
applied  
sciences

Article

Toward Optimal Control of a Multivariable Magnetic
Levitation System
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Abstract: In the paper, a comparative case study covering different control strategies of unstable
and nonlinear magnetic levitation process is investigated. Three control procedures are examined
in order to fulfill the specified performance indices. Thus, a dedicated PD regulator along with the
hybrid fuzzy logic PID one as well as feed-forward neural network regulator are respected and
summarized according to generally understood tuning techniques. It should be emphasized that the
second PID controller is strictly derived from both arbitrary chosen membership functions and those
ones selected through the genetic algorithm mechanism. Simulation examples have successfully
confirmed the correctness of obtained results, especially in terms of entire control process quality
of the magnetic levitation system. It has been observed that the artificial-intelligence-originated
approaches have outperformed the classical one in the context of control accuracy and control speed
properties in contrary to the energy-saving behavior whereby the conventional method has become a
leader. The feature-related compromise, which has never been seen before, along with other crucial
peculiarities, is effectively discussed within this paper.

Keywords: magnetic levitation process; fuzzy logic; neural network; artificial intelligence; genetic
algorithm; practical scheme

1. Introduction

It is well known that designers of the control systems take as the starting point, apart
from the stability, a plethora of performance indices. It is natural that the greater dynamics
of the control plant operations and smaller delays or errors in regulation constitute expected
results in the modern control theory and practice. In consequence, a main goal of discussed
strategy is to obtain an optimal closed-loop control system associated with two crucial
features, that is, accuracy and energy consumption. Of course, good knowledge of the
model is important here. Having dynamic or static properties of the system, it is possible
not only to precisely determine the control parameters for the assumed operating point
but also to obtain highly positive results of the complex plant operations. This is confirmed,
for instance, by the multivariable state-space perfect control procedure, which allows us
to receive a reference value for the single-delayed object just after one simulation step
time [1,2]. Thus, the proper modeling and identification often provide the efficient control
plants. However, in the literature, we can find other effective approaches that are not
connected with aforementioned tasks. This consists of intelligent solutions in the form
of neural networks or fuzzy systems, where the full knowledge of the controlled model
is not usually necessary [3–7]. If the designer knows the residual information about the
object, then in most cases, it may be sufficient to create a properly operating control
system. The discussed approach guarantees the reduction of the time required to create the
regulation system and simplifies the entire engineering procedure.

It should be emphasized that examined methodology is of great importance in mod-
ern public transports, in particular rail transport, where the magnetic levitation process
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phenomenon is observed. The solution presented here is based on the EDS (electrodynamic
suspension) and EMS (electromagnetic suspension) systems, so it requires a comprehensive
expert supervision [8–11]. The instability and nonlinearity of multivariable plants are just
some of the aspects that should be considered in the process of design of control systems.
In the end, it is important that the developed objects should be accurate, and crucially, they
must first be safe. In the manuscript, the advanced magnetic-levitation-originated studies
covering the EMS-related employment in different control strategies are presented. A set
of modern artificial-intelligence-oriented control laws is proposed in order to indicate the
resulted peculiarities in the best way. The original solutions clearly manifest a need of
application of contemporary control schemes, in particular in the case of complex tasks
employing real-life objects. Following the recent studies observed in [12–15], it should
be stated that, contrary to classical methods, the artificial-intelligence-originated control
methodologies are more sophisticated and intuitive. Indeed, the precise closed-loop con-
trol plant can be obtained without any knowledge related to the dynamic properties of
the analyzed system. Consequently, the discussed solutions are applied in a number of
engineering applications, where there is no possibility to receive an analytical model of the
entire investigated process [16–18]. In the paper, the original approaches derived from the
artificial intelligence phenomenon are proposed and compared with respect to classical
performance indices. It turned out that the combined control laws can compete with exist-
ing procedures founded in the professional worldwide literature. Naturally, the proper
regulation scheme depends exclusively on the individual behaviors of the system to be
controlled.

The manuscript is organized in the following manner. In Section 2, the system repre-
sentation is presented. In Section 3, we consider the control performance indices touched
in the paper. Next, in Sections 4–6, we cover the main accomplishment of the work
derived from the synthesis of different control strategies. After discussion of Section 7,
the conclusions of Section 8 of the paper carefully certify the obtained new results.

2. System Representation

As part of the study, the model of the laboratory magnetic levitation system in the
form of a metal ball suspended between two electromagnets is investigated. The device,
presented in Figure 1, is described by the following nonlinear differential equations [19]

ẋ1 = x2,
ẋ2 = − Fem1

m + Fem2
m + g,

ẋ3 = 1
fi(x1)

(kiu1 + ci − x3),

ẋ4 = 1
fi(xd−x1)

(kiu2 + ci − x4),

(1)

where
Fem1 = x2

3
FemP1
FemP2

e−
x1

FemP2 ,

Fem2 = x2
4

FemP1
FemP2

e−
xd−x1
FemP2 ,

fi(x1) =
fiP1
fiP2

e
− x1

fiP2 .

(2)

The utilized parameters of the model are:

system constants

ci—0.0243 [A],

FemP1—1.7521× 10−2 [H],

FemP2—5.8231× 10−3 [m],

fiP1—1.4142× 10−4 [m·s],

fiP2—4.5626× 10−3 [m],

ki—2.5165 [A],
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Fem1—attraction force of the upper electromagnet [N],

Fem2—attraction force of the lower electromagnet [N],

Fg—force of gravity [N],

g—acceleration of gravity—9.81 [
m
s2 ],

m—mass of ball—0.0571 [kg],

u1—electric voltage of the upper coil—<umin, 1>, umin = 0.00498 [V],

u2—electric voltage of the lower coil—<umin, 1> [V],

xd—distance from the upper magnet to ball minus its diameter—defined by user [m],

x1—distance from the upper magnet to ball—<0, 0.016> [m],

x2—linear speed of the ball—x2 ∈ R [
m
s

],

x3—coil current of the upper electromagnet—<imin, 2.38>, imin = 0.03884 [A],

x4—coil current of the lower electromagnet—<imin, 2.38> [A].

Other system’s peculiarities can be found in the Inteco user’s manual [19].

Figure 1. Examined magnetic levitation system [19].

3. Performance Indices

Before going into the main goal of this paper covering the different types of control
strategies, in this section, the crucial performance indices are tackled. The tabulated below
indices are helpful during comparative case studies of proposed control algorithms. In the
paper, the following criteria are observed [20,21]:

1. ISE (Integral of Squared Error):

ISE =
∫ t

t0

e2dt, (3)

2. MOE (Minimum of Absolute Energy):

J(u(.)) =
∫ t

t0

u2dt, (4)

3. RT (Regulation Time): the time index, which determines how long it takes for the
output signal to reach an area within ±5% around the reference value. For this
criterion, the control time was investigated in appropriate steady states.
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Note that the discussion involving the aforementioned indices is effectively presented
in Section 7. On the other hand, in the next sections, the details of the utilized control
schemes are presented.

4. Classical PD Controller

The considered object of magnetic levitation constitutes a laboratory device; it works
based on a dedicated proportional–differential PD controller used for both the real system
and its model. Due to the nature of the plant operation in the EMS technology (falling ball in
an electromagnetic field), it was assumed that the feedback value entering the summation
node is positive, while the reference signal is negative. This approach is attractive in
order to obtain the positive values of proportional and differential elements [19,20]. It
should be emphasized that the levitation process device is related to the multivariable
plant (Figure 2); thus, the position of the ball is assumed as the operating point. As we will
see, the presented PD controller has some drawbacks, so the optimal control structures are
still required.

Figure 2. Magnetic levitation system with PD controller.

Simulation Studies

In this part, the PD-originated results derived from the scheme of Figure 2 are dis-
cussed. The reference signal is related to the position of the levitating ball located in the
following meter scale range Γ = <7× 10−3, 9× 10−3>, calculated from the upper electro-
magnetic base—the position is changing in every 2 s. After applying the engineering
method, we obtain the crucial parameters KP = 1500 and KD = 40 along with the time
domain plots depicted in Figure 3. Although the dynamic behavior of the closed-loop
control system is rather impressive—a time needed to obtain the reference values is equal to
200 ms, the steady-state error is certainly occurred. According to the factory device without
an integral action, the reference error covers the range Γ = <−0.25× 10−3, 0.25× 10−3> in
the meter scale.

The details of the control actions are shown in Section 7. On the other hand, the next
section presents the own improved approach to control of the magnetic levitation process.
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Figure 3. The system response—the PD controller case.

5. Hybrid Fuzzy Logic PID Controller

The first step in the search for an appropriate control scheme dedicated to the said
magnetic levitation process is an application of a original solution combing the fuzzy logic
paradigm with the classical regulator. As a result, the PD-type fuzzy structure has been
connected with the PI-oriented plant to finally obtain an improved closed-loop control
scheme with quite good dynamics having zero steady-state error. The PID output signal
u(t) has certainly been given to the upper electromagnet in the form of supply voltage (see
Figure 4).

Note that the aforementioned fuzzy logic PD controller is derived from the Mamdani
model. It comprises two input signals (error and derivative of error) and one control output
uF(t) calculated according to the following expression

uF(t) = f
(

e(t),
de(t)

dt

)
. (5)

The examined signals have been described in the linguistic domain as follows: e(t)—
control error, de(t)

dt —error derivative, and uF(t)—control output, all covered by the Table 1
in the context of their membership.

Figure 4. Diagram of magnetic levitation system involving a hybrid fuzzy logic PID controller.

During selection of the linguistic variables, the different membership functions have
been utilized. It has been assumed that two functions, i.e., so-called triangular and trape-
zoidal, would describe two input signals. The reason is that discussed functions are quite
easy under the implementation process and their parameters are intuitive as well as sim-
ple to interpret. However, it should also be noted that these functions are sharp—the
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property can change their values and derivatives rapidly. Indeed, as a consequence, the
continuous derivative behavior is omitted here [22,23]. The output-related fuzzy sets have
been subjected to the defuzzification process according to the Gaussian distribution as
follows [23]

gaussian(x, c, σ) = e−
1
2 (

x−c
σ

2
), (6)

where symbol c describes the center of function, whereas symbol σ denotes the function
width. The performed fuzzy logic rules, derived from the membership functions (see
Table 1), have been arranged in the form of a MacVicar-Whelan matrix (see Table 2).

Table 1. The input and output membership functions.

Control Error Error Derivative Control Output

VN—Very Negative FD—Fast decreasing VL—Very Low
N—Negative D—Decreasing L—Lower
G—Good G—Good G—Good
P—Positive I—Increasing R—Raise
VP—Very Positive FI—Fast Increasing VR—Very Raise

Table 2. The rules of the fuzzy logic controller.

FD D G I FI

VN VR VR R R G

N VR VR R G L

G R R G L L

P R G L VL VL

VP G L L VL VL

As has been mentioned before, the discussed approach allows us to treat the system
as the so-called “black box” without any knowledge covering its physical phenomena
strictly providing to determine the model of the object. Thus, the presented methodology
is universal for the other EMS-originated control purpose.

It should strongly be emphasized that the output set of membership functions has
been calculated twofold. The first case has been derived from the expert experience, while
the second one has been associated with the genetic algorithm application. Indeed, in the
former approach, the expert knowledge has formed the shapes of said functions in contrary
to the last method, where the advance genetic algorithm procedure was looking for some
optimum related to the assumed performance indices.

The results of the conducted simulation study are shown in the next section.

Simulation Studies

Observe that performed rules (see the MacVicar-Whelan matrix) allow us to obtain
the proper surface of the fuzzy logic controller (see Figure 5). Accordingly, the entire
PID scheme has been included in the predefined closed-loop control system as shown in
Figure 4. After that, the dynamic behavior of the discussed plant has been analyzed using
the same paradigm as in the PD case.
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Figure 5. The control surface of the fuzzy logic controller.

Since the output sets have played an important role during design of the overall
control structure, especially in the terms of selection of membership functions, they have
been strictly analyzed, as these form the proper input variable runs. For that reason, same
as before, two approaches have been reported. The first method employing the expert
knowledge with arbitrarily assumed membership functions (see Figure 6) and the second
one involving the parameters derived from the genetic algorithm procedure (see Figure 7).
For the space limitation reason as well as the similarity of the characteristics in the time
domain, the presented results in this section concern exclusively the former expert solution
as shown in Figure 8. The slight difference can only be indicated throughout the examined
performance indices of Section 7.

Furthermore, as a result of application of combined PID algorithm (fuzzy logic PD
with classical PI), the steady-state error has been reduced to zero and the control time has
been shortened as well (see Figure 8). Observe, that there is a possibility to obtain the
discussed zero-error by the fuzzy logic controller exclusively. However, such instance is
connected with the action of proper forming of utilized rules, which is worth extensive
research effort in the nearest future.

In the next section, another neural network approach is proposed.

Figure 6. The membership functions of the control output set—the expert method.
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Figure 7. The membership functions of the control output set—the genetic algorithm method.

Figure 8. The system response—the hybrid PID controller case.

6. Neural Network Control

In this section, near to the earlier presented solutions, the advanced neural network
approach is investigated. Therefore, in order to approximate the nonlinear continuous-time
function according to the theorem of Kolmogorov and Cybenko, the neural network has
been examined, which consists of the nonlinear neurons in the first layer and linear neurons
in the second one [24,25]. Naturally, a number of nonlinear neurons should be proper
in the context of providing an accurate behavior of the objective neural network scheme.
Regarding the assumed structure of the control system as in the Figure 9, the simulation
study has involved two network layers with one nonlinear hidden layer and single linear
output layer. A number of neurons located in the hidden layer have been calculated
according to the following formula

m = 2k, (7)

where k denotes the number of plant’s inputs and m provides the number of neurons
with nonlinear activation function. Although the m should be equal to 14, an additional
simulation studies have indicated that m = 15 (better behavior covering a generalization).
Moreover, the supplementary PI controller has been utilized, which properly reinforces and
integrates the output signal uN(t) of the artificial neural network. Thus, the control signal
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u(t) is obtained (see Figure 9). In the next sections, the structure of discussed network is
described through the more detailed way.

Figure 9. The structure of the neural network control system.

6.1. The Structure of the Proposed Neural Network

During the study, it was assumed that the first hidden layer will consist of 15 nonlinear
neurons having tangensoidal activation function (tansig(.)) as follows [26,27]

f (x) = tanh(x) =
ex − e−x

ex + e−x . (8)

The reason is that the said function provides better results and a wider range of
possibilities due to the description in the Γ = <−1, 1> range, in contrast to the sigmoidal
form, which takes only non-negative results. The second part of the feed-forward neural
network involves a single layer containing a neuron with a linear activation function
(purelin(.)). Such structure is strictly derived from the single output of the system. It should
be noted that in the case of the designed neural network, the linear part serves the effect of
summing up the nonlinear activation functions of neurons located in the preceding layer.
Thus, the process of approximation of the nonlinear function, which is the control signal,
has satisfactorily been conducted.

Taking into account the above considerations, the output of the feed-forward neural
network is described by the simplified formula [28]

y = w2 f1(w1u + b1) + b2, (9)

where w1 and w2 denote the gain sets of the first and second layer, respectively. The sym-
bols b1 and b2 define the threshold values for respective nonlinear and linear layers, whereas
f1(.) is assumed activation function of the first layer of the neural network. Naturally,
the expression (9) can be expanded in the following manner

y = w(1)
2 y(1)1 + w(2)

2 y(2)1 + ... + w(15)
2 y(15)

1 + b2. (10)

The graphical scheme of Equation (10) is presented through Figure 10. It should
additionally be noted here that feed-forward neural networks are noninertial systems. This
means that the values of the network outputs become fixed when signals are applied to
the network inputs. This property is desirable for the considered process because the
maximum speed of the regulation system should be maintained. The proposed structure of
the neural network turned out to be sufficient to design of a properly functioning regulator
of the magnetic levitation plant. This fact is confirmed by simulation results shown later in
this chapter. On the other hand, the concept used during the task of network training is
presented below.
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Figure 10. The structure of the original neural network.

6.2. Supervised Learning of the Neural Network

In order to obtain the appropriate values of the weighting factors of the nonlinear
neural network, the reference data derived from the fuzzy logic mechanism have been
applied in the learning process. As part of the training of the supervised network, the mean-
square-error-originated performance index has been minimized. The aforementioned norm
is expressed as follows

e(W) =
1
K

K

∑
k=1

(tk − yk)
2, (11)

where t denotes the reference value and y constitutes the output of the system. The symbol k
provides the number of considered elements. The process of optimal training has consisted
in minimizing the aforementioned index according to the weighting matrices (of both
network layers) and threshold values in regard to the subsequent formula [28]

e(w1, w2, b1, b2). (12)

In the learning process, the input set I has been used, which has employed the n = 7
patterns u each of them having k = 20,000 elements as well as the output set O arranging
the l = 1 pattern t with k = 20,000 elements. The above statements can be described in the
following manner covering

I =
[
u1 u2 u3 u4 u5 u6 u7

]

=


u(1)

1 u(1)
2 u(1)

3 u(1)
4 u(1)

5 u(1)
6 u(1)

7

u(2)
1 u(2)

2 u(2)
3 u(2)

4 u(2)
5 u(2)

6 u(2)
7

...
...

...
...

...
...

...
u(k)

1 u(k)
2 u(k)

3 u(k)
4 u(k)

5 u(k)
6 u(k)

7

,
(13)

and

O =
[
t1
]
=


t(1)1

t(2)1
...

t(k)1

. (14)

The sizes of the training sets in the context of input and output variables clearly
resulted from the adopted neural network and the nature of the investigated model of the
entire object.
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6.3. Artificial Neural Network Training Procedure

At the beginning of this section, it should be emphasized that two gradient-related meth-
ods have been compared under research studies, i.e., Levenberg–Marquardt (trainlm(.))
and Bayes (trainbr(.)) approaches—two offered by the MATLAB environment. In the former
solution, the approximated Hessian matrix of the network error function is calculated using
its gradient and some regularization factor. One of the main advantages of the discussed
method is a convergence. Moreover, in the case of this approach, the limitation of the classical
Newton’s algorithm does not occur. Therefore, it is one of the best methods of the small
and medium neural networks training [29,30]. On the other hand, the Bayes approach can
train any network that meets the following conditions: weight and input data as well as the
transfer function are differentiable functions [29,31,32].

The training task respecting the aforementioned tools allows us to obtain much better
generalization properties using the Bayes method. For this approach, the least value of the
assumed performance index (see Formula (11)) was e(.) = 2.99× 10−4, while under the
Levenberg–Marquardt algorithm, we got e(.) = 1.18× 10−3. Therefore, the Bayes’ method
has been chosen for the training purpose. Figure 11 shows the training process of the
neural network along with the validation task for both kinds of algorithms. The differences
of the two approaches are clearly visible.

Figure 11. The observation of obtained results.

On the other hand, the following section shows the simulation studies for the trained
network.

6.4. Simulation Studies

In order to present the validity of resulted control scheme, an additional disturbance
has been implemented. The reason is that we would like to know whether the network is
overtrained—in such a case, the generalization behavior could be lost. As the disturbance
z(t), the DC voltage equal to 0.5 V has been given on the lower electromagnet (see Figure 9).

Figure 12 shows the big potential of the discussed approach. The more precise control
scheme allows us to obtain a reference value after approximately 110 ms.

In the next section, the comparison of the analyzed control strategies is finally
examined.
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Figure 12. The system response—the neural network controller case.

7. The Discussion of Obtained Results

As part of the comparative analysis, the simulation tests were carried out for the
proposed different types of control schemes. The ball position signal from the range
Γ = <7× 10−3, 9× 10−3> has been changed every 2.5 s; thus, the run has been treated as the
setpoint value. The received results of the considered performance indices are summarized
in Table 3. After considering the outcomes, it can be stated that the control methods in
the field of artificial intelligence have coped much better in contrast to the classical PD
regulator. In the PD application case, the steady-state error, calculated according to the
discussed performance indices, has been greatest along with the longest regulation time.
However, it was the most energy-saving control process. Moreover, it can be observed from
the obtained results that the best quality of regulation was provided by the neural network,
although it was the most energy-consuming strategy. On the other hand, for the fuzzy
logic phenomenon, the performance indices were slightly worse but still better than these
derived from the dedicated solution covering the PD controller. Therefore, for the two
considered approaches (selection of the membership functions using: (1) the expert method
and (2) the genetic algorithm), the genetic algorithm has guaranteed a faster and more
accurate regulation process in opposite to the expert method. Unfortunately, the energy of
the control runs was much higher in the former case.

Table 3. The results of the performance indices.

ISE MOE RT

PD 2.36× 10−3 1.34× 101 0.29× 10−1

Fuzzy logic 1.36× 10−3 3.68× 102 0.28× 10−1

Fuzzy logic GA 1.34× 10−3 8.19× 102 0.26× 10−1

Neural network control 1.10× 10−3 8.89× 102 0.26× 10−1

Thus, the proposed modern AI control techniques can be treated as the effective ones
in some engineering sense.
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8. Conclusions

In this paper, the original control schemes dedicate to the magnetic levitation system of
the EMS-type are provided. The hybrid PID controller based on the fuzzy logic mechanism
and the feed-forward neural network control procedure have certainly been proposed. It
turned out that the approaches based on the computational intelligence are quite better
than the classical solution covering the PD-related control method. The application of
neural network and fuzzy logic paradigms provides robust control schemes in the context
of accuracy and speed. However, the modern AI techniques, which do not involve an
analytical model of the analyzed plant, are more energy-consuming solutions—this fact
has effectively been confirmed by the conducted investigation. Having the experience
derived from the simulation studies, the crucial open problem should immediately be
formulated. It would be interesting to verify the entire proposed methodology in terms of
other performance indices containing the energy of the control input runs. This challenge
is worth further intense investigations.
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