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Abstract: Face photographs taken on a bright sunny day or in floodlight contain unnecessary
shadows of objects on the face. Most previous works deal with removing shadow from scene images
and struggle with doing so for facial images. Faces have a complex semantic structure, due to which
shadow removal is challenging. The aim of this research is to remove the shadow of an object in
facial images. We propose a novel generative adversarial network (GAN) based image-to-image
translation approach for shadow removal in face images. The first stage of our model automatically
produces a binary segmentation mask for the shadow region. Then, the second stage, which is a
GAN-based network, removes the object shadow and synthesizes the effected region. The generator
network of our GAN has two parallel encoders—one is standard convolution path and the other
is a partial convolution. We find that this combination in the generator results not only in learning
an incorporated semantic structure but also in disentangling visual discrepancies problems under
the shadow area. In addition to GAN loss, we exploit low level L1, structural level SSIM and
perceptual loss from a pre-trained loss network for better texture and perceptual quality, respectively.
Since there is no paired dataset for the shadow removal problem, we created a synthetic shadow
dataset for training our network in a supervised manner. The proposed approach effectively removes
shadows from real and synthetic test samples, while retaining complex facial semantics. Experimental
evaluations consistently show the advantages of the proposed method over several representative
state-of-the-art approaches.

Keywords: shadow removal; image restoration; image reconstruction; partial convolution

1. Introduction

Facial images have become one of the most popular sources of images captured
daily, transmitted through electronic media and/or shared on the social networks. In the
real world, these images are often corrupted by some image conditions, especially the
shadows of different objects. This not only degrades image quality but also affects the
visual appearance of the image. The main objective of this research is to automatically
detect and remove the shadow of an object from the facial images and produce a shadow
free image. Most of the previous shadow removal works deal with removing shadow from
the scene images and to the best of our knowledge there is no previous work for shadow
removal from the facial images. Since faces have a complex semantic structure, shadow
removal from facial images is an extremely challenging problem in computer vision.

Traditional shadow removal works [1,2] by using a physical model. These non-trivial
methods take lot of processing time and suffer for shadow removal in facial images. On the
other-hand, learning-based methods [3–6] outperformed non-learning based methods
for the shadow removal task. Although they produce good results as compared to the
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traditional algorithms for removing shadow from scene images, they are unable to remove
shadows from facial images due to the complex nature of face semantics.

In this work, instead of improving or modifying the previous deep learning based
shadow removal model for removing shadow from face images, we took a totally different
approach by using an image inpainting approach as a shadow removal model. Image
inpainting is the method used to reconstruct lost or damaged parts of an image. The
current state-of-the-art deep learning based image inpainting methods [7–11] reconstruct
the damaged region by providing the mask of the damaged part. Refs. [7,8] fill the missing
pixel by copying similar patches from the surrounding region. Ref. [10] used some guidance
information to reconstruct the corrupt part of the image while [12] use two discriminators
to enforce global coherency. Some models [9,11,13] use two-stage networks by generating
coarser results in the first stage and refine it in the second stage.

All of the above mentioned deep learning works only use standard convolution as
the backbone operation of a neural network. The standard convolution employs the same
filter weights all over the image, nevertheless pixels are valid or affected. Eventually,
it generates a well-incorporated structure under the affected area but fails to remove
visual artifacts, particularly at the boundary of the affected and valid area as mentioned
in [14,15]. In the shadow removal problem, this issue becomes more severe because most
of the time the shadow area is large and an irregular shape. To overcome these issues,
many researchers use extensive post processing steps and/or additional refinement stages
as in [8,11]. To incorporate with irregular shape recovery and limitations of standard
convolution, improved convolution—called partial convolution [14]—is proposed.

In partial convolution, convolution is only employed on a valid pixel area and is
re-normalized. A segmentation mask is used to locate a valid pixel area [14]. The valid
pixel mask is updated after each iteration to compute new valid pixels. Additionally,
our approach does not have any post processing or refinement stages. In this paper,
we are considering the shadow part of an image as a damaged or corrupted area. The
first segmentation mask of a shadow is generated by a simple convolution auto-encoder
network and then use that mask of the shadow part along with input image, to reconstruct
the shadow part of the image. We propose a GAN based deep network that takes an input
image along with the binary mask of the shadow region and produces a shadow free image
that is consistent both visually and structurally. The main contributions of this work are
summarized as follows:

• We propose a novel GAN-based image inpainting approach to remove the shadows
of objects from facial images;

• Our method generates a well-incorporated semantic structure and disentangles the
visual discrepancies issue under the shadow region by employing a combined parallel
operation of standard and partial convolution in a single generator model;

• To train our shadow removal network in a supervised manner, we create a paired
synthetic shadow dataset using facial images from the CelebA dataset;

• Our model removes the shadow and creates perceptually better outputs with fine
details in challenging facial images.

The remaining parts of the paper are organized as follows. Section 2 covers related
works. The architecture of the shadow removal network is described in Section 3. Section 4
covers the experimental setting. Section 5 details the results and discussion.

2. Related Work

Generative Adversarial Network (GAN): GANs have shown a promising ability for
image generation problems [16]. GAN is a two network model; one is a generator network
and other is a discriminator network. The purpose of the generator network is to learn a
given data distribution, where the intention of the discriminator network is to estimate the
probability that a given sample is real or fake, that is, generated from generator network.
GAN uses adversarial training, where the generator and the discriminator networks train
alternatively. One popular improvement is to use multiple stages of GAN. Zhang et al.
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proposed Stacked Generative Adversarial Networks (StackGAN) [17]. It is a two-stage
GAN network to produce a high resolution output from the text description. The first
stage GAN network generates low resolution results from the given text description and
the output image of Stage-I GAN along with the input text. Then the second stage is fed
with the results of the first stage and produce high resolution photo realistic images with
fine details. GAN has a proven powerful solution to generate natural looking results [18].
Due to its success for various tasks, GANs are widely used for problems such as domain
translation [19–21], texture synthesis [22,23], image inpainting [7,8,11,12,21,24–26] and
shadow removal [6,27–30].

Image inpainting: The goal of inpainting is to recover the missing part in an image.
There are countless applications of inpainting, from removing undesired objects and
restoring corrupted regions to adding specific objects. Traditional inpainting approaches
propagate the information to fill-in the corrupted area from neighboring pixels [31,32]. All
of these methods can only fill-in a small area with stationary texture and failed to inpaint
areas where texture and color variance is large. To overcome the texture issue, patch based
methods are introduced, which copy similar patches from the input image and paste it into
the target image [33,34]. However, this approach works well for non-stationary texture
inpainting. Patch based methods have a computational cost because they search in an
iterative manner, which is inefficient for real-time implementation.

A pioneer deep-learning based image inpainting method is proposed in [7], which
can inpaint the large missing region conditioned on its neighbouring information. The
combination of pixel-wise loss and adversarial loss is used for training. However, high
frequency details are missing and sometimes generate artifacts in the output images. For
better perceptual results, structural inpainting [8], which is based on [7], used perceptual
reconstruction loss in addition to existing loss. Structural inpainting can inpaint the
complex structures. Khan et al. [13] proposed two stage GAN to de-pixelate the mosaic
face image. Their network first removes the mosaic part in the image and then generates
face semantics. It works in the coarse-to-fine manner. For better perceptual results, Ref. [35]
proposed UMGAN with perceptual loss from the pre-trained network. Refs. [13,35] are
limited to square-shape corrupted areas only, but shadows can be an irregular shape.
Similar to [7,8,24], we exploit both low-level (l1) loss and high-level (SSIM) loss in terms of
reconstruction loss to inpaint the region under the shadow.

A two-stage network called EdgeConnect [10] is proposed to inpaint the corrupted
image by employing the hallucinated edge information of the corrupted region. Since
the results of EdgeConnect rely on the quality of the edge map produced by the edge
generator network, so the output suffers when the edge generator network failed to
produce a right edge map. New convolution schemes, such as partial convolution [14] and
gated convolution [15], were developed to overcome the limitations of the aforementioned
methods. These methods produce better results in terms of color correspondence and
incorporated semantics.

Object removal: The exemplar-based method for texture synthesis is proposed by
Criminisi et al. [36]. It inpaints the missing area with plausible texture but fails to generate
reasonable results for the regions which do not have similar patches in the image. Improved
exemplar based inpainting methods are described in [37] to remove an object from a single
image. Normalized cross correlation along with the summation of squared differences is
used to find a matching patch in the image. However, it removes the object accurately in
simple scenes but the boundary of the removed region has some artifacts. Kamran et al. [9]
proposed a two-stage GAN based neural network to remove a microphone object in facial
images. It can efficiently remove small objects like a microphone and recover semantics
under that but struggle to recover a large area. Recently, Din et al. [38,39] proposed a
GAN-based network to effectively remove a large occluded object from facial images.

Shadow removal: Shadow removal is one of the popular topics in the computer vision
field nowadays, where the goal is to remove shadows from photographs which were taken
on a sunny day. Ding et al. [29] proposed a robust attentive recurrent GAN based network
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to detect and remove shadows. Their approach is able to remove shadows from complex
scene images. The model is very flexible to incorporate sufficient unsupervised shadow
images to train a powerful model. As compared to conventional approaches, which uses an
illumination model to remove shadows, Ref. [27] proposed a deep neural network, which
accurately and automatically estimates the parameters for the model from a single image.

Mask-Shadow GAN, presented in [30] uses un-paired images to remove shadows
from scene images. Instead of shadow-free to shadow translation, Mask-Shadow GAN is a
deterministic image translation technique, which uses shadow masks as a guidance, which
are automatically learned from the real world images with shadow. RIS-GAN is proposed
in [28], and exploits the residual and illumination. They explored the correlation between
residual, illumination and the shadow by using a unified end-to-end framework. One recent
work [6] proposed a method, which first aggregates with context using an aggregation
model and then hierarchically aggregates the attentions and features. A shadow matting
generative network is trained to generate the shadow images from the corresponding
shadow-free images and masks. The shadow matting generative network not only enlarges
the scenes in the shadow database but also reduces the color discrepancies.

3. Our Method

This section describes the network architecture of the proposed shadow removal
method and the details of the objective function we used for training. Our network consists
of two stages; in the first stage, we used a convolution auto-encoder to detect the shadow
of an object. In the second stage, we used a GAN based image-to-image translation method,
which effectively removes shadows in facial images and produces fine details. Figure 1
shows the overall shadow removal architecture.

Figure 1. Proposed Network Architecture for Shadow Removal.

3.1. Network Architecture

The first stage of our network (Convolutional Auto-encoder) consists of a CNN-based
encoder and decoder architecture. The encoder consists of five layers where each layer
consists of a convolution layer followed by an activation function (Lrelu) and an instance
normalization layer, except the first layer. The decoder architecture is a mirror copy of
the encoder architecture except that convolution is replaced by a deconvolution layer.
The convolutional auto-encoder takes the input shadow image and produces a binary
segmentation mask for the object’s shadow. We used a cross-entropy loss as an objective
function between the predicted binary segmentation mask and the corresponding target
segmentation map.

Since the second stage (shadow removal) of our network utilizes a GAN based model,
it has generator and discriminator networks. The generator network has two parallel
encoders; one is a standard convolution path and the other is a partial convolution path.
This combination in the generator results not only in learning incorporated semantic
structures but also disentangling the visual discrepancies problem under the shadow
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area. We start with a UNET-like architecture [40], which has skip connections between
the standard convolution encoder and decoder. The purpose of the skip connections is to
provide super highways for a gradient during back propagation and avoid the vanishing
gradient problem.

Additionally, we used an atrous convolution [41] layer and a squeeze and excitation
block [42] between the encoders and the decoder networks of the generator. The inten-
tion of atrous convolution is to capture a large field of view for a semantically coherent
output and reduce the trainable parameters. To increase the representational power of
our architecture, we used a squeeze and excitation block followed by atrous convolution.
The purpose of the squeeze and excitation block is to perform dynamic channel-wise
feature re-calibration. Moreover, a decoder network is similar to the standard convolution
encoder, except transpose convolution is used instead of convolution. Each convolution
layer consists of relu+conv+instant norm operation. Our discriminator is a Patch-GAN
based architecture, which penalizes the patches instead of each pixel.

3.2. Objective Function

To enforce the generator to remove shadow and produce realistic and perceptually
correct content under the shadow, we used a joint objective function, which is a combination
of four different loss terms. The overall training objective function can be written as follows:

Lobj = α.(Ll1 + Lssim) + Ladv + βLperc, (1)

where Ll1 is a pixel level l1 penalty, Llssim
is a structural penalty, Ladv is a cross entropy

adversarial loss and Lperc is a perceptual penalty, which we calculated by measuring the
distance between feature map values of the loss network for the generator output and the
corresponding ground truth. Particularly, we used a pre-trained VGG-19 [43] as a loss
network. The weight of loss terms can be adjusted with respective constants α and β.

4. Experimental Setup

In this section, we present the experimental setting of our shadow removal network.
First, we created a synthetic shadow database and then trained our shadow removal
network on it. For fair comparison, we retrained state-of-the-art works such as Edge-
Connect [10], Partial Convolution [14], Gated Convolution [15] and Ghost-free Shadow
removal [6] on a new synthetic database. At evaluation time, we also show results on real
world shadow images, collected from the internet.

Database: We trained our shadow removal network in a supervised manner. We
started with 20,000 randomly selected images from the CelebA Face dataset [44] and
created a synthetic shadow database. CelebA face images contain various celebrity images
with wild backgrounds and were taken in diverse conditions. We used OpenFace dlib [45]
to align the faces using facial landmark positions. This alignment helps the model to
generate the face semantics (e.g., eyes) at the right place on the face. Finally, we generate
synthetic images by placing the shadow of various objects using Adobe Photoshop. We
consider shadows of various objects of different sizes and scales and placed them at various
positions in the face image. Corresponding shadow mask images were also created to
train the shadow detection stage of our network. Compared to the shadow dataset created
by [46,47], we focus on creating shadow images that contain shadows of various objects
instead of producing a relit image with hard cast shadows.

Training setting: The convolutional auto-encoder network is fed with an input
shadow image and generates a binary map of the object’s shadow in the input image.
The generator of our shadow removal network then takes the pair of input shadow image
and its corresponding mask generated by the convolutional auto-encoder and produces an
output image without shadow. While the job of discriminator is to differentiate between
the generated and ground truth images without shadows. We trained our network with a
joint objective function as in Equation (1). The generator network produces an output face
image without the shadow. The data split is 70% for training and 30% for testing. There
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is no subject overlap between the training and testing sets; both have distinct images.
We used the Adam optimizer [48] with learning rate 2× 10−4 and momentum 0.5 to train
the shadow removal network. Random crop and random flip techniques were used for
data augmentation. We fed 10 images together in a batch. At the start, the discriminator
trained quickly and the generator became weak. We first trained the generator network for
one hundred epochs and then both the generator network and the discriminate network
were trained for five hundred epochs to avoid this problem. We implemented our network
on python using the TensorFlow platform [49]. Our training took around three days on
an NVIDIA GeForce 1080Ti graphic card. The code with the pre-trained model will be
published on GitHub after acceptance of this manuscript.

5. Comparison and Discussion

This section presents the quantitative and qualitative compression of our shadow
removal method with the state-of-the-art works on both real world shadow images and
synthetic shadow images.

5.1. Visual Comparison for Facial Images

Figure 2 shows a comparison of our model results with current state-of-the-art rep-
resentative methods such as EdgeConnect [10], Partial Convolution [14], Gated Convo-
lution [15] and Ghost-free Shadow removal [6]. To make the comparison fair, we train
these methods on our synthetic shadow database. Examples in the first couple of rows are
the real test images (no ground truth), while the other two rows show the result for the
synthetic test sample.

Figure 2. Visual comparison of shadow removal. (a) Input image, (b) EdgeConnect [10], (c) Par-
tial Convolution, [14], (d) Gated Convolution [15], (e) Ghost-free Shadow removal [6], (f) Ours,
(g) Ground truth. Note: There is no ground truth for the first couple of rows since these samples are
real world shadow images collected from the Internet. The last two samples are from our synthetic
database.

As can be seen in Figure 2, our technique plausibly removes shadows from the facial
images for both complex real and synthetic test samples. On the other hand, all other
representative methods struggle to produce reasonable results. EdgeConnect [10] struggles
to produce a proper edge map for a large damaged region of the face resulting in artifacts.
Partial Convolution [14] produces sharp results as compared to EdgeConnect and Gated
Convolution but still shows artifacts especially at the borders of damaged and undamaged
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regions. Ghost-free shadow removal [6] plausibly removes the shadow but is unable to
produce natural looking face semantics due to the complex nature of the face semantics.

On the other hand, our model combines the benefits of vanilla and partial convolution
encoders. This helps our model in removing the shadow and learning the well-incorporated
and artifact-free semantics of the face under the shadow.

Figure 3 shows additional qualitative results of our model for complex and large size
shadow samples in our synthetic database. The first column shows the input image, second
and third columns show the segmentation map of the object shadow and shadow free
image generated by our model, respectively. Last column represents the ground truth
for input images. The results show that our model effectively removes different types of
complex, large and challenging shadow occlusions from the face images. The last input
sample contains shadows created by a lightning effect (not by an occluded object); thus,
our model is unable to produce the accurate segmentation mask of the shadow region and
a plausible shadow free output.

Figure 3. Additional qualitative results of our model for complex and large size shadow samples in
our synthetic database.

5.2. Quantitative Evaluation

In this section, we describe a quantitative comparison of the proposed method with
previous state-of-the-art methods such as EdgeConnect [10], Partial convolution [14], Gated
convolution [15] and Ghost-free Shadow removal [6] in terms of Root Mean Square Error
(RMSE), Naturalness Image Quality Evaluator (NIQE) [50] and Blind Referenceless Image
Spatial Quality Evaluator (BRISQUE) [51]. NIQE and BRISQUE measure the naturalness of
an image without any reference. Smaller NIQE and BRISQUE scores are better. To measure
NIQE and BRISQUE, we used only generated images without providing corresponding
ground truths. We have evaluated RMSE on the test images from our synthetic database,
which has corresponding ground truths. Table 1 provides a quantitative comparison with
previous methods such as EdgeConnect [10], Partial convolution [14], Gated convolu-
tion [15] and Ghost-free Shadow removal [6]. The table shows that for the shadow removal
problem, the results of our shadow removal method are better than or comparable to those
of the state-of-the-art methods.
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Table 1. Quantitative comparisons of shadow removal in terms of Root Mean Square Error (RMSE),
Naturalness Image Quality Evaluator (NIQE), and Blind Referenceless Image Spatial Quality Evalua-
tor (BRISQUE).

Methods RMSE NIQE BRISQUE

EdgeConnect [10] 24.73 4.429 37.01
Partial Conv [14] 22.41 4.248 38.60
Gated Conv [15] 19.00 4.614 36.44

Ghost-free Shadow removal [6] 29.44 4.190 41.30
Ours 13.91 4.005 37.93

5.3. Results for Scene Images

To check the effectiveness of our model for removing shadows in scene images, we
trained our proposed model on the publicly available ISTD dataset [4] for removing shad-
ows in scene images. The ISTD dataset consists of 1870 training samples from 135 scenes
and 540 test samples from 135 scenes. Our model effectively removed shadow not only
in the facial images but also in the scene images as shown in Figure 4. It has potential
applications in outdoor photography and surveillance by removing undesired shadows
from the images.

Figure 4. Shadow removal results of our proposed method on the scene images from ISTD dataset [4].

6. Conclusions

Our shadow removal approach is a GAN based image-to-image translation, which
effectively removes shadow in facial images. In this work, we advocate a novel technique
for automatically detecting and removing object shadows in facial images. To train our
model in a supervised manner, we have created a paired synthetic shadow database. Our
method not only generates well-incorporated semantic structures but also disentangles
the visual discrepancies problem under the shadow area by employing combined parallel
encoders of standard and partial convolution in a single generator model. The performance
of our shadow removal method on real world shadow images is adequate although we
trained the model using our synthetic shadow database. In the future, we are planning
to expend our shadow removal work to automatically detect and remove shadows from
lighting effects and occluded objects.

Author Contributions: K.J. developed the method; N.U.D. performed the experiments; K.J., N.U.D.
did the analysis; and N.U.D., G.H., T.F. and K.J. wrote the paper. K.J., T.F. and N.U.D. proof read
the paper. All authors have read and agreed to the published version of the manuscript.
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