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Abstract: The demand for automated game development assistance tools can be fulfilled by com-
putational creativity algorithms. The procedural generation is one of the topics for creative content
development. The main procedural generation challenge for game level layout is how to create a
diverse set of levels that could match a human-crafted game scene. Our game scene layouts are
created randomly and then sculpted using a genetic algorithm. To address the issue of fitness cal-
culation with conflicting criteria, we use weighted aggregated sum product assessment (WASPAS)
in a single-valued neutrosophic set environment (SVNS) that models the indeterminacy with truth,
intermediacy, and falsehood memberships. Results are presented as an encoded game object grid
where each game object type has a specific function. The algorithm creates a diverse set of game scene
layouts by combining game rules validation and aesthetic principles. It successfully creates functional
aesthetic patterns without specifically defining the shapes of the combination of games’ objects.

Keywords: genetic algorithm; procedural generation; game scene; multicriteria decision making;
WASPAS-SVNS

1. Introduction

Today, researchers are discovering more and more new results in the artificial intelli-
gence domain [1]. Increasing computing power, storage, and volumes of data creates new
approaches to use Artificial Intelligence. Computational Creativity is one of the approaches
that is gaining traction. It is used to solve creativity problems and is realized through
computation-based systems that attempt to simulate creative work. Creativity definitions
vary, and widely agreed upon definitions of creativity in engineering are not defined, but
it is necessary to understand the essence of the concept to model a system according to
creativity principles. The definition of creativity can be split into a few parts depending on
how creative work is rated or created. Usually, there are four types of creativity modeling
targets: person, process, product, and press. The most common machine learning targets for
creative tasks are product and process [2]. The product target evaluates a completed work
and attempts to replicate it by combining and expanding elements of the previous work.
The process target tries to simulate logical loops, which are used to create work. The person
target is rarely used, as it requires simulation of the creative agents or person. Press target is
quite common when trying to filter creative and impactful work (i.e., Internet content scans).
The product target is widely used in machine learning tasks, as most training data sets are
made up of the available creative work—these systems usually create an independent logic
loop of creativity directly unrelated to the original work process [3]. We are focusing on the
process-related target, as it usually generates more example-independent results, which is
one of computational creativity tasks. This means that the generated work differs more
from the training data set.

To understand the structure of creativity, we can break it down into different classifi-
cations, which are important to understand when building a model. Creative value can
be defined by these key terms: usefulness, aesthetics, originality, relevance to the task,
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and surprise [4]. These points are often referred to when trying to identify what makes
the creative result valuable. Creativity involves a combination of expertise, chance, and
intuition; adding these traits to a system generally makes the system more likely for its
result to have more creative value [2]. Example approaches to cognitive creativity include
concept combination, concept expansion, imagery, metaphor, and divergent thinking [5].
The cognitive approach is often compared to a heuristic search. Evaluation of results is
an important task, as it defines creativity. Common evaluation methods are Classification,
Regression, Predictive models, Generative models. These methods usually try to replicate
creative content rather than exploring new spaces. Transformational creativity systems try
to decide what is creative by themselves, autonomously using more abstract evaluation
methods. The most effective evaluation is usually outside the system, feedback from other
creative systems [6]. Transformational systems are not effectively realized or used today.
Common challenges for creativity evaluation can be grouped into two categories: how
to generate transformational creative content, which can add new value to existing parts
of the results; another common challenge is that generated results may be quite similar
between a few iterations of the result running on the same model. There are not that many
creativity-oriented models. Creative models can generate artwork but lack contextual
creative value [7].

There are a lot of possible criteria in the generative content ranging from functional to
aesthetic; however, it is difficult to choose the criteria list for each task, and there is not a lot
of research work done on creative fitness modeling. Ratios of selected criteria have a huge
impact on the final results, and improper ratios may easily break the final result. Another
important choice is the selection of the criteria itself. They can range from low to high
levels. The low-level criteria define basic building block rules, and the high-level criteria
define more abstract and specific tasks. Lower-level criteria usually increase the variety
of generated results, while higher-level criteria can generate a specific result with fewer
calculations. It is important to select criteria or create a criteria manipulation system to
form a fitness function. There are various ways to realize a model using various algorithmic
approaches. We are approaching our problem with a combination of procedural generation
and machine learning methods.

One of the methods of content generation problem is procedural game content genera-
tion using machine learning models on existing content (PCGML) [8]. The use of procedural
content generation is increasing in the game industry, and researchers are trying to find
new ways to generate high-quality content. Generation assist levels can be categorized
as partial, complete, autonomous, interactive, or guided. Game content is classified as
functional and cosmetic. The main problems with the procedural generation machine
learning approach include training on small datasets, lack of suitable data, parameter
adjustment, and others [9]. Procedural content generation methods (PCG) usually lack
evaluation, and objectives are created by designers. Use cases for PCGML are autonomous
generation, artificial intelligence-assisted design, repair, analysis, and data compression.
The proposed research is focused on autonomous generation, which creates game content
without human interaction by combining the algorithm and the fitness function. Video
games are a widely used form of multimedia that requires a broad scope of machine learn-
ing approaches. Game design generally requires the level of the game to be both playable
and aesthetic [10]. At the same time, there is no common way to standardize datasets
and evaluate performance for game design problems [8,11,12]. The objectives of PCG in
game level generation are to make games more replayable, less demanding for creator time,
reduce storage space, or enable particular aesthetics [10].

The fitness function for game design and computational creativity usually contains
a subjective combination of criteria and is still in the early research state of its quantifica-
tion [13]. There are no widely agreed upon definitions of how results should be compared.
Game design can be broken into several parts, categorizing games by their objectives.
Conversion to fitness criteria varies depending on the type of game. Patterns are elements
that are present in levels across multiple games, rather than being a feature that is recurrent
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on the same game title. Patterns are usually categorized into several types. Guidance
guides players in an intended direction. The safe zone is the area where players are not
exposed to negative interactions. The foreshadowing hints at something that will happen
later. Layering is the pattern of combining multiple objects to create a new experience.
Branching provides players with multiple paths to reach their objectives. Pace breaking
refers to the purpose of changing elements of the game to achieve a creative objective [14].

Most automated game design approaches follow reverse engineering principles, usu-
ally by using datasets generated by analyzing other games. Using this approach, fitness
criteria for generations do not have to be defined [15]. The main problem with this approach
is the lack of new concepts in the generated content [6]. The goal is to derive objective
formulas from game design principles to generate game levels. Game flow strategy is
one of the propositions to measure game design in the literature. This concept combines
concentration, challenge, player skills, control, clear goals, feedback, immersion, and social
interaction criteria [16]. Some authors try to measure game engagement by analyzing
difficulty and applying constraints to make levels playable [17]. Current research is trying
to quantify abstract creativity criteria so that they can be used in real-world digital applica-
tions. There are some examples in the field that use fuzzy logic to express criteria lists [18].
There is also a new emerging usage of neutrosophic sets combined with multicriteria de-
cision making (MCDM), but this approach is not widely explored in the field of machine
learning, but it can benefit the creativity of such models [19–22]. There are also not many
MCDM algorithms used together with iterative optimization algorithms [23,24]. Some
SVNS applications in the literature emphasize a greater focus on uncertainty [25]. In the
following paragraphs, we add a more detailed explanation of related work, methodology,
created framework, results, and conclusions.

2. Related Work

There is a rising interest in automated game level generation. Machine learning
algorithms are masters of specific computational tasks, but there is no perfect solution to
mimic human creativity. The primary goal of this type of research is to identify creativity
measurements and apply them to automated content generation. The current stage of
results in this field is mostly exploratory and does not substitute for creative work in
most cases, but it gradually increases assistance levels for the creator by overtaking simple
creative tasks. PCGML is one of the assistance tools for work generation. There are
4 modeling steps: problem identification, solution, results, and application of generated
results.

There are research examples that tackle the problem of computed creativity in the game
design field. One of the examples in the industry is the generation of physical puzzle game
levels with the objective of fitness of the feasibility and stability of objects [26]. Final fitness
is calculated using an agent that plays the game. This method reduces the computational
cost for this problem and adds new solutions to calculate the rewards of the genetic
algorithm, not focusing too much on the penalty. Another example is a level generator for
a Lode Runner-type game. It assesses playability and connectivity using the ‘A*’ algorithm.
Generator uses an autoencoder with a multi-channel approach, analyzes 150 pre-made
levels, and uses evolutionary algorithms. Levels are encoded into multichannel strings.
This solution adds some unpredictability. Performance evaluation compares similarity to
the original game levels [27]. There is also a framework for general 2D games (mostly top-
down adventures) [28]. It evaluates levels for symmetry, balance, density, and reachability
with a focus on aesthetics and difficulty. For final fitness, it derives 3 different fitness
values and calculates the average value (Score Difference Fitness, Unique Rule Fitness, and
Metric Based Fitness). It tries to apply the procedural video game generation problem to a
variety of games with differing rules. Another example is focused on creative patterns [29].
The match 3 type game is used as a base for the generator. For evaluation, it uses visual
pattern recognition and line symmetry. The results are judged by expert study analysis.
It learns from existing content and uses pattern-aware PCGML, random Markov fields
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with symmetric positional information, and visual analysis. This research tries to generate
larger structural patterns. The Pac-Man arcade-type game [30] evaluates playability, the
spread of objects, ratios, and evolving levels using a genetic algorithm. It tries to generate
unique levels with each iteration of the algorithm. Another more generalized example is
the generation of verticality for mostly flat surfaces on grid-based surfaces [31].

Most of the examples in the literature uses 2D space for experimentation and games
from the 1980s or simple game levels made specifically for the selected tasks. Usual objects
for game levels are empty space, wall, player, goal, collectibles, and hazards. General
evaluation criteria are guidance, progression, aesthetics, safe zones, and pace breaking. The
current state of the computational creativity field in video games is quite young and has
not yet been applied to a game structure for large and complex games. It is also difficult to
model systems that can fully replicate manual creative work. As the result becomes more
complex, it is easier to distinguish synthetic creativity.

3. Scene Layout Modeling and Optimization Algorithm

We propose a PCGML framework for automated game scene layout generation. Our
mathematical model consists of the fitness function, which is used by a genetic algorithm
to evaluate the population. The MCDM utility function is used as a genetic algorithm
fitness function. We chose fixed criteria parameters for difficulty, playability, and size
adjustments. One algorithm iteration populates a game level grid, which is also used for
further evaluation. Evaluation calculates fitness for each game level grid and selects the
best performing grids. This model generates varied and unexpected results because the
generation seed is randomly selected and fine-tuned by the algorithm.

We combine the level design criteria measurements into a multi-criteria decision-
making table to formulate the problem. The final fitness for the value of the game scene can
be measured by combining the scores for each criterion. It can evaluate different generated
scenes by using generated alternatives for one table axis and fitness scores for another table
axis. Based on the table results, we can then choose which alternatives should be used as a
base for further scene generations. By calculating the fitness score for each criterion and
combining them into a table, we can assess and evolve a combined fitness score to generate
game levels. Proposed research is focused on the process evaluation type, which studies
what types of actions are made that make results creative. We combine the criteria values
by converting them to fuzzy sets. Our approach is to use the weighted aggregated sum
product assessment with a single-valued neutrosophic sets (WASPAS-SVNS) method to
find solutions when multiple conflicting criteria are present [19–24]. Calculations are made
with fuzzy logic using neutrosophic sets [32].

From a computational creativity standpoint, we are using a creative process approach
combining usefulness, aesthetics, and chance to create our model. These aspects form the
constraints and criteria set for the mathematical model. This framework designs and gener-
ates video game level layouts. It generates random levels, modifies them with a genetic
algorithm, and evaluates them with weighted aggregated sum product assessment to find
the best alternatives. The framework can also be expanded with additional requirements
and fitness criteria, and most of the parameters can be altered to suit needs. We explain our
realization in detail next, broken into four chapters: game scene modeling methodology,
game scene procedural generation criteria list, proposed extension of genetic algorithm
by WASPAS-SVNS, and application of WASPAS-SVNS utility function to calculate fitness
function.

3.1. Game Scene Encoding Modeling

A common set of game objects is applied, which is selected based on game level
design principles. There are several possible object types encoded in the matrix. Each
number represents a different object type. Game scene layout is discretized into a grid, and
one object can occupy one cell. The single-scene layout forms a single genetic algorithm
chromosome. These are:
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• Player (number 0)—represents the starting position of the subject, which is intended
to play the game;

• Exit (number 1)—marks the location that the player should reach to finish the game;
• Empty space (number 2)—traversable and empty space, which can be used to navigate

by the player;
• Wall (number 3)—object that blocks player navigation;
• Hazzard or enemy (number 4)—a traversable object, which is dangerous for the player;
• Collectible (number 5)—a desirable object that can be collected by the player;
• Ground—this object is not encoded in the chromosome matrix but is used during the

3D projection visualization step as a floor layer.

The data of a single chromosome is stored in a two-dimensional number grid (Figure 1).
We use a 10 unit wide and 10 unit long matrix for our experiments. Each object type is
encoded as a different number. The final results are projected into the 3D space by adding
a ground layer beneath the grid and converting numbers into 3D objects on the main grid.
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3.2. Game Scene Procedural Generation Criteria List

After discretization, we choose a set of criteria that define our game layout require-
ments. We proposed to use 4 fitness criteria functions and 3 constraint functions, which
use function results to calculate the total fitness value with the WASPAS-SVNS algorithm
for each iteration of the genetic algorithm. Aesthetics are defined by the symmetry and
empty-space balance criteria. Usefulness is defined by the safe zone and player exit distance
criteria. Criteria were selected based on recurrence in the literature [26–30], game design
principles, and creativity definitions [2,4,5]. If one of the constraint functions does not pass,
the total fitness is multiplied by zero.

The results of the criteria are normalized to fit in the 0 to 1 range to have a reference
point for different criteria metrics [17]. Zero represents the worst possible value, and
1 represents the best possible value. The final values for each criterion are also multiplied
by 0.9 so they will not get too close to 1, as it may skew the results in the evaluation steps
using neutrosophic sets. Scalar values are converted to single-valued neutrosophic sets
during evaluation. The fitness functions are as follows:

• Symmetry calculation for aesthetic purposes. The chromosome grid is crossed with a
horizontal and vertical slice to form 4 smaller 5 × 5 grids. Each object is checked to
determine if it has an identical vertically and horizontally symmetrically matching
object (Figures 2 and 3) in the 5 × 5 grid. The final results are calculated by dividing the
symmetrical matches by the maximal possible matches (each object has two matching
objects with touching 5 × 5 grids) (1). x and y represent the size of the grid, s is a
binary value, the value of which is 0 if the object does not have a matching pair. Each
object is measured twice for each axis.
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m =
∑

2xy
i=0 s

2xy
(1)

Appl. Sci. 2022, 11, x FOR PEER REVIEW 6 of 17 
 

• Symmetry calculation for aesthetic purposes. The chromosome grid is crossed with 
a horizontal and vertical slice to form 4 smaller 5 × 5 grids. Each object is checked to 
determine if it has an identical vertically and horizontally symmetrically matching 
object (Figures 2 and 3) in the 5 × 5 grid. The final results are calculated by dividing 
the symmetrical matches by the maximal possible matches (each object has two 
matching objects with touching 5 × 5 grids) (1). x and y represent the size of the grid, 
s is a binary value, the value of which is 0 if the object does not have a matching pair. 
Each object is measured twice for each axis. 𝑚 =  ∑ 𝑠2𝑥𝑦  (1)

 
Figure 2. Symmetry calculation. 

 
Figure 3. Symmetry calculation for single grid axis. 

Figure 2. Symmetry calculation.

Appl. Sci. 2022, 11, x FOR PEER REVIEW 6 of 17 
 

• Symmetry calculation for aesthetic purposes. The chromosome grid is crossed with 
a horizontal and vertical slice to form 4 smaller 5 × 5 grids. Each object is checked to 
determine if it has an identical vertically and horizontally symmetrically matching 
object (Figures 2 and 3) in the 5 × 5 grid. The final results are calculated by dividing 
the symmetrical matches by the maximal possible matches (each object has two 
matching objects with touching 5 × 5 grids) (1). x and y represent the size of the grid, 
s is a binary value, the value of which is 0 if the object does not have a matching pair. 
Each object is measured twice for each axis. 𝑚 =  ∑ 𝑠2𝑥𝑦  (1)

 
Figure 2. Symmetry calculation. 

 
Figure 3. Symmetry calculation for single grid axis. Figure 3. Symmetry calculation for single grid axis.



Appl. Sci. 2022, 12, 772 7 of 16

• Balance criteria for aesthetic purposes. Calculate how close to 50% is the ratio between
empty game object count and total object count (Figure 4).
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Mathematically, it can be expressed in these steps (2), where e is the total empty space
ratio normalized from 0 to 1, t is the sum of the empty objects (they are reversed if they
exceed 50% of the grid), x and y represent the grid size, and s is a binary value, which value
is 1 if the object is empty. t can be calculated by counting all empty space objects (3) and
then reversing the value if it exceeds 50%.

e =
t
t

1
2 xy

(2)

 t =
n
∑

i=0
s

t = 1
2 xy − t1 − 1

2 xy
(3)

• Distance between player and exit game objects. x and y represent the coordinates of
the player and exit (4). This rule makes sure that the player can see as much of the
generated scene as possible while traveling to the exit point;

d =
√
(x2 − x1) ∗ (x2 − x1) + (y2 − y1) ∗ (y2 − y1) (4)
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• The safe zone criteria calculate the amount of Hazzard-type objects in a defined square
around the Player and divide the result by the total area of this square (5).

z =
x1y1

x2y2
(5)

Criteria are calculated for each member of the population (Figure 5) and can be
modified on demand. The criteria calculations are the building blocks of the fitness function.
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Constraint functions are:

• Scan the chromosome grid and check if Player object exists;
• Scan chromosome grid and check if an exit object exists;
• Pathfinding algorithm to check if there is a passable way between Player and Exit.

3.3. Application of WASPAS-SVNS in Genetic Algorithm

In the evaluation step, we combine all the fitness results of the criteria functions using
the modified WASPAS-SVNS algorithm (Figure 6) [19]. Most previous use cases for this
algorithm were tested with single iterations [19–22]. This research focuses on an iterative
process with WASPAS-SVNS, so there were tweaks made for it to work together with the
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genetic algorithm. These are the main steps of the final evaluation and explanations about
how it was joined with our procedural generator:

1. Combining criteria evaluation data into matrix X where one dimension represents the
index of a chromosome, and another dimension represents the index of the criteria (6);

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (6)

2. The original algorithm normalizes the data here, inside the WASPAS-SVNS algorithm,
but for the iterative process it does not work because the local min–max and global
min–max values are not the same, so we need to define boundaries before this step [33].
Normalization is made in the criteria functions to fit in the range of 0 to 1 (7). v
represents current criteria value and vmax is the highest possible value for that criterion
for the selected matrix size. x̃ij is a normalized index ij criteria value of matrix X;

x̃ij =
v

vmax
(7)

3. Neutrosophication step. In this step, we convert results from our normalized criteria
function results into neutrosophic sets. The neutrosophic set consists of three numbers:
truth (t), intermediary (i), and falsehood (f ). For this, we map criteria results with
neutrosophic numbers, but we do a linear conversion as even the slightest non-
proportional shifts can make a huge error in the long evolutionary run. N represents
a neutrosophic number and S represents a scalar number (8);

N(t, i, f ) =


S

1 − S
1 − S

(8)

4. Sum of the total relative importance of the alternative (single evolutionary iteration
chromosome);

5. Total relative importance of the product of the alternative;
6. A joint generalized criterion for the ranking alternatives (step 4 and step 5) (9);

Q̃i = 0.5Q̃(1)
i + 0.5Q̃(2)

i (9)

7. Neutrosophic numbers (truth, intermediacy, and falsehood) are converted to scalar
numbers using this formula and then used for chromosome evaluation in the genetic
algorithm (10);

S
(

Q̃i

)
=

3 + ti − 2ii − fi
4

(10)
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3.4. Proposed Extension of Genetic Algorithm

Genetic algorithms are used to solve optimization problems using natural selection [34].
It is convenient for us, as it can iterate in many different local maximums because of its
random nature. It iteratively modifies the population of individual game level grids. At
each generation, random grids are selected and modified. With time, the population evolves
toward aesthetic and functional solutions. Genetic algorithms allow for finding good
solutions without designing them. Transformative genetic algorithm operators are applied
to a small set of grid cells. The main advantages from other optimization algorithms are:
non-linear convergence, more than one solution can evolve in parallel and best solutions are
kept, uses a lot of random numbers so it is not deterministic, and each run of the algorithm
proposes different solutions. The fitness function is based on the WASPAS-SVNS algorithm
and is used to find the best individuals using several criteria. One grid represents a single
solution to a problem. Population defines the total concurrent grid pool. Best fitness shows
the best grid designs in the current population. Two concurrent snapshots are used during
calculations: parent and child generation.

The level layout is trained with the genetic algorithm (Algorithm 1), and the evaluation
criteria for each iteration are combined with the WASPAS-SVNS algorithm to calculate
the single fitness value. The population size is set to 50, and the algorithm runs for
2000 iterations. We are using selection and mutation operators to filter and repopulate the
population. For initial data, we create empty chromosomes and fill them with random data
where each object is coded with integer numbers from 2 to 6 (all possible objects except
player (number 0) and exit (number 1)), and then add 1 Player and 1 Exit object. For each
iteration, we calculate the median fitness value for all populations and split chromosomes
into two temporal arrays, which store chromosomes below and above the median value.
Chromosomes below the median value are replaced with chromosomes from the above
median array, and then 5% of this new array data is mutated with new random values
(Figure 7).
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Algorithm 1. Genetic algorithm.

InitializeRandomPopulation:
DoFullEvolution:

for amountOfEvolutionCycles
CalculateAllCriteria

for populationSize
Validation

PlayerExists
ExitExists
PathBetweenPlayer-ExitExists

Symetry
EmptySpaceBalance
Player-ExitDistance
SafeZone

FindUnderperformersAndPerformers
for populationSize calculateFitness

WASPAS-SVNS
EvolveUnderperformersWithGeneticAlgorithm

DrawGrid(best fitness):
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4. Results

For this research, we developed a framework from scratch using the Unity game
engine and visual game object assets from the Unity Asset Store. The results are generated
with a custom C# script. Tests were performed with a 2.4 GHz 8-Core Intel Core i9 CPU.
Procedural generator with neutrosophic evaluation generates quickly rising scores for the
first 100–200 generations under current conditions compared to summation of individual
criteria fitness scores, but generator usually requires more time to make symmetrical and
visually balanced scene layouts while making sure that game rules apply. The final fitness
score usually sets at around 0.75–0.85. It is important to have lots of local maxima for the
game scene generation, as results must be unique and differ from each other. There are
many possible solutions based on the random initial seed and mutations. Fitness examples
with different seeds of random initial data and 500 generations (Figure 8). Note that close
to 1 fitness is not possible, as the criteria conflict with each other. Fitness usually starts to
converge after about 500–2000 generations. It takes about 21 s, on average, to calculate one
10 × 10 grid level with 2000 generations. As the initial population (50) is relatively low
compared to the total possible scene layouts (7 to power of 100) and mutations are set to
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5%, initial seeds usually define how wide the final fitness range is. We choose the lower
population to have a wider number of possible solutions. The goal is not to optimize the
algorithm for one solution, but to generate a diverse set of level layouts that satisfy the
creativity and game design criteria.
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Figure 8. Fitness evolution examples.

We can also observe visual results, which generate aesthetically appealing game scenes.
It has many elements of symmetry and space balance. Some examples are: room-like shape
without a specific code that defines what a room is (Figure 9), as symmetry is conflicting
with other criteria and is not strictly defined, we can also observe semi-symmetric shapes
(Figure 10), a smaller room inside the scene with lots of coins/rewards (Figure 11), game
scene without lots of walls (Figure 12). We can see that the generator can create many
different aesthetic shapes.
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An example of intermediate evolution results can be observed (Figure 13). The grid is
printed every 100 generations. We can observe a chaotic layout and quick progression early
on and fine-tuning in the later generations.
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On closer inspection, the realization of the aesthetic criterion can be seen in the visual
examples (Figure 14) (symmetry and balance of the empty space balance). At the same
time, game design requirements, such as pathfinding, are realized.
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Each result is a different local maximum from many possible final results. It is a
very small chance to generate an identical game level given the nature of the algorithm
randomness and the number of possible solutions. It would also be possible to draw a
crude initial room and then let the algorithm fine-tune it to satisfy aesthetic and playability
criteria. The optimal solution for this task is total satisfaction with the proposed criterion
under a given random initial seed. Compared to other similar research in the field, the
proposed framework generates more visually noticeable aesthetic traits on small object
resolutions while maintaining an above-average object pool. This approach to procedural
generation has the potential to make creative work faster and easier.

5. Conclusions

The main problem that the proposed method solves is how to increase unique and
not repetitive amounts of levels with several runs of the same algorithm. Observing the
presented results, it can be concluded that our levels generate interesting game scene
layouts, which differ with each run. It can also generate both aesthetic- and functional-level
layouts at the same time. Visual representations of game assets can also be interchanged by a
developer. The WASPAS-SVNS algorithm enables the evaluation of conflicting criteria. The
proposed approach is realized by breaking down design principles into primary elements
and defining them with the proposed criteria list. The algorithm generates a random shape
and then sculpts a functional and aesthetic game level around that shape. The random
nature of the genetic algorithm ensures surprise elements for the levels. It is also important
to find a balance between different criteria weights and number of criteria that defines a
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certain objective to generate a coherent final level. Overabundance or lack of features may
numb some of the game design elements. Creativity assistance algorithms can save time
for game designers and developers, but at the moment, most commercial games use only
light game design assistance tools, seeded procedurally generated or handcrafted levels.
This work can be expanded by combining it with an algorithm, which can break down
design elements from hand-crafted game levels and then use it as a base of criteria list.
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