance the quality of big
data application in the medical field. This improves patient outcome and reduces the waste
of resources in healthcare, which should be the real value of big data studies [10].

Medical big data faces many challenges, as follows [11]:

• Collecting patient data continuously from different sources, thus leading to the high
volume of data.

• Medical data are almost unstructured or semi-structured.
• Medical data are not clear for everyone.
• Handling a huge size of medical data.
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• Extracting useful information from medical big data.

The objective of this paper is to provide a comprehensive review of the implementing
models of the state of art, and to present a comparative analysis of the seven different
algorithms, which are mostly implemented in previous works. Here, we compare these
seven algorithms on different datasets in order to evaluate the accuracy of each algorithm
and conclude the best algorithm with the highest accuracy.

In this paper, machine learning methods are used to predict different diseases from
new emerging data. Seven algorithms are tested and enhanced using the CFS feature
selection algorithm to achieve better accuracy in the prediction stage. Then, we compare
these algorithms’ results for the heart disease dataset and repeat this comparison for the
M-health and diabetes datasets.

The rest of this paper is structured as follows: Section 2 explains the related work
of medical big data, while Section 3 presents the basic concepts which are used for the
experiments. Section 4 describes the proposed model and its steps. Section 5 discusses the
results of our experiments, and finally Section 6 presents the conclusions and future work.

2. Related Work

Medical big data classification and prediction are an important issue. In recent years,
many researchers have made significant efforts to increase the benefits of these data.
Utilizing an experiment, Gavai et al. [12] investigated the ability to detect which regions of
the country have an increase in disease. To perform the experiment, ontologies were used
and revealed that 62% of the patient population had the disease. For a new population
percentage, this investigation should be replicated on different patients.

Other researchers utilized the LR and RF algorithms to predict new data. The first
research used LR with the principal component analysis (PCA). In this case, Ansari et al. [13]
applied a model using UCI machine learning repository datasets to forecast whether a
person has heart disease. Initially, the authors trained LR with all of the attributes. Then,
they trained LR after removing the least significant attributes and suggested a model,
which is LR with PCA. Finally, LR with PCA achieved the best accuracy of 86%. The results
obtained determine whether heart disease exists with different levels of presence.

Singh et al. [14] suggested medical services that are suitable for everyone. The authors
predicted liver disease depending on a classification algorithm technique using the feature
selection method. The experiments were conducted based on the Indian liver patient dataset
(ILPD) from the database of University of California, Irvine. The different attributes of the
dataset are important to predict the risk level of disease. Various classification algorithms,
such as LR, SMO, RF, NB, J48, and KNN were used to evaluate the accuracy. Here, both a
comparison of different classifier results and the development of an intelligent liver disease
prediction software (ILDPS) were performed using the feature selection and classification
prediction techniques, based on a software engineering model. The best accuracy value is
77.4% for the LR algorithm with feature selection techniques. In this context, we suggest
the use of the CFS algorithm for feature selection to enhance the accuracy value.

Another research by Kondababu et al. [15] applied LR with RF to predict heart disease.
The authors used the UCI heart disease dataset to predict heart disease in its early stages
for disease control. A comparative analysis was conducted using different classification
algorithms. The best accuracy value is 88.4% for RF with LM. In this context, we suggest
the use of suitable data preprocessing steps to enhance the accuracy value.

Numerous researchers applied the RF, KNN, SVM, NB, and R algorithms on their own
or with another algorithm for the classification of new data. Ali et al. [16] applied many
supervised machine learning algorithms and compared them to evaluate the accuracy in
heart disease prediction. Importance scores for each feature were estimated for all of the
applied algorithms, except for MLP and KNN. All of the features were classified based on
the importance scores, such as accuracy, precision, and sensitivity to find the highest heart
disease prediction. The authors used a heart disease dataset from Kaggle, and implemented
the MLP, DT, KNN, and RF algorithms. Three classifications based on the KNN, DT, and
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RF algorithms have the highest accuracy value. The RF method was conducted with 100%
sensitivity and specificity. Therefore, a relatively simple and supervised machine learning
algorithm can be used for heart disease prediction, with very high accuracy and excellent
potential utility.

Subasi et al. [17] proposed a model using the M-health dataset. The results showed
that the proposed model with the RF and SVM classification algorithms have the highest
accuracy and are highly effective. The RF algorithm is most efficient with a high amount of
data, and thus results in a high accuracy value.

Jan et al. [18] implemented a data mining method using two standard datasets, which
were obtained from the UCI repository, namely Cleveland and Hungarian. The authors
experimented with five different classification algorithms, such as RF, NN, NB, R, and SVM.
They concluded that the lowest-performing algorithm was the regression classification,
while RF had a very high accuracy of 98.136%. The regression algorithm had the lowest
accuracy value with a high volume of data.

Khan et al. [19] experimented with the Naïve bayes (NB) algorithm. The authors
concluded that the accuracy changed with the increase of data. When the data increased,
the accuracy of the model decreased. In this experiment, the NB method achieved a 98.7%
accuracy. Moreover, it is suitable for small datasets. Therefore, other algorithms should be
experimented for a good accuracy value.

Mercaldo et al. [20] proposed a method that classified the dataset into diabetes-affected
patients and not affected ones using classification algorithms. The authors evaluated their
model on real-world data, which were obtained from the Pima Indian population. They
trained the model using six various algorithms, such as J48, MLP, HoeffdingTree, JRip,
Bayes Net, and RF, and obtained a precision equal to 0.757 and a recall of 0.762. Although
various algorithms were used, no single algorithm provided a sufficient accuracy value. In
this context, experiments with new classification algorithms are required to provide high
accuracy.

The following researches implemented the DT algorithm for classification. Jothi
et al. [21] tested the data using the python programming language. The output of the
program displayed the risks of having heart disease. The authors used the DT and KNN
algorithms for heart disease prediction. The DT algorithm tested the dataset to predict
the chances of having heart disease and had an accuracy rate of 81%. In addition, the
KNN algorithm tested the same dataset and had an accuracy rate or level of 67%. In the
proposed work, we assume that the RF algorithm is more efficient, can be used for the
automated work analysis, and enhances the accuracy value of work. Moreover, Arumugam
et al. [22] predicted diabetes-related heart disease, which is a kind of heart disease that
affects diabetic people. Heart disease refers to a set of conditions that affect the heart or
blood vessels. Although various data mining classification algorithms exist for heart disease
prediction, there is inadequate data for heart disease prediction in a diabetic individual.
Three different algorithms were implemented, including NB, SVM, and DT. Of note, the DT
model consistently had higher accuracy than the NB and SVM models, with a 90% accuracy
value.

In the research by Pinto et al. [23], the J48 algorithm was used based on the chronic
kidney disease (CKD) dataset. The CKD is categorized into various degrees of risk using
standard markers. It is usually asymptomatic in its early stages, and early detection is
important to reduce future risks. This study experimented with the cross industry standard
process for data mining (CRISP-DM) methodology and the WEKA software to develop
a system that can categorize the chronic condition of the kidney, depending on accuracy,
sensitivity, specificity, and precision. The J48 algorithm provided the following results:
97.66% of accuracy, 96.13% of sensitivity, 98.78% of specificity, and 98.31% of precision.

The following research by Mateo et al. [24] implemented the GBT algorithm. The
authors predicted acute bronchiolitis for new children. The selection of suitable treatments
is significant for disease progress. An extreme gradient boosting (XGB) classification
algorithm, which is a machine learning method that is suggested in this paper, was used for
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medical treatment prediction. Four supervised machine learning algorithms incorporating
KNN, DT, NB, and SVM were compared with the suggested XGB method. The results
showed that the XGB had the highest prediction accuracy of 94%. In this context, the
implementation of data reduction techniques is important to enhance prediction accuracy.

In this paper, various classifier techniques are proposed that involve a combination of
machine learning algorithms with a feature reduction algorithm to detect the redundant
features and enhance the accuracy and quality of heart disease, m- health, and diabetes
disease classification. Here, we present an evaluation for various disease classifications
using seven algorithms. Then, we study the performance of NB, LM, R, DT, RF, GBT, and
J48 classifiers. The main goal of this research is to find the best accuracy for the prediction
of different diseases using major factors based on different classifier algorithms. The use of
CFS algorithm with a combination of classification algorithms provides a better accuracy
value in comparison with the results of the literature works.

Table 1 shows the comparison between different research studies on medical data. It
presents the implemented algorithms and accuracy results, as well as the advantages and
disadvantages of each work.

Table 1. Comparison between different research studies on medical data.

Reference Year Dataset Algorithm Accuracy Advantages/Disadvantages

Khan et al. [19] 2016 Adult NB, C4.5 98.7%

The accuracy changed with the
increase of data. When the data
increased, the accuracy of the
model decreased. NB is good
with a small dataset.

Mercaldo et al. [20] 2017 Diabetes Pima
Indian

J48, MLP,
Hoeffding Tree,

JRip, Bayes Net, RF
77.6%

They used various algorithms but
no single algorithm provided a
sufficient accuracy value. They
need to experiment with new
classification algorithms which
provide high accuracy.

Subasi et al. [17] 2018 M-health SVM, RF 86%
The RF algorithm is most efficient
with a high amount of data. It
results in a high accuracy value.

Jan et al. [18] 2018 Cleveland and
Hungarian.

RF, NB, R, NN,
SVM 98.136%

While RF provides very high
accuracy, the regression algorithm
provides the lowest accuracy
value with a high volume of data.

Singh et al. [14] 2020
Indian Liver

Patient Dataset
(ILPD)

LR, SMO, RF, NB,
J48, IBk 77.4%

The best accuracy result was from
the LR with feature selection. We
suggest using the CFS algorithm
for feature selection to enhance
the accuracy value.

Pinto et al. [23] 2020 Chronic Kidney
Disease J48 97.66%

They developed a system that can
categorize the chronic condition
of kidney diseases. The J48
algorithm is suitable for the small
or medium volume of data.

Ansari et al. [13] 2020 UCI Heart Disease LR, PCA 86% LR with PCA achieved the best
accuracy.

Ali et al. [16] 2021 Kaggle Heart
Disease MLP, RF, DT, KNN 100%

Three classifications based on
KNN, DT, and RF algorithms
have the highest accuracy value.
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Table 1. Cont.

Reference Year Dataset Algorithm Accuracy Advantages/Disadvantages

Jothi et al. [21] 2021 Heart Disease DT, KNN 81%

DT has 81% accuracy and the
KNN algorithm has an accuracy
rate or level of 67%. We assume
that the Random Forest algorithm
is more efficient with the
proposed work.

Arumugam et al. [22] 2021 Diabetes based
Heart Disease NB, SVM, DT 90%

DT has the highest accuracy
value. The DT model consistently
has higher accuracy than NB and
SVM models.

Mateo et al. [24] 2021 Acute Bronchiolitis GBT, KNN, NB,
SVM, DT 94%

The XGB has the highest
prediction accuracy. Reduction
data implementation is important
to enhance the accuracy value of
the prediction.

Kondababu et al. [15] 2021 UCI Heart Disease RF, LM 88.4%

We suggest the use of suitable
data preprocessing steps and a
reduction algorithm as the CFS to
enhance the accuracy value.

3. Methodology
3.1. DT

Decision tree (DT) is a hierarchical division of the data and an algorithm for decision
support. It is similar to a flowchart, in which each internal node represents a test attribute,
the endpoint is a response or the class label, and each branch represents the classification
rule [25,26]. The following parameters are used to improve the performance of decision
tree:

• The max_depth parameter represents the maximum depth of the tree. Without defining
this parameter, the tree can lead to an infinite loop until all of the leaves are expanded.
We assign it as 20.

• The criterion parameter represents the measure of the split’s quality. Here, we use
entropy, which measures the information gain.

Entropy =
n

∑
i=0

pi log2 pi (1)

Information gain is a measure used for segmentation and is known as mutual infor-
mation [27]. This denotes the amount of knowledge needed for a variable’s value. It is the
opposite of entropy, where the higher the value, the better. In the definition of entropy, data
gain (S, A) is defined as shown in Equation (2):

Gain =
n

∑
i=1

(
|sv|
|v|

)
entropy (s) (2)

where the range of attribute A is (A), and Sv is a subset of set S, which is equal to the
attribute value of v.

3.2. RF

Random forest (RF) is a real-time ensemble classification algorithm. It is composed
of a set of trees, with each tree depending on random variables. The vector X = (X1,
X2 . . . , Xn)T represents the input value, the random variable Y represents the response or
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prediction values, and the used joint distribution is PXY (X, Y). The goal is predicting Y
from a prediction function f(X) [28].

The class prediction is conducted by the majority of votes, which is defined as the
most common class prediction between trees. Therefore, the voting occurs on the class
probability level. The predictions select the class with the highest class probability as shown
in Figure 2.
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Figure 2 shows how the ensemble classification done. It gathers the results from
different trees and votes the results then it chose the result with the highest voting.

The following parameters are used to enhance the classification accuracy:

• The n_estimators’ parameter represents the number of trees that we need to build
prior to voting. Better accuracy results from the highest number of trees, but it results
in high-performance time. We use 50 tree numbers for an efficient classification.

• The max_depth parameter represents the maximum length of the trees. If we do not
assign a value for max_depth, it may lead to infinite nodes. We assign it as 20.

3.3. J48

The J48 is a tree-based algorithm, which is used to discover the way the attribute
vector performs for a number of instances. Moreover, on the basis of the training instances,
the classes for the newly produced data are found. This algorithm produced the rules for
the outcome variable prediction. With the aid of tree classification algorithm, the correct
distribution of the data is easily reasonable. J48 is an expansion of ID3. The additional
features of J48 include calculating the missing values, decision trees pruning, continuous
attribute value ranges, etc. The J48 is an open source Java implementation of the C4.5
algorithm. It presents a set of options related to tree pruning. In the case of potential over
fitting, pruning can be used as a precision tool [30].

For other algorithms, the classification is achieved recursively until every single leaf
is pure. In this case, the classification of the data should be as precise as possible. The J48
generates the rules from which a specific identity of the data is produced.

3.4. LM

The linear model (LM) expands the concept of the well-known linear regression
model. It simplifies the linear regression by permitting the linear model to be associated
to the response variable via a link function and by permitting the significance of the
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variance of every measurement to be a task of its predicted value. It offers an iteratively
reweighted least squares method for maximum likelihood approximation of the parameters.
Maximum likelihood approximation has become more common and is the standard way
on most statistical computing packages [31]. Other approaches, incorporating Bayesian
methodologies and least squares fits to variance responses, have been improved.

3.5. R

Logistic regression (R) is a statistical tool used in the medical field. Logistic regression
adds a coefficient to each predictor. The Y variable takes the (1) value if the label is yes and
takes the (0) value if the label is no. If the label has two values, the binary logistic regression
is used. However, in the case of more than two values, the multinomial logistic regression
is used [32].

The following parameters and attributes are used for accuracy enhancement:

• The max_iter parameter represents the maximum number of iterations until it con-
verges. We assign it as 20.

• The random_state parameter represents the random values used in shuffling.
• The classes attribute represents the list of class labels for a clear classification.

3.6. GBT

The gradient boosted tree (GBT) is a very common supervised learning approach,
which is used in medical areas. In addition to high accuracy, this approach quickly predicts
new values and has a small memory foot print. GBT training for huge datasets is challeng-
ing even with extremely optimized packages, such as XGBoost. Moreover, it is not possible
to continuously upgrade GBDT models with new data [33].

The following parameters are used for accuracy enhancement:

• The max_depth parameter represents the maximum length of the trees. If we do not
assign a value for max_depth, it may lead to infinite nodes. We assign it as 20.

• The learning rate presented is assigned to 0.01.

3.7. NB

Naïve bayes (NB) is a classification algorithm that produces a likelihood of a specific
set of explanations related to a specific class [34], which differ due to the values of the class
label variable. The NB classifier has been accepted as a basic probabilistic classifier, which
relies on clear independent principles of Bayesian theorem [35].

In machine learning and data mining, classification is a basic issue. In a classification,
the concept of this algorithm is to construct a classifier with class labels. The NB approach
is a supervised classification algorithm which uses the theorem of Bayes [36].

3.8. CFS

Correlation feature selection (CFS) is an essential step of the preprocessing phase in
the process of classification and prediction. Attribute selection, variable selection, feature
construction, and feature extraction are the different names assigned to feature selection al-
gorithms. They are mainly used for data reduction by eliminating unrelated and redundant
data. Feature selection enhances the characteristics of the data and raises the accuracy of
classification algorithms by decreasing the data volume and processing time [30]. There are
many feature selection algorithms, such as principal component analysis (PCA), singular
value decomposition (SVD), CFS, etc. The most effective feature selection algorithm with
our data is the CFS. It is suitable for our data parameters, which are numerical and textual
data. In addition, CFS can improve the classification accuracy and efficiency by removing
redundant features.
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4. Comparison between Medical Data Classification Methods

The prediction of new data from big medical data is not an easy challenge. There
are many algorithms used for classification or prediction. In this paper, we implemented
them on medical big data using seven different classification algorithms to identify the
best algorithm with the highest accuracy and lowest processing time. The classification
algorithms do not reach a good accuracy on their own; they require preprocessing steps
to enhance the data quality. To enhance the accuracy, preprocessing steps and the feature
selection method were used. The preprocessing steps clean the data from noise and
replace the missing data. The feature selection method allows the reduction of the data
structure, which affects the accuracy and running time of the prediction step. These steps
are explained in Figure 3.
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Figure 3. The proposed medical data classification model.

Data processing has major advantages. However, it also has many disadvantages, as
follows:

• Machine learning needs to train on huge datasets, and these should be unbiased as
well as of good quality. As a result, there can be periods where we should wait for
new data to be produced.

• Sufficient time is required for the algorithms to learn how to achieve their purpose
with accuracy. Machine learning also requires massive resources to function, which
leads to additional computer power requirements [37].
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From a data mining perspective, medical data classification is a process that requires
the following main steps: (I) Data acquisition, (II) data preprocessing, (III) feature extraction,
and (IV) data classification. Figure 3 shows the steps of preprocessing, feature selection,
and classification. In the following sub-sections, we discuss these steps.

I. Data Acquisition

Raw data are obtained from different sources since we use three different datasets.
Then, to understand the data, we review the dataset attributes, values, and instances.

II. Data Preprocessing

Raw data have many challenges due to the continuous collection of data from different
medical sources. The analysis of this data results in a low accuracy value with inaccurate
prediction results. The three datasets used have many redundant values and a set of
missing data. Therefore, in this step, we clean the dataset by removing duplications and
replacing the missing data with the “Unknown” value for categorical data and the mean
value for the numerical data. The output of this step is a clean and high-quality dataset,
which increases the accuracy of the used algorithms.

III. Feature Selection

Data selection is conducted by finding standard features of data, which represent the
original data. The featured dataset is the input of the classification step, rather than the
full data. The feature selection step is one of the most important steps. It reduces data
by focusing on the featured data. There are many feature selection algorithms, such as
principal component analysis (PCA), singular value decomposition (SVD), CFS, etc. The
most effective feature selection algorithm with our data is the CFS. It is suitable for our
data parameters, which are numerical and textual data. CFS can improve the classification
accuracy and efficiency by removing redundant features. Let X be the set of all the features
of the dataset with a large number of features {f1, f2, f3, . . . , fn}, where n is the number of
the attributes or features of the dataset. The feature selection process involves selecting the
data, which generates × set of features with a small number of features [38].

IV. Data Classification

Data classification has two stages, which are the training stage and the testing stage.
In the training stage, part of the preprocessed data, which is 70%, is inputted into a defined
classification algorithm that generates a training model. Then, in the testing stage, the other
part of the preprocessed data, which is 30%, is inputted into the tested model to evaluate
the defined classification algorithm. Seven classification algorithms, which are NB, LM, R,
DT, RF, GBT, and J48 are implemented on our data.

5. Results and Discussion

In this work, various techniques were implemented on three datasets [39–41]: Radoop,
Waikato (Weka 3.9), and MATLAB 2020a. The experiments were implemented on a compu-
tational server with the following specifications: Windows 10 64-bit operating system, with
processor Intel(R) 16 GB of RAM Core (TM) i7-7500U CPU @ 2.70 GHZ 2.90 GHz. In all
cases, the implementation has been conducted in parallel.

5.1. Dataset Description

Table 2 shows the properties of the three experimented datasets. It presents the number
of attributes and instances as well as whether there are missing data, redundancy, and
noise.
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Table 2. Description of the three experimented datasets.

Dataset Attributes’
Number

Instances’
Number

Missing
Data (Y/N)

Redundancy
(Y/N)

Noise
(Y/N)

M-Health [39] 24 161281 Y Y Y
Diabetes [40] 50 101797 Y Y N
Heart Disease [41] 19 59077 Y N Y

Table 3 shows the characteristics of the different datasets after the preprocessing
step. It presents whether the data are encoded, whether the set of attributes required an
implementation of feature selection, as well as the number of attributes after the feature
selection step.

Table 3. Characteristics of the three datasets after preprocessing and feature selection.

Dataset Encoding (Y/N) Feature Selection (Y/N) Attributes’ Number

M-Health N Y 12
Diabetes Y Y 29

Heart Disease Y Y 10

5.2. Results

Tables 4–6 show the comparison between different classification algorithms, such as
NB, LM, R, DT, RF, GBT, and J48. The classification algorithms are tested with preprocessing
data cleaning steps, such as duplication and missing data removal. The processing time for
executing the tested algorithms on diabetes data is increased, compared to the other tested
datasets. Whereas the data volume increased, the running time of algorithms increased, as
shown in Table 6.

Table 4. Comparison between different algorithms applied on heart disease data without preprocess-
ing.

Algorithm Accuracy Relative Error Precision Sensitivity Time (s)

NB 66.2 33.8 75.2 89.56 1.39
LM 69.96 30.04 70.43 72.67 3.9
R 74.4 25.6 69.73 70.02 8.04
DT 75 25 78.43 78.9 4.7
RF 75.2 24.8 89.52 99.06 9.12
GBT 74.1 25.9 87.4 90.02 16.79
J48 72.9 27.1 70.42 84.1 86.83

Table 5. Comparison between different algorithms applied on preprocessed heart disease data.

Algorithm Accuracy Relative Error Precision Sensitivity Time (s)

NB 77.5 22.5 86.7 65 0.078
LM 82.5 17.5 78.3 90 3
R 90 10 86.4 95 2.95
DT 80 20 73.1 95 2.99
RF 90 10 83.3 100 3
GBT 90 10 83.3 100 16
J48 84.56 15.44 84.6 84.6 85.5
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Table 6. Comparison between different algorithms applied on M-health data without preprocessing.

Algorithm Accuracy Relative Error Precision Sensitivity Time (s)

NB 70.82 29.18 68.75 74.15 9.07
LM 65.67 34.33 72.36 71.08 12.08
R 70.39 29.61 68.87 69.17 10
DT 70.04 29.96 79.6 76.75 12.613
RF 79.2 20.8 75.46 80.05 16.814
GBT 74.25 27.75 76.21 77.8 685.47
J48 60.4 39.6 65.8 60.7 91.65

The experiments were evaluated using three datasets: Heart disease, M-health, and
diabetes datasets. The classification algorithms were experimented by the Raddoop plat-
form and MATLAB 2020a. In addition, the preprocessing and CFS reduction algorithms
were implemented by the Waikato platform (Weka 3.9). Moreover, the classification algo-
rithms were tested before and after applying the preprocessing step. From our studies,
we conclude that the application of data reduction decreases the consuming time and
preprocessing enhances the quality of the data, which lead to a better accuracy value.

Tables 4 and 5 show the comparison between different classification algorithms on
the heart disease dataset before and after applying preprocessing on the data. The tables
present the accuracy, relative error, precision, sensitivity, and time of each algorithm. The
mathematical analysis of error calculation is a critical portion of the measurement. This
analysis detects the actual value and the error quantity. The relative error conducts how
good or bad the classification is. In mathematical measurements, the errors are conducted
by a round-off error or truncation error.

In Tables 4 and 5, the results show that the accuracy after preprocessing is better
than without preprocessing for all of the tested algorithms. Moreover, regarding time
processing, the time processing of the algorithms without preprocessing is longer than the
time processing of the preprocessed data.

In Table 5, the results show that in the heart disease dataset, the J48 algorithm takes
a long time for processing with 85.5 s. In addition, the NB algorithm takes the lowest
processing time with 0.078 s, but it has a minimum accuracy value of 77.5%. Moreover, the
highest accuracy is the same for R, RF, and GBT with a 90% value.

Tables 6 and 7 show the comparison between different classification algorithms on the
general health (M-health) dataset before and after preprocessing. The tables present the
accuracy, relative error, precision, sensitivity, and time of each algorithm.

Table 7. Comparison between different algorithms applied on preprocessed M-health data.

Algorithm Accuracy Relative Error Precision Sensitivity Time (s)

NB 82.25 17.75 88.2 70.04 7.683
LM 70.44 29.65 74.31 82.52 10.158
R 77.1 22.9 81.1 89 9.351
DT 79.04 20.96 66.23 90.2 9.926
RF 83.59 16.41 74.3 93.1 13.481
GBT 79.29 20.71 72.13 91.4 446.8
J48 66.39 33.61 61.2 54.2 72.42

In Tables 6 and 7, the results show that the accuracy after preprocessing is better than
without preprocessing for all of the tested algorithms. Moreover, for time processing, the
time processing of the algorithms without preprocessing is longer than the time processing
of the preprocessed data.

In Table 7, the results show that in the M-health dataset, when the data increases, the
accuracy of R and GBT decreases. The best accuracy is 83.59% for the RF algorithm, but the
low accuracy value is 66.39% for the J48 algorithm. The lowest processing time is 7.683 s
for the NB algorithm, but the highest processing time is 44.68 s for the GBT algorithm.
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Tables 8 and 9 show the comparison between different classification algorithms on the
diabetes dataset before and after preprocessing. The tables present the accuracy, relative
error, precision, sensitivity, and time of each algorithm.

Table 8. Comparison between different algorithms applied on diabetes data without preprocessing.

Algorithm Accuracy Relative Error Precision Sensitivity Time (s)

NB 93.62 6.38 87.9 90.18 27.026
LM 91.73 8.27 81.6 83.6 31.4231
R 80.09 19.91 68.06 74.5 31.753
DT 92.53 7.47 85.5 89.086 33.9
RF 93.96 6.04 90.26 91.47 58.205
GBT 91.07 8.93 89.69 87.05 123.45
J48 70.23 29.77 70.1 72.06 90.64

Table 9. Comparison between different algorithms applied on preprocessed diabetes data.

Algorithm Accuracy Relative Error Precision Sensitivity Time (s)

NB 96.16 3.84 83.35 91.43 22.374
LM 94.4 5.6 81.03 76.98 26.564
R 85.31 14.96 79.01 95 29.064
DT 96.85 3.15 85.8 95.48 33.667
RF 97.58 2.42 86.39 97.14 56.508
GBT 96.55 3.45 85.08 95.08 117.845
J48 73.828 26.172 73.5 75.1 87.24

In Tables 8 and 9, the results show that the accuracy after preprocessing is better than
without preprocessing for all of the tested algorithms. Moreover, for time processing, the
time processing of the algorithms without preprocessing is longer than the time processing
of the preprocessed data.

Figures 4 and 5 show the representation of accuracy, precision, sensitivity, and standard
deviation (SD) for the heart disease dataset. Figures 6 and 7 show the comparison between
the accuracy and time results of the data before and after preprocessing.
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Figure 7. Time comparison of different algorithms on heart disease before and after preprocessing.

In Figures 6 and 7, the results show that the accuracy after preprocessing is better than
without preprocessing for all of the tested algorithms on the heart disease dataset. Moreover,
for time processing, the time processing of the algorithms without a preprocessing is longer
than the time processing of the preprocessed data.
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Figures 8 and 9 show the representation of accuracy, precision, sensitivity, and SD for
the general health dataset. Figures 10 and 11 show the comparison between the accuracy
and time results of the data before and after preprocessing.
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In Figures 10 and 11, the results show that the accuracy after preprocessing is better
than without preprocessing for all of the tested algorithms on the general health dataset.
Moreover, for time processing, the time processing of the algorithms without preprocessing
is longer than the time processing of the preprocessed data.

Figures 12 and 13 show the representation of accuracy, precision, sensitivity, and SD
for the diabetes dataset. Figures 14 and 15 show the comparison between the accuracy and
time results of the data before and after preprocessing.
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preprocessed data.
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Figure 13. The SD values of diabetes disease data.
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Figure 14. Accuracy comparison of different algorithms on diabetes disease before and after prepro-
cessing.
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Figure 15. Time comparison of different algorithms on general health before and after preprocessing.

The standard deviation (SD) is a descriptive statistic that measures the amount of
variation or dispersion in a set of numbers. A low SD implies that the values are close to
the mean of a set (also known as the expected value), whereas a high SD shows that the
values are spread over a larger range.

In Figures 14 and 15, the results show that the accuracy after preprocessing is better
than without preprocessing for all of the tested algorithms on the diabetes dataset. More-
over, for time processing, the time processing of the algorithms without a preprocessing is
longer than the time processing of preprocessed data.

The performance results are calculated using the following equations:

Precision=
TP

TP+FP
(3)

Accuracy=
TP+TN

TP+TN+FP+FN
(4)

Sensitivity, Recall (TP rate)=
TP

TP+FN
(5)

Relative Error=
Absolute error ∗ 100%

“True” value
(6)

where TP is the true positive value, TN is the true negative value, FP is the false positive
value, and FN is the false negative value.
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With regards to the diabetes dataset, the data have increased, and thus the processing
time of the experimented algorithms increased. The highest accuracy is for the RF algorithm
with a 97.58% value, but the lowest accuracy is 73.828% for the J48 algorithm. The J48
accuracy decreases when the data increase. The best time is 22.374 s for the NB algorithm,
but the GBT has the highest processing time with 117.845 s.

From the results of the M-health and diabetes datasets, we conclude that the accuracy
of J48 decreases as the data increase. Moreover, the GBT has the highest processing time
when the data increase.

However, the NB processing time for the M-health and diabetes datasets is higher
than the processing time of the heart disease dataset, but the NB remains as the algorithm
with the least processing time.

5.3. Discussion

The experimental results show that the proposed model provides comparable results
of different classification algorithms. We implemented these algorithms once without the
use of the CFS reduction algorithm, and a second time after applying the CFS algorithm.
The results show that the different classification algorithms with a combination of CFS
provide significant values of accuracy. In contrast, the best accuracy value of the three
datasets is provided by the RF with a combination of CFS. Here, we conclude that the
accuracy of J48 decreases when the data increase. Moreover, the GBT has the highest
processing time when the data increase.

The NB processing time for the three datasets is the highest, and thus the NB is the
algorithm with the least processing time.

The main factors that lead to better accuracy results are as follows:

- Preprocessing helps in increasing the data quality, since good data quality results in
good accuracy values.

- The application of data reduction algorithm reduces the consuming time.
- The limitations or challenges of our model are as follows:
- Time complexity: The execution requires a large amount of time, since the more the

data increase, the more time it requires for the execution.
- CPU processing issues, such as data with a high volume require a major part of the

computer memory.
- Adjusting the parameters’ values, such as the number of layers, max_depth, etc.

requires significant effort and time since it is a trial-and-error experiment.

6. Conclusions

Medical big data are generated due to the vast increase of existing devices, sensors,
actuators, and network communications. From a data mining perspective, the medical
data classification steps include data acquisition, data preprocessing, feature extraction,
and training-testing classification phases. In this paper, we first collected data from differ-
ent resources, then cleaned them and filled in the missing data. Thereafter, we selected
the features, which are useful for data reduction. Finally, we used seven different data
classification algorithms, including NB, LM, R, DT, RF, GBT, and J48. After conducting
our experiments, we conclude that the RF has the best classification accuracy with values
of 97.58, 83.59, and 90% for heart disease, M-health, and diabetes datasets, respectively.
However, the NB has the best running time with values of 0.078, 7.683, and 22.374 s for
heart disease, M-health, and diabetes datasets, respectively. The results of applying RF
with a combination of CFS on the heart disease dataset are as follows: Accuracy of 90%,
precision of 83.3%, sensitivity of 100, and consuming time of 3 s. In addition, the results
of applying this approach on the M-health dataset are as follows: Accuracy of 83.59%,
precision of 74.3%, sensitivity of 93.1, and consuming time of 13.481 s. Moreover, the results
on the diabetes dataset are as follows: Accuracy of 97.58%, precision of 86.39%, sensitivity
of 97.14, and consuming time of 56.508 s. In the future, we will enhance the accuracy of the
RF classification algorithm by implementing different reduction algorithms. Furthermore,
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we intend to implement a hybrid between RF and NB. Of note, although the RF gives the
highest accuracy, it takes the longest processing time. In this case, the use of NB algorithm
will solve this problem.
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