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Abstract: Since its development, deep learning has been quickly incorporated into the field of
medicine and has had a profound impact. Since 2017, many studies applying deep learning-based
diagnostics in the field of orthopedics have demonstrated outstanding performance. However, most
published papers have focused on disease detection or classification, leaving some unsatisfactory
reports in areas such as segmentation and prediction. This review introduces research published in
the field of orthopedics classified according to disease from the perspective of orthopedic surgeons,
and areas of future research are discussed. This paper provides orthopedic surgeons with an overall
understanding of artificial intelligence-based image analysis and the information that medical data
should be treated with low prejudice, providing developers and researchers with insight into the
real-world context in which clinicians are embracing medical artificial intelligence.
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1. Introduction

A convolutional neural network (CNN) is a deep learning algorithm architecture
created based on a 1962 study investigating the visual process of feline brains, and it has
been applied in a wide range of areas, from autonomous vehicles to medical diagnoses [1].

A traditional CNN consists of an input layer that transmits input information, a hidden
layer that modifies information (filtering) received from the input layer and amplifies the
features (pooling) and an output layer that finally synthesizes and outputs the information.

According to the universal approximation theorem, it has been confirmed that various
linear classifications are possible even if the neural network has a shallow hidden layer,
and some pioneering studies have shown that classification and detection are improved as
the layers constituting the neural network become deeper (deep neural network) [2]. Since
2012, the performance of deep learning has rapidly increased in medical image analysis
with the use of deep neural networks, and this has led to a decrease in the classification
error rate from approximately 25% in 2011 to 3.6% in 2015.

The CNN model was developed using a pipeline in terms of classification and detec-
tion [3], and the improved CNN shows excellent judgment, essentially giving the computer
a new visual organ. A CNN has thus been expected to be used for medical diagnoses.
However, a CNN does not provide any information on the basis of the decision. Therefore,
even if a CNN shows an excellent diagnostic ability, it can only be discussed within a
limited scope in medicine, where the basis for a judgment is important [4].

This has been pointed out as a technical limitation that reduces the effectiveness of a
CNN in various fields other than medicine [5]. Researchers have dubbed this limitation
“black box issues” and worked to develop “explainable artificial intelligence (XAI)” to look
inside the problem [6]. The term “explainable” can be expressed as “understandability”,
“comprehensibility” or “interpretability” and has the same meaning. XAI should not
degrade the classification or prediction performance of the model in any way and should
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improve the explainability. Various strategies and suitable CNN architectures have been
proposed to implement an appropriate XAI [7]. Unfortunately, the black box nature of deep
learning has not been completely resolved, but there are some notable achievements [8].
As one of these achievements, in 2016, Zhou et al. introduced a method explaining how a
CNN makes a decision through class activation mapping [9], and this method is widely
used in the field of medical artificial intelligence (Figure 1) [10].
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Figure 1. Image highlighting the location and size of a rotator cuff tear through a class activation
map (CAM). Figure obtained from a study performed by Chung et al. [10].

In a similar context, there are attempts to improve the explainability by improving
the existing CNN architecture [11]. Kim et al. modified U-Net, a CNN architecture that
has strength in image segmentation, to appropriately increase the explainability. They
presented an interpretable version of U-Net (SAU-Net) using an attention module for the
decoder part [12].

Hence, studies introducing CNN models for diagnosing and classifying diseases using
deep learning have been published in various fields of medicine, including ophthalmology
and dermatology [13,14].

This trend is spreading rapidly in the field of orthopedics. Since 2017, when orthopedic
disease research using deep learning was first introduced, the number of related papers has
increased rapidly, and more than 300 papers in this area have been published. The search
was conducted using Pubmed, MEDLINE and Embase, and papers were screened from
1 January 2017 to 2 November 2021. The search query was (orthopedic OR orthopedic)
AND (deep learning). Among these studies, two orthopedic surgeons (S.W.C. and J.H.L.)
independently reviewed the full text of the retrieved papers. Among these studies, 48 stud-
ies which both authors judged to be interesting and practical within the clinical context of
orthopedic surgery are introduced and classified according to disease. This paper aims to
provide insight into how medical artificial intelligence can help orthopedic surgeons treat
patients vividly and in what context clinicians are accepting medical artificial intelligence
from developers and researchers.

The authors introduce the selected papers by classifying them into the following
sections: (1) Deep Learning for Fractures, (2) Deep Learning for Osteoarthritis and the
Prediction of Arthroplasty Implants, (3) Deep Learning for Joint-Specific Soft Tissue Disease,
(4) Miscellaneous and (5) Discussion.
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2. Deep Learning for Fractures

Fractures are the most familiar ailments to orthopedists and the medical area in which
deep learning methods were first applied. In 2018, Chung et al. published a CNN model
for diagnosing and classifying proximal humerus fractures. Three specialists labeled
1891 anteroposterior shoulder radiographs as normal shoulders (n = 515) and 4 proximal
humerus fracture types (greater tuberosity: 346; surgical neck: 514; 3-part: 269; and 4-part:
247) [15]. After labeling, a CNN model (ResNet-152) was trained with a training dataset
created through augmentation of the labeled data. The CNN model recorded 96% accuracy
for the normal shoulders and proximal humerus fractures, showing a higher accuracy than
a general orthopedist (92.8% accuracy). This model showed a top-1 accuracy of 65–86% and
an area under the curve (AUC) of 0.90–0.98 for classifying the fracture types. A recently
published paper introduced a model with improved classification accuracy. In 2020, Demir
et al. introduced a deep learning model to diagnose and classify humerus fractures using
the exemplar pyramid method, a novel, stable feature extraction approach which showed a
high classification accuracy of 99.12% [16].

Urakawa et al. trained the VGG-16 CNN model using hip plain radiographs (1773 in-
tertrochanteric hip fracture images and 1573 normal hip images) and showed an accuracy
of 95.5% [17]. Yamada et al. trained the CNN model (Xception architectural) based on
3123 hip plain and lateral radiography images, and the trained model classified fractures
with 98% accuracy, which is better than orthopedists (92.2% accuracy) [18].

For the hip, as with the shoulder, there has been an attempt to classify fractures by
training the CNN model. Lee et al. introduced a CNN model for training 786 anteroposte-
rior pelvic plan radiographs using GoogLeNet-inception v3 [19]. The model classified a
proximal femur fracture into type A (trochanteric region), type B (femur neck) and type
C (femoral head) according to AO/OTA classification with an overall accuracy of 86.8%,
showing a reasonable result. Lind et al. trained a ResNet-based CNN with anteroposterior
and lateral knee radiographs, amounting to 6768 images [20]. The trained CNN model
classified knee radiographic images according to the AO/OTA classification system and
classified proximal tibia fractures, patellar fractures and distal femur fractures with AUCs
of 0.87, 0.89 and 0.89, respectively.

The trained CNN diagnosed and classified fractures at a relatively high level in the
large appendices of the shoulder, knee and hip. By contrast, a CNN model trained to
diagnose and classify fractures in small joints or axial joints showed a relatively low
AUC and accuracy. Farda et al. trained a PCANet-based CNN model that classified
calcaneal fractures according to Sanders classification using computer tomography with
5534 datasets [21]. The trained CNN model showed 72% accuracy. In addition, Ozkaya
et al. trained a CNN model based on ResNet50 with 390 anteroposterior wrist radiographic
images [22]. The AUC of the learned CNN was 0.84, showing a relatively satisfactory result,
but it was lower than that of experienced orthopedists.

Langerhuizen et al. compared the scaphoid fracture diagnostic accuracy between a
deep learning algorithm and an orthopedist [23]. They trained the VGG16 CNN model with
150 radiographic images of scaphoid fractures and 150 images of normal wrist radiography
without a fracture. Of the 150 images with scaphoid fractures, 23 could not be judged by
the radiographic images and could only be confirmed through magnetic resonance imaging
(MRI). The accuracy of the trained CNN model was 72%, which was lower than that of an
orthopedic surgeon (84%). However, five of six occult scaphoid fractures were missed by
all human observers.

An attempt was also made to diagnose the compression fractures in the spine using a
trained CNN. The results showed a significant difference depending on the type of data
used for learning. Chen et al. trained a ResNet-based CNN model using plain spine X-rays,
and the trained CNN showed an accuracy of 73.59% [24]. By contrast, Yabu et al. presented
a CNN model using MRI images as the training data. This model showed a higher accuracy
(88%) than that of the surgeons [25].
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In summary, fracture diagnosis using artificial intelligence showed a high level of
accuracy. The trained CNN model conducted fracture diagnosis (binary classification) with
a higher accuracy than fracture classification (multiclass classification), and this gap is
expected to decrease as more advanced CNN models are developed.

In classifying fractures, small and axial joints showed a lower accuracy than large
joints (Table 1). This may be a limitation of a CNN-based approach, which makes judgments
by recognizing the contrast information (e.g., normal margin of the cortical bone and the
fracture line or normal joint line) and spatial information of the images. The authors believe
that this limitation can be overcome using more powerful CNN models.

Table 1. Summary of diagnostic performance for detecting/classifying orthopedic fracture.

Fracture Site Image
Used Author. Year CNN Used Work Dataset

Size Accuracy AUC Winner

Hip (femur
neck) X-ray Matthew et

al. 2019 GooLeNet Binary
classification 805 94% 0.98

Hip X-ray Cheng et al.
2019 DenseNet Binary

classification 3605 91% 0.98 Orthopedist
> CNN

Hip X-ray Takaaki et al.
2019 VGG-16 Binary

classification 3346 CNN >
Orthopedist

Hip X-ray Yamada et al.
2020

Xception,
ImageNet

Binary
classification 3123 98% CNN >

Orthopedist

Hip X-ray Lee et al.
2020

GoogLeNet-
inception

v3
Classification 686 86.8%

Hip X-ray Tanzi et al.
2020

InceptionV3,
VGG-16,
ResNet50

Classification 2453 86% (3 class)
81% (5 class)

Hip
(Atypical
fracture)

X-ray Zdolsek et al.
2021

VGG19,
InceptionV3,

ResNet

Binary
classification 982

91%
(ResNet50)

83% (VGG19)
89%

(InceptionV3)

Shoulder
(proximal
humerus)

X-ray Chung et al.
2018 ResNet

Binary
classification
Classification

1891 95% 0.99

Orthopedist
> CNN

(specialized
in the

shoulder)

Knee X-ray Lind et al.
2021

ResNet-
based
CNN

Classification 6768

0.87 (Proximal
tibia)

0.89 (Patella)
0.89 (Distal

femur)

Ankle X-ray Gene et al.
2019 Xception Binary

classification 596 75%

Ankle
(Malleolar) X-ray Olczak et al.

2021 ResNet Classification 5495 0.90

Ankle
(Calcaneal) CT Farda et al.

2021 PCANet
Classification,

Segmenta-
tion

5534 72%

Wrist X-ray Kim et al.
2017 Inception Binary

classification 1389 0.95

Wrist X-ray Thian et al.
2019 ResNet Binary

classification 7356 88.9% 0.90
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Table 1. Cont.

Fracture Site Image
Used Author. Year CNN Used Work Dataset

Size Accuracy AUC Winner

Wrist
(Scaphoid) X-ray Langerhuizen

et al. 2020 VGG-16 Binary
classification 300 72% 0.77 Orthopedist

> CNN

Wrist
(Scaphoid) X-ray Ozkaya et al.

2020 ResNet50 Binary
classification 390 084 Orthopedist

> CNN

Vertebra X-ray Chen et al.
2021

ImageNet,
ResNeXt

Binary
classification 1306 73.6% 0.72 Orthopedist

> CNN

Vertebra MRI Yabu et al.
2021

VGG-16,19,
Inception V3,

ResNet50

Binary
classification 1624 0.95 CNN >

Orthopedist

Most of the diagnosis and classification of fractures using deep learning have focused
on osteoporotic fractures, and studies on osteoporotic fracture joints with low frequencies
are relatively poor [26]. This may be because the dataset for training the CNN model is
sufficient because osteoporotic fractures account for a high proportion of the total fracture
frequency, and the fracture pattern is relatively standardized, making it suitable for use in
fracture classification.

3. Deep Learning for Osteoarthritis and Prediction of Arthroplasty Implants

Osteoarthritis is as familiar to orthopedists as fractures. Therefore, several attempts
have been made to diagnose and classify osteoarthritis using deep learning algorithms.
Xue et al. trained a CNN model based on VGG-16 with 420 plain hip X-rays [27]. This
is one of the earliest studies to apply deep learning methods to the orthopedic field, and
the trained model diagnosed hip osteoarthritis with an accuracy of 92.8%. Ureten et al.
also presented a model for diagnosing hip osteoarthritis using a similar research design,
showing an accuracy of 90.2% [28].

Tiulpin et al. trained a CNN model to classify knee osteoarthritis according to the
Kellgren–Lawrence grading scale using a Siamese classification CNN [29]. The model
trained using plain knee X-rays showed a multiclass accuracy of 66.7%. In addition,
Swiecicki et al. trained a Faster R-CNN using plain and lateral knee X-rays from the
Multicenter Osteoarthritis Study dataset [30]. The multiclass accuracy of this model was
71.9%, which showed improved performance compared with the previous study conducted
by Tiulpin et al.

Pedoia et al. trained a DenseNet-based CNN based on MRI-T2 images rather than
X-ray data, as used in previous studies, and this model showed a high AUC of 0.83 [31].
Kim et al. trained an SE-ResNet-based CNN model using 4366 knee anteroposterior X-rays
as a dataset. Furthermore, they trained the model by adding demographic information
(age, sex and body mass index), alignment and metabolic data information that can affect
knee osteoarthritis, in addition to image information [32]. The diagnostic performance of
the image data with additional patient information showed a significantly higher AUC
(Table 2).

Advanced osteoarthritis of the hip or knee often requires arthroplasty. Several studies
have introduced a model for classifying arthroplasty implants used by patients with deep
learning algorithms. Karnuta et al. trained the InceptionV3 network-based CNN model
using anteroposterior knee X-rays with nine different implant models inserted [33]. The
trained model showed an accuracy of 99% and an AUC of 0.99, classifying the implant
models at an almost perfect level. A similar attempt was made at the hip joint. In addition,
Borjali et al. created a CNN model trained on 252 plain hip X-rays containing 3 different
implant designs, and this model classified implants with 100% accuracy (Figure 2) [34].
Kang et al. also developed a CNN model trained on 170 plain hip X-rays containing
29 different implant designs. This model also showed a high level of performance, with an
AUC of 0.99 [35].
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Table 2. Summary of diagnostic performance for classifying osteoarthritis.

Location Image Used Author. Year CNN Used Work Dataset Size Accuracy AUC

Knee X-ray Tiulpin et al. 2018 Siamese CNN Classification 5960 66.7%

Knee X-ray Pedoia et al. 2019 DenseNet Classification 5042 75% 0.83

Knee X-ray Kim et al. 2020 SE-ResNet Classification 4366

61.6%
(with

additional
information)

0.75
(with

additional
information)

Knee X-ray Swiecicki et al. 2021 Faster R-CNN Classification 2802 71.9%

Hip X-ray Xue et al. 2017 VGG-16 Binary
classification 420 92.8%

Hip X-ray Ureten et al. 2020 VGG-16 Binary
classification 434 90.2%
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Figure 2. The figure shows how a trained convolutional neural network classifies total hip replace-
ment implants of different designs in A, B and C. Figure obtained from a study performed by
Borjali et al. [34].

By contrast, the model classifying shoulder arthroplasty implants showed a relatively
low AUC. Urban et al. developed a CNN model trained on 597 plain shoulder X-rays
with 16 different implant designs, showing an accuracy of 80% [36]. In addition, Sultan
et al. proposed a model for classifying the different designs of four manufacturers using
modified ResNet and DenseNet, showing an accuracy of 85.9% [37].

In summary, as in the case of using deep learning for fractures, binary classification of
osteoarthritis has a higher accuracy than multiclass classification. In particular, the CNN-
based model for specifying arthroplasty implants of the hip or knee shows a high accuracy.
This may be because, unlike human bone, the implant design is highly standardized,
demonstrating a clear margin on X-rays and providing clear contrast information to the
CNN model. However, the classification of shoulder arthroplasty implants shows a low
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level of accuracy. This may be due to the fact that a shoulder anteroposterior X-ray can
show a wider range of positions than an anteroposterior radiograph of the knee or hip.

4. Deep Learning for Joint-Specific Soft Tissue Disease

As for deep learning approaches, an algorithm specialized for detection based on
learned images and an algorithm for segmentation by analyzing features have structural
differences and have developed into different areas of application [3]. In particular, seg-
mentation has technical difficulties in that it is necessary to preserve spastic information
that is easily lost in the outer-layer process of synthesizing the results of the CNN model
being trained [38]. Recent studies have attempted to overcome these limitations through
techniques such as FCN-based semantic segmentation.

These differences in deep learning algorithms also affect the use of deep learning
in the orthopedic field. The deep learning-based studies introduced above are cases of
diagnosing and classifying diseases based on X-ray images, and a CNN model specialized
for segmentation is not always required [39]. By contrast, for diseases that are diagnosed
and classified based on images such as ultrasound or MRI, a satisfactory level of accuracy
can be obtained using only a CNN model specialized for segmentation. For example, a
CNN model for diagnosing rotator cuff tears is more appropriate for inferring such tears
based on the outline of the normal rotator cuff (segmentation) than a method of diagnosis
applied by specifying the location where the tear occurred (regional detection).

Therefore, CNN models for diagnosing soft tissue disease in the orthopedic field have
mainly been published after 2018, which was when the segmentation technology began to
mature. Kim et al. trained a CNN model using a shoulder MRI dataset of 240 patients. The
trained model identified the muscle region of the rotator cuff with an accuracy of 99.9%
and graded fatty infiltration at a high level [40]. Taghizadeh et al. also conducted a similar
study using a shoulder computed tomography of 103 patients as a dataset. The trained
CNN model measured fatty infiltration with an accuracy of 91% [41].

Medina et al. introduced a model for segmenting the rotator cuff muscle with 98%
accuracy by applying a CNN model trained using the shoulder MRIs of 258 patients [42].
Furthermore, Shim and Chung et al. introduced a model for evaluating the presence of tears
and their sizes in the rotator cuff by training a Voxception-ResNet (VRN)-based CNN with
2124 shoulder MRIs. The trained CNN model diagnosed and classified rotator cuff tears
with accuracies of 92.5% and 76.5%, respectively [10]. In addition, Lee et al. developed
a new deep learning architecture using an integrated positive loss function and a pre-
trained encoder. Using this, the location of the rotator cuff tear can be relatively accurately
determined, even when imbalanced and noisy ultrasound images are provided [43].

Recent studies suggesting a CNN model for diagnosing meniscal tears, cartilage
lesions and anterior cruciate ligament (ACL) ruptures in the knee joint have also been
published. Couteaux et al. presented a model that trains a Mask-RCNN with 1828 T2-
weighted 2D Fast Spin-Echo images to classify the torn part from the normal area of the
meniscus and do so according to the location of the tear [44]. This model diagnosed
and classified meniscal tears with an AUC of 0.91. Roblot et al. also proposed a model
for diagnosing meniscal tears in a similar way, detecting meniscal tears with an AUC of
0.94 [45].

Chang et al. presented a model for diagnosing complete ACL tears by training a
U-Net-based CNN using 320 coronal proton density-weighted 2D Fast Spin-Echo images,
demonstrating an AUC of 0.97 [46]. In addition, Flannery et al. trained a modified U-Net-
based CNN and evaluated the level of segmentation of the model. The segmentation level
suggested by the trained model did not show a statistically significant difference from the
ground truth (the value actually suggested by an expert) (Figure 3) [47].
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5. Miscellaneous

Concerning bone age, attempts to create a model that automatically predicts a bone’s
age through the learning of plain X-rays of carpal bones have been conducted since before
the first deep learning algorithm was developed. Mahmoodi et al. presented a bone age
prediction model with an accuracy of 82% in 2000, using a regression model and a Bayesian
estimator [48]. A CNN model using a deep learning algorithm was developed, and it
is now possible to predict the bone age with improved accuracy. In addition, Han et al.
proposed a model with 97.6% accuracy by training the Inception ResNet v2 model with
5876 hand radiographs [39].

For pediatrics, developmental dysplasia of the hip is one of the most common hip
joint disorders in infants and young children, and its diagnosis is difficult owing to the
extensive variations in pediatric pelvic anatomy [49]. To create a deep learning algorithm
that can diagnose developmental dysplasia of the hip, Zhang et al. trained a CNN model
(based on ResNet-101) using 10,219 pelvic anteroposterior radiographs of children. The
trained model showed a high AUC of 0.975 [50].

An acute pediatric elbow fracture is also difficult to diagnose, owing to the existence of
multiple cartilaginous ossification centers and a highly variable appearance [51]. England
et al. trained a CNN using 901 lateral elbow radiographs, and the trained model diagnoses
elbow fractures with a high AUC of 0.985 [52].

Central dual-energy X-ray absorptiometry is the reference standard for diagnosing os-
teoporosis and osteopenia. A CNN model for diagnosing osteopenia and osteoporosis using
plain radiography without dual-energy X-ray absorptiometry was recently introduced.

Zhang et al. trained a CNN model with 2564 lumbar X-ray images, and this model
showed an AUC of 0.767 and 0.810 for osteoporosis and osteopenia, respectively [53].
Yamamoto et al. trained a CNN with 1131 hip X-rays, and this model diagnosed osteoporo-
sis with an accuracy of 0.885 [54].

For alignment, Pei et al. published an interesting study using a deep learning algorithm
to automatically measure the hip-knee-ankle angle. They trained a CNN model with
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796 unilateral lower limb X-rays, showing a difference of 0.49◦ from the ground truth
measured directly by orthopedic surgeons [55]. In addition, Rouzrokh and Pouria et al.
trained a CNN model with 600 hip anteroposterior and 600 hip lateral X-rays taken after
total hip arthroplasty and programmed this model to automatically derive the acetabular
component inclination and version. Compared with the ground truth, this model showed a
difference of 1.35◦ for the inclination and 1.39◦ for the anteversion [56].

Galbusera et al. presented a CNN model trained using biplanar radiographs of the
spine. The model automatically calculated the T4-T12 kyphosis, L1-L5 lordosis, Cobb
angle of scoliosis, pelvic incidence, sacral slope and pelvic tilt. Among them, the pelvic tilt
showed a difference of 2.7◦ compared with the ground truth, whereas the L1-L5 lordosis
showed a difference of 11.5◦ from the ground truth [56].

Concerning metastasis and infections in the spine, the spine is a joint that receives
a high blood supply and is relatively easily exposed to metastasis compared with other
joints [57]. Therefore, studies for diagnosing metastatic lesions using deep learning algo-
rithms have mainly focused on the spine. Wang et al. reported that a CNN model trained
with sagittal fat-suppressed T2 2D Fast Spin-Echo spine images localized metastatic lesions
with a sensitivity of 90% [58]. In addition, Chmelik et al. trained a CNN with sagittal
computed tomography images containing 1046 lytic lesions and 1135 sclerotic lesions,
and the trained model detected lytic and sclerotic lesions with AUCs of 0.80 and 0.78,
respectively [59].

Kim et al. published a CNN model to discriminate between tuberculous and pyogenic
spondylitis. They trained the CNN using axial T2-weighted 2D Fast Spin-Echo images,
and the trained CNN model divided the two conditions with an AUC of 0.80, with no
significant difference from a human reader [60].

As for other applications, in addition to the previously introduced papers, studies
using deep learning algorithms in the field of orthopedic surgery have been published.
Won et al. introduced a model for grading spinal stenosis by training a Faster R-CNN [61].
Rouzrokh and Pouria et al. attempted to predict postoperative hip dislocation by training a
CNN model with 92,584 hip X-rays taken after total hip arthroplasty. The trained model
showed an AUC of 76.7% and an accuracy of 49.5% [62].

6. Discussion

Orthopedics, along with dermatology, ophthalmology and cardiology, is the medical
field in which research into deep learning algorithms is most actively conducted. Related
research has been explosively increasing since 2017, and this trend is expected to continue
until the “new winter”, when the development of artificial intelligence will reach its limit.

To date, image analysis studies of orthopedic diseases using deep learning have shown
excellent results overall. Several studies have reported that in fractures and osteoarthritis, a
trained CNN model has a diagnostic accuracy comparable to that of an expert. The studies
also presented satisfactory results for the classification of fractures and osteoarthritis.
However, the accuracy of multiclass classification did not reach detection, and studies on
small joints presented relatively poor results compared with studies on large joints.

Nevertheless, it is expected that this limitation can be overcome for two reasons. First,
the CNN model for medical image analysis aims for accurate diagnosis and appropriate
classification, and the types of classes required for this purpose are relatively small. When
there are few class types, Basha et al. proved that the accuracy can be improved using a
CNN model structured as a deeper layer [63]. Therefore, it is expected that the development
of a CNN model with deep hyperparameters will increase the accuracy of multiclass clas-
sification through medical image analysis. Second, medical images are extremely refined
data compared with images used to learn road traffic conditions or climate predictions;
that is, researchers can relatively easily obtain appropriate image data without noise, such
as different heights of traffic lights or flying birds. This means that even with simple data
augmentation such as an affine transformation, an appropriate dataset for training the
CNN model can be provided.
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Therefore, the authors expect that the development of a CNN model and the accumu-
lation of additional medical images will increase the classification accuracy of fractures
and osteoarthritis, which are relatively weak compared with the accuracy of diagnosis. In
the same context, it is also expected that the diagnosis and classification of joint-specific
soft tissue will be improved, owing to the development of deep learning algorithms ad-
vantageous for segmentation. Indeed, there are several recent studies that have completed
segmentation at a high level [64,65]. In particular, Hashimoto et al. and others segmented
the psoas major muscle through a U-net-based CNN model, and the trained U-net-based
CNN model showed an average of 86.6% intersection over union (IoU). U-net is one of the
most important semantic segmentation frameworks of CNNs [66] and has the strength of
having an architecture that can recognize structural edges. Therefore, U-net is expected to
be widely used for segmentation of medical images [67]. Although not in the field of or-
thopedics, new CNN architectures based on U-Net are continuously being introduced and
reporting notable results [68]. Rundo et al. performed prostate zonal segmentation with
USE-Net, incorporating Squeeze-and-Excitation blocks (SE) into U-Net [69]. Yeung et al.
showed that the model trained with a dual attention-gated CNN (Focus U-Net), which
improved the U-Net, segmented the polyp of the colonoscopy image to a satisfactory
level [70].

Studies published in the field of orthopedic surgery have thus far been unable to
present a CNN model with a higher level of diagnosis and classification than experts.
An in-depth discussion is needed as to whether these results are a problem that can be
overcome through data accumulation or the development of a better CNN, or whether they
are a natural limitation of a CNN model learned from image data.

The authors offer two approaches. First, experts do not solve problems with image data
alone. Experts can utilize information other than images, such as the patient’s demographic
data, the degree of pain, the nature of the disease and a physical examination, which can
affect the disease diagnosis and classification. Indeed, Kim et al. reported that a CNN model
trained by adding demographic information (age, sex and body mass index), alignment
and metabolic data that could affect knee osteoarthritis showed a statistically significantly
higher AUC [32]. Therefore, even if an improved CNN model is developed and high-
quality image data are accumulated, there is a possibility that the image analysis-based
CNN model using a deep learning algorithm will not reach the level of experts.

Second, despite the opinions presented above, the possibility that CNN models will
outperform experts in certain fields cannot be excluded, because the CNN model analyzes
images from a different point of view than human beings. Among 150 images of scaphoid
fractures, Langerhuizen et al. included 23 scaphoid fracture image data that could only be
confirmed through an MRI. The trained CNN model showed a lower level of accuracy than
orthopedic surgeons, but it detected five of six occult scaphoid fractures that were missed
by all human observers [23]. It is therefore necessary to carefully discuss whether an image
analysis model using deep learning can outperform experts.

It is clear that the present CNN models have room for improvement. However,
this does not undermine the significance of the studies conducted to date. The currently
developed CNN model can reduce the task intensity of the expert reader and can be used for
the education of non-expert medical workers, such as medical students or specialists during
training [71]. In addition, through a developed CNN model, a pediatrician can roughly
estimate a patient’s bone age using only X-rays without the help of an orthopedic surgeon.

A step away from the fate of clinical doctors and CNN’s accuracy battle, there are
interesting and more practical studies that give practical help to patients and doctors. Nie
et al. converted native medical CT images to higher resolution images through generative
adversarial networks (GANs) [72], and this study has the potential to be extended to MRI
images [73]. Therefore, it can help a society that has no choice but to use low-quality MRI
due to insufficient medical infrastructure or patients who have difficulty using high-quality
MRI due to cost problems.
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The authors reviewed deep learning approaches for orthopedic diseases applied
through image analysis and found some limitations. First, there are no models approved by
the Food and Drug Administration, other than a CNN model for predicting the bone age in
children and a model for diagnosing wrist fractures [74]. In other medical departments,
several models have been approved by the Food and Drug Administration, starting with a
deep learning-based model for the automatic diagnosis of diabetic retinopathy in April 2018.

Second, no prospective studies have been conducted [75]. To improve the quality of
research and continue applicable studies, a prospective and randomized trial according to
the CONSORT-AI guidelines presented in 2020 will be necessary [76].

Third, recently described deep learning methods have mostly been designed to con-
duct a single task. To be useful in clinical practice, multiple deep learning algorithms will
need to evaluate every possible abnormality. Some efforts have been made to overcome
these limitations. For example, Grauhan et al. presented a CNN model for diagnosing
fractures, joint dislocation and osteoarthritis through plain shoulder radiographs [77].

Finally, there is a need to reduce expert bias on a given dataset. Orthopedic surgeons
have traditionally used ultrasound, computed tomography or MRIs to diagnose soft tissue
diseases. However, deep learning algorithms often make appropriate judgments beyond
human cognition. Kang et al. presented a model for diagnosing SSC tendon tears with a
CNN model trained using axillary lateral radiographs, and the learned model showed an
appropriate level of accuracy [78]. Thus, orthopedic surgeons may have the freedom to
develop CNN models based on their imagination, free from prejudice.

In conclusion, image analysis using deep learning presents a clear milestone in the
field of orthopedics and is experiencing explosive growth. The development of a CNN
architecture and the accumulation of refined image data are expected to lead to the devel-
opment of more sophisticated models. However, it is difficult to predict whether a deep
learning model that exceeds the capability of experts can be created. Orthopedic surgeons
who want to apply a deep learning algorithm to image analysis need to treat data with
low prejudice, present research that meets the newly suggested guidelines and focus on
developing models that can multitask.
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