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Abstract: Recently, due to the miniaturization of electronic products, printed circuit boards (PCBs)
have also become smaller. This trend has led to the need for high-precision electrical test equipment
to check PCBs for disconnections and short circuits. The purpose of this study is to improve the
position repeatability of the platform unit up to ±2.5 µm in linear stage type test equipment. For
this purpose, the causes of the position errors of the platform unit are analyzed. The platform unit
holding the PCB is driven by a single-axis linear ball screw drive system offset from its geometric
center due to design constraints. The yaw rotation of the platform is found to have a dominant effect
on position repeatability. To address this problem, adding balancing weights to the platform unit and
adjusting the stiffness of the LM Guides are proposed. These methods reduce the yaw rotation by
moving the centers of mass and stiffness closer to the linear ball screw actuator. In the verification
tests, the position repeatability was decreased to less than ±1.0 µm.

Keywords: precision stage; balancing weight; drive force offset; yaw motion; error prediction;
low-cost stage; linear motion guide (LM Guide); ANSYS bushing joint

1. Introduction

Electrical test equipment measures the resistance of a circuit pattern on a printed
circuit board (PCB) to inspect any abnormalities. An electrical inspection is performed with
thousands or more probe pins concurrently positioned on the upper and lower surfaces
of the PCB along the circuit checkpoints. Since the recent miniaturization and thinning
of electronic products has resulted in fine-pitch patterned PCBs, there is a need for high-
precision alignment of the probe pins. Lowering the manufacturing cost of the equipment
is also required.

The electrical test equipment has an XY stage that moves the PCB to the position
coordinates and precisely aligns the PCB with the probe pins. The stage is a module of
significant importance that must meet productivity and precision standards. Figure 1
shows the schematic diagram of the XY stage.

The stage has a platform with a central opening to allow the probe pins onto the
upper/lower surfaces of the PCB. A coordinate system is chosen such that the x-axis is in
the length direction of the platform while the y-axis is in the width direction. The platform
is driven by linear ball screw actuator systems offset from the platform’s center. Due to the
offsets, yaw moments are generated during the operation of the stage. The major contributor
to the yaw motion is driving force offset, resulting in deteriorated precision due to the yaw
angle [1]. In the stacked XY stage structure, the dynamic behavior of the supported stage
(y-stage in Figure 1) is supposed to be affected by that of its supporting stage (x-stage),
which is driven by its actuator system. Judging from the studies on single-stage dynamics,
the interaction between the stacked stages is expected to be very complicated. In most cases,
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the supported stage is much lighter than its supporting stage, as depicted in Figure 1. In this
work, the subtle dynamics of inter-stage interaction are ignored and left for future study.

Figure 1. Scheme of offset-driven XY stage.

To reduce the yaw moment, the linear stage may be driven by synchronous control
with driving units installed on both sides of the guide. Since the parallelism between
the two linear motion guides (LM Guide) on both sides is imperfect, the actuator loads
may vary during operation. Repeated load fluctuations may cause structural distortions
over time, which ultimately may lead to jamming. Thus, the synchronous control method
has many shortcomings, such as increased manufacturing and maintenance costs and
complexity of control programs compared to the single motor control method.

Typically, a single-axis linear motion stage consists of a pair of LM Guides. Each rail of
the configured LM Guides is exposed to shape errors, machining errors on the installation
surface, and assembly errors. As a result, unintended 5-degree of freedom (DOF) error
motions occur. Among these, errors in the translational motion direction can be corrected
to some extent by the averaging effect, whereas errors arising from the angular motions,
such as yaw, are difficult to correct [1,2].

Various studies have been conducted to analyze the error motions caused by the
geometrical error of the LM Guide’s rail. Major studies have simplified the balls of the
LM Guide, which are the most elastic parts deformed by force, to spring models. Such
simplification has been used to predict the translational error motions of stages with the
LM Guide rail shape error and ball stiffness [3–16]. Linear stages for electrical test machines
are designed with high acceleration and deceleration capabilities for productivity. As a
result, significant yaw motion and vibration of the platform could occur. Most of the
previous studies, however, employed static equilibrium equations for the platform without
inertial effects.

The position accuracy of the stage may be supplemented by measuring the motion er-
ror of the platform and compensating with corrected position coordinates. For this purpose,
the position repeatability of the platform is crucial [15,17,18]. However, as in the x-axis
shown in Figure 1, if yaw motion occurs, the position repeatability of the platform varies
depending on the magnitude and direction of the driving force (F) and the bearing friction
between the platform and the rails. Since the friction is a result of complex tribological
interaction between the balls and the rails subjected to statistical uncertainties [19–21],
platform yaw is most unpredictable. In this case, it is extremely difficult to enhance the
position accuracy even with compensation.

In this work, a rigid body dynamics model is proposed to analyze the contributions of
various factors to platform yaw motion subjected to a single offset driving force. Further, a
method for minimizing the yaw motion is presented along with experimental verifications
of its effectiveness. This effort led to the development of a low-cost precision stage, satisfy-
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ing the platform acceleration of 1 g and the position repeatability of ±1.0 µm required for
advanced electrical test equipment.

In Section 2, a rigid body dynamics model of the moving platform subjected to an
offset driving force is described. In Section 3, contributions from the various factors on
platform yaw motion are analyzed. The position error due to platform yaw is predicted
and improved by a new XY stage design in Section 4. The improved platform position
repeatability with optimized centers of mass and stiffness is verified with a test bed in
Section 5.

2. Dynamic Model for Moving Platform

The single-axis stage has a pair of LM Guides jointed to a platform unit driven by
a linear motor or an assembly consisting of a ball screw and motor. In the following
discussion, the motion of the platform is represented by a rigid body dynamics model.

2.1. Yaw Error Motion

A single-axis linear stage consists of a moving platform mounted on a pair of LM
Guides. The platform is driven by a linear actuator, as illustrated in Figure 2. The system
may be characterized by the center of mass of the platform, the center of stiffness of the LM
Guides, and the driving force offset with respect to the geometric center of the platform.
In this system, the ratio of platform length (l) in the motion direction to the width (w)
is very important for drive stability. Typically, l/w > 1 is required, and 1.6 or higher is
recommended [1].

Figure 2. Scheme of an offset-driven platform mounted on two linear motion guides.

When the driving force (F) offset is significant, the yaw motion of the platform is
induced by its inertia, reaction forces (Ra to Rd), and friction forces (µRa to µRd), leading to
possible jamming.

2.2. Stiffness of LM Guide

An LM Guide is composed of a rail, one or two blocks, and balls, as shown in Figure 3a.
The balls recirculate, enabling the block to perform a linear motion along the rail. The
stiffness between the block and rail is analogous to a set of springs that resist external forces
applied to the block in horizontal and vertical directions, as shown in Figure 3b [3–15].

Table 1 shows the stiffness data of the LM Guides from THK’s HSR models. The
stiffness values were extracted from the catalog’s experimental load vs. displacement
graphs. These values are used for modeling but should generally be considered as having
an uncertainty of 1–2%.
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Figure 3. LM Guide (a) components and (b) stiffness elements.

Table 1. Stiffness of HSR LM Guides.

Horizontal Stiffness
(kN/mm)

Vertical Stiffness
(kN/mm) Effective Load (kN)

HSR20 250 349 1.4
HSR20L 335 472 2.3
HSR25L 335 488 2.8
HSR30L 453 645 3.8
HSR35L 495 681 5.5

2.3. Equations of Motion

A free body diagram is shown in Figure 4, presenting the reactions between the
moving platform and two LM Guides. The platform guided by rail #1 and rail #2 is driven
by force (F) offset from the platform’s center of geometry by the distance (d).

Figure 4. Free body diagram of the moving platform.

The blocks of rail #1 are numbered 1 and 2, respectively, while those of rail #2 are
numbered 3 and 4, which are symmetric about the y-axis by distances of l and q, respectively.
The blocks have a horizontal stiffness of kn and a damping coefficient of cn. (n = 1, 2, 3, 4).

The Cartesian coordinate system represents the movement direction and the width
direction as x and y and the direction perpendicular to the x-y plane as z.

Figure 5 shows a schematic diagram of the platform rotated by an angle of θ by the
driving force (F). The coordinates (xc, yc) and (xp, yp) refer to the center of mass and the
center of rotation, respectively.



Appl. Sci. 2022, 12, 657 5 of 23

∑ Fx = m
..
xp

∑ Fy = m
..
yp

∑ M = I
..
θ

(1)

The force equilibrium equation for the platform is given as Equation (1), and the
rotational inertia is given as Equation (2).

I =
∫

Plat f orm

r2dm+m
(
(xp − xc)

2 + (yp − yc)
2
)

(2)

The rotational inertia (I) is calculated with respect to the rotation center. The r is the
distance from the center of rotation to the point mass (dm) of the moving platform.

Figure 5. Schematic diagram of yaw motion.

The position of the rotational center (Pole) is a function of time, and the lengths of the
lines (sn) from the pole to the block centers are given as,

s1(t) =
√
(l/2 + xp(t))

2 + (w/2− yp(t))
2

s2(t) =
√
(l/2− xp(t))

2 + (w/2− yp(t))
2

s3(t) =
√
(q/2 + xp(t))

2 + (w/2 + yp(t))
2

s4(t) =
√
(q/2− xp(t))

2 + (w/2 + yp(t))
2

(3)

while the angles (τn) between the lines sn and the x-axis are given as,

τ1(t) = tan−1
(

w/2−yp(t)
xp(t)+l/2

)
τ2(t) = tan−1

(
w/2−yp(t)
−xp(t)+l/2

)
τ3(t) = tan−1

(
w/2+yp(t)
xp(t)+q/2

)
τ4(t) = tan−1

(
w/2+yp(t)
−xp(t)+q/2

) (4)
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The angle (ρn) between the block center displacement vectors (δn) and the x-axis can
be derived as shown in Equation (5).

ρ1(t) = − θ(t)+2τ1(t)
2 + π

2
ρ2(t) =

θ(t)−2τ2(t)
2 + π

2
ρ3(t) =

θ(t)−2τ3(t)
2 + π

2
ρ4(t) = − θ(t)+2τ4(t)

2 + π
2

(5)

The displacement vectors (δn) are decomposed into δnx and δny, as shown in Figure 6.
The displacements and velocities in the y-direction are given as,

δny = sn(t)θ(t) sin ρn(t) (6)

.
δny =

.
snθ sin ρn + sn(t)

.
θ(t) sin ρn(t) + sn(t)

.
ρn(t) cos ρn(t) (7)

The horizontal reaction forces (Rn) on the blocks are functions of the displacements
(δny) given as

Rn = knδny + cn
.
δny where n = 1, 2, 3, 4 (8)

Figure 6. Vector decomposition of rotation block displacement.

The coordinate of the LM block n is (xn, yn), and (xg, yg) is the geometric center, as
shown in Figure 7. (xmid1, ymid1) and (xmid2, ymid2) are the midpoints of blocks 1 and 2 and
blocks 3 and 4, respectively. The relation between the center of mass (xc, yc) and the center
of rotation (xp, yp) is given by the theorem of similar triangles as follows: where yc(0) refers
to the initial y-coordinate value of the platform’s center of mass.

x1 = xp − s1 cos(τ1 + θ), y1 = yp + s1 sin(τ1 + θ)
x2 = xp + s2 cos(τ2 − θ), y2 = yp + s2 sin(τ2 − θ)
x3 = xp − s3 cos(τ3 − θ), y3 = yp − s3 sin(τ3 − θ)
x4 = xp + s4 cos(τ4 + θ), y4 = yp − s4 sin(τ4 + θ)

xg =
4xp−s1 cos(τ1+θ)+s2 cos(τ2−θ)−s3 cos(τ3−θ)+s4 cos(τ4+θ)

4

yg =
4yp+s1 sin(τ1+θ)+s2 sin(τ2−θ)−s3 sin(τ3−θ)−s4 sin(τ4+θ)

4

xc =
yc(0)
w/2

(
−s1 cos(τ1+θ)+s2 cos(τ2−θ)+s3 cos(τ3−θ)−s4 cos(τ4+θ)

4

)
+

4xp−s1 cos(τ1+θ)+s2 cos(τ2−θ)−s3 cos(τ3−θ)+s4 cos(τ4+θ)
4

yc =
yc(0)
w/2

(
s1 sin(τ1+θ)+s2 sin(τ2−θ)+s3 sin(τ3−θ)+s4 sin(τ4+θ)

4

)
+

4yp+s1 sin(τ1+θ)+s2 sin(τ2−θ)−s3 sin(τ3−θ)−s4 sin(τ4+θ)
4

(9)
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Figure 7. Schematic diagrams of (a) the relationship between the center of mass and the geometric
center and (b) the zoomed view of the rotated center of mass.

Substituting Equations (2)–(8) into the force equilibrium Equation (1) of the free body
diagram shown in Figure 4 leads to the following equations of yaw motion:

∑ Fx : F− µmg− µ(R1 + R2 + R3 + R4) = m
..
xp

∑ Fy : −R1 + R2 − R3 + R4 − µmg = m
..
yp

∑ M : F(d− yp)−
(

xp − µyp +
l+µw

2

)
R1 +

(
xp + µyp − l+µw

2

)
R2 −

(
xp − µyp +

q−µw
2

)
R3 +

(
xp + µyp − q−µw

2

)
R4 = I

..
θ

(10)

3. Factors Affecting the Yaw Motion

The yaw motion of the moving platform depends on the platform aspect ratio, position
of the platform’s center of mass, driving force offset ratio, parallelism between the two LM
Guides, and position of the LM Guides’ center of stiffness [1,17,18].

These factors can be classified into controllable and uncontrollable parameters, depend-
ing on the situation. In this work, the platform’s aspect ratio and driving force offset were
uncontrollable under the given conditions, while the parallelism between the LM Guides,
the center of mass, and the center of stiffness was defined as a controllable parameter for
design and implementation.

The yaw motion of the moving platform may be described by the yaw angle (θ) and
settling time (λ), respectively, as functions of parallelism (PA), the center of mass (CM), the
center of stiffness (CS), and force offset (FO).

Yaw motion = f (θ, λ) (11)

θ = θ(PA, CS, CM)|FO
λ = λ(PA, CS, CM)|FO

(12)

The yaw angle can be predicted for the given size of the platform, the installation
positions of the LM Guides, and the driving force from Equation (10).
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Numerical solutions to Equation (10) were obtained using the GEKKO package of
python as a solver. GEKKO is a package for machine learning and the optimization of
mixed-integer and differential-algebraic equations [22].

3.1. Uncontrollable Parameters: Given Conditions
3.1.1. Aspect Ratio of Platforms

The effects of platform aspect ratio and force offset have been investigated, as shown
in Table 2 and Figure 8. Four platforms with different sizes were selected. The length (l)
in the moving direction was fixed at 0.5 m, and the width (w) was varied from 0.3–1.0
m, resulting in the l/w ratio of 1.7 to 0.5. The LM Guide model HSR20 was selected with
blocks on the four corners of the platform. The driving motion profile is trapezoidal with
an acceleration of 1 g (9.8 m/s2) and an acceleration time of 0.1 s.

Table 2. Dimensions of moving platform.

No. Length, l
(m)

Width, w
(m)

Weight
(kg) l/w

1 0.5 0.3 29.3 1.7
2 0.5 0.5 48.8 1.0
3 0.5 0.8 78.0 0.6
4 0.5 1.0 97.5 0.5

Figure 8. Comparison of moving platforms.

The friction force and damping coefficient of LM Guides vary depending on the
operating environment, maintenance, and driving conditions [20,21]. Even for LM blocks
of the same model number, the friction coefficients and damping coefficients may vary. To
proceed, the friction coefficient (µ) and damping coefficient (c) were fixed to 0.02 and 10
Nsec/mm, respectively. The effects of their variations will be discussed later.

3.1.2. Force Offset

The force offset (FO) may be defined in terms of the distance between the ball screw
linear actuator, illustrated in Figure 1, and the geometric center of the moving platform. In
its normalized form, the force offset is defined as

FO(ForceOffset) =
d

w/2
× 100 (%) (13)

where d is the offset distance and w is the width of the platform. Figure 9 illustrates the
parameters for FO and examples of different FO configurations.
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Figure 9. (a) Schematic diagram of FO definition and (b) comparison of FO 20% and FO 80%.

Figure 10 shows the yaw vibration of the No. 4 platform (Figure 8) driven with four
different values of FO. The vibration response of the moving platform in Figure 10 is typical
for the trapezoidal motion profile [23]. The yaw angle is observed to converge after a
certain period of time, indicating that the higher the FO, the higher the convergence value
becomes.

Figure 10. Yaw angle vs. time for various force offsets (No. 4).

Figure 11 presents the convergence value of the yaw angle vs. FO value for the four
platform types, which demonstrates that the larger the l/w value, the smaller the FO effect
on the yaw angle.

Figure 11. Yaw angle vs. force offset for various platforms.
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Figure 12 is an enlarged graph of a FO of 80% in Figure 10. The settling time (λ) is
when the vibration value becomes less than the error band, 0.1 × 10−6 rad, about 33 ms.
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3.1.3. Verification of Dynamics Model

The predictions with Equation (10) were compared with the finite element analysis
results obtained with ANSYS, a commercial finite element analysis (FEA) tool. In many
previous studies, the deformation of the LM Guide with respect to the load showed a high
correlation between the experiment and the simulation [5–9]. In the ANSYS FEA model,
the balls between the block and rail of the LM Guide were represented by a bushing joint,
which requires two opposing contact surfaces, described as the reference and mobile in
Figure 13a. The constraint of a bushing joint was applied with vertical and horizontal
stiffness values (Figure 3) between the mobile and reference surfaces. Figure 13b shows the
finite element mesh for FEA.

Figure 13. Finite element model for LM Guide: (a) contact surfaces of a bushing joint, and (b) finite
element mesh.

Platform 4 in Table 2 was selected for the simulation model, and the analysis was
performed in the 20–80% range of FO values.

The yaw-induced positioning error of the stage is represented by the difference be-
tween the x-axis coordinate differences of block two and block four, as illustrated in
Figure 14. The yaw angle values from the FEM simulations and Equation (10) are listed in
Table 3. With FO, the yaw angle tended to increase in both the results of the simulations
and the dynamics Equation (10).
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Figure 14. Schematic diagram of yaw error.

Table 3. Yaw angle predictions for the No. 4 platform (µrad).

FO FEM Simulation
ANSYS

Rigid Dynamics Model
Equation (10)

0% 0.0 0.0
20% 0.0 1.5
40% 2.9 3.0
60% 5.7 4.4
80% 6.7 6.0

The difference between the predictions from the FEM model and the rigid body
dynamics model may be due to the structural vibration ignored in the rigid body dynamics
model. It may also be due to the difference between the bushing joint and simple spring
model for the LM Guide stiffness. Even with these differences, a simpler and faster rigid
body dynamics model may be a useful tool for predicting yaw error at the early stage of
precision linear stage design.

The friction coefficient and damping coefficient affect the yaw angle and vibration
damping, respectively. As the friction coefficient increases, the value of the yaw angle
increases, and as the damping coefficient increases, the settling time decreases. For example,
in the case of FO:80%, for the friction coefficient ranging between 0.002 and 0.2, No. 4
platform’s yaw angle shows about 4% variation, as shown in Table 4.

Table 4. Convergence value of yaw angle according to friction coefficient.

Friction
Coefficient (µ) 0.002 0.01 0.02 0.03 0.2

Yaw angle
(µrad) 5.93 5.94 5.96 5.98 6.17

For the damping coefficient ranging between 0.01 and 100, the settling time shows a
0.6% variation, as shown in Table 5. These two factors do not demonstrate dominant effects
on the predicted yaw angle for their respective practical ranges.
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Table 5. Settling time according to damping coefficient.

Damping
Coefficient
(Nsec/mm)

0.01 0.1 10 100

Settling time
(ms) 32.02 32.02 31.92 31.87

3.2. Controllable Parameters: Design, Manufacturing Conditions
3.2.1. Parallelism between LM Guides

Ideally, a pair of LM Guide rails should be perfectly parallel. In reality, this cannot
be the case due to an assembly error found in LM Guides and the machining error on the
installation surface itself.

As shown in Figure 15, LM rail number one is an ideal straight line, and rail number
two represents the straightness error in the y-direction by δst from the block number four
position, which indicates the application of an external force of δst × k4 to the number
four location in the y-direction. The yaw angle was calculated by reflecting the additional
external force in the yaw motion in Equation (10).

Figure 15. Parallelism error between LM Guides.

The driving force was applied to the four types of platforms at an FO of 80% with the
trapezoidal motion profile mentioned earlier. The convergence values of the yaw angle
according to the parallelism error (PA) are shown in Figure 16. The yaw angle at zero
parallelism is equivalent to the value of an FO of 80% in Figure 11. With parallelism, the
yaw angle is increased by several times or more regardless of l/w. Parallelism is the most
dominant factor affecting the yaw motion, regardless of l/w ratio or FO.
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Figure 16. Results of the yaw angle of platforms.

3.2.2. Center of Mass & Center of Stiffness

The moving platform has several midpoints: centers of geometry, mass, and stiffness.
These midpoints are defined as

Center of geometry = O(0, 0) (14)

Center of mass = O′
(∫

xdm
m

,

∫
ydm
m

)
(15)

Center of stiffness = O′′
(

∑ xiki

∑ ki
, ∑ yiki

∑ ki

)
(16)

The midpoints are illustrated in Figure 17.

Figure 17. Midpoints of the platform.

Normalized y-coordinates of the platform mass center and LM guide stiffness center
are defined as the ratios of the distances from the center of geometry (origin O) to each
center point in the width direction to the half-width of the platform as

CM(Normalizedcoordinateof platformmasscenter) =
yc

w/2
× 100 (%) (17)
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CS(Normalizedcoordinateof LMguidestiffnesscenter) =
ys

w/2
× 100 (%) (18)

The center of mass can be modified by adding or removing weights for the given
platform size. The center of stiffness can be modified by changing the positions of the LM
Guides, installing additional guides, or replacing the LM Guide types.

In general, two blocks on an LM Guide rail are identical, and thus k1 = k2, k3 = k4.
Table 6 lists some of the CS values for the k3/k1 ratios.

Table 6. Ratio of center of stiffness (CS) for k3/k1 values.

CS 0% 20% 40% 60% 80% 100%

k3/k1 1 0.7 0.4 0.30 0.1 0

The yaw motion dependence on the CS and CM for number four platform with zero
parallelism at 80% of FO such as

θ = θ(PA : 0, CS, CM)|FO:80%,No4Plat f orm
λ = λ(PA : 0, CS, CM)|FO:80%,No4Plat f orm

(19)

is described in Figures 18 and 19.

Figure 18. Convergence yaw angle (θ) vs. CM and CS.

Figure 19. Settling time (λ) vs. CM and CS.
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Figure 18 shows the value of the yaw angle for a range of CS and CM, and Figure 19
shows the settling time. The yaw angle is greatly affected by the CS, while the effect of the
CM is minimal. The absolute value of the yaw angle is the smallest at a CS of 80% for an
FO of 80%. Figure 19 shows that the settling time is also minimal when the CS is the same
as the CM. The lowest settling time is also achieved at a CS of 80%.

As for the yaw angle, Figure 18 indicates that it is governed primarily by the CS,
indicating that the LM Guides are the most dominant elements constraining the yaw
rotation of the platform. For the lower range of CS values, the centers of stiffness and
rotation are relatively close to each other. As the CS increases closer to the value of FO,
the constraints from guide rail number two are partially reduced, and thus, the center
of rotation also moves closer to the FO position. This will reduce the yaw moment by
the driving force (F) about the center of rotation. Moreover, the rotational inertia of the
platform is increased since the rotation center moves away from the center of mass.

Settling time is a result of the complex interplay among the CS, CM, and FO, as
indicated in Figure 19. It turns out that the settling time reaches its minimum at the values
of CS and CM similar to a FO of 80%. In this case, the centers of rotation, mass, and stiffness
are closer to the FO position, reducing the yaw moment and rotational inertia.

The data for Figures 18 and 19 are listed in Tables 7 and 8.

Table 7. Convergence yaw angle for combinations of CM and CS, (µrad).

CM
CS

0% 20% 40% 60% 80% 100%

0% 5.96 5.38 4.19 2.39 0.0012 −2.83
20% 5.96 5.38 4.19 2.40 0.0018 −3.01
40% 5.96 5.38 4.19 2.40 0.0021 −2.98
60% 5.96 5.38 4.19 2.40 0.0020 −2.94
80% 5.96 5.38 4.19 2.40 0.0020 −2.94

100% −6.02 5.40 4.20 2.40 0.0020 −2.94

Table 8. Settling time for combinations of CM and CS, (ms).

CM
CS

0% 20% 40% 60% 80% 100%

0% 33 42 58 77 54 162
20% 36 40 47 59 42 127
40% 46 42 44 47 28 98
60% 61 52 47 43 25 74
80% 83 70 58 47 22 60

100% 105 95 76 59 23 56

For the conditions where the CS and CM have an identical value, the effects of paral-
lelism (PA) on the yaw angle and settling time, such as

θ = θ(PA, CS = CM)|FO80%,No4Plat f orm
λ = λ(PA, CS = CM)|FO80%,No4Plat f orm

(20)

may be investigated.
Perfect parallelism between two LM Guide rails is impossible. The practical lower

limit for PA is 10 µm for the moving platform. The maximum admissible settling time is
100 ms for the current motion profile of 1 g and 0.1 s for acceleration and deceleration.

Figure 20 suggests that when the value of the CS and CM is maintained close to an
FO of 80%, the allowable yaw angle is achieved for a PA of 10 µm. Figure 21 shows that
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settling time is maintained below 70 ms for the entire range of the CS and CM and for a PA
of 20 mm and beyond. The data for Figures 20 and 21 are listed in Tables 9 and 10.

Figure 20. Yaw angle vs. CS and PA.

Figure 21. Settling time (λ) vs. CS and PA.

Table 9. Convergence yaw angle for combinations of PA and CS.

CM
PA

0 µm 5 µm 10 µm 15 µm 20 µm

0% 5.96 26.4 46.9 67.4 87.8
20% 5.38 21.8 38.2 54.6 71.1
40% 4.19 16.5 28.8 41.1 53.4
60% 2.40 10.6 18.7 26.9 35.1
80% 0.002 4.04 8.08 12.1 16.2

100% 2.92 2.96 3.00 3.04 3.08
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Table 10. Settling time for combinations of PA and CS.

CM
PA

0 µm 5 µm 10 µm 15 µm 20 µm

0% 33 39 41 43 46
20% 40 48 52 56 53
40% 44 52 59 62 65
60% 43 53 60 62 69
80% 22 53 63 63 63

100% 56 56 56 56 56

At this point, it may be suggested that the values of the CS and CM need to be close
to an FO of 80%, while PA may be maintained in the vicinity of 10 µm. This will require
the ratio k3/k1 to be less than 0.1 and balancing weight to the platform for 80% of CM.
In practice, it is difficult to accurately match the ratio k3/k1 with commercially available
LM Guides. One alternative is to choose k3 = 0 with a CS of 100%. Keeping the blocks
of rail number two simply supported in the z-direction without constraints in the x- and
y-directions can be a practical solution, as illustrated in Figure 22.

Figure 22. Modified platform for minimization of yaw angle.

Figure 23 shows three yaw angle waveforms for the deceleration stage of the trape-
zoidal motion profile for the number four platform at 80% FO. The original model with
zero values for the CS and CM has a clockwise yaw angle. An improved model with a
CS of 100% and CM of 80% has a counterclockwise yaw angle half the magnitude of the
original model. After the stiffness of k1 and k2 are doubled, the magnitude of the yaw angle
is further reduced to half.
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Figure 23. Yaw angles according to change of CM and CS.

4. Design Improvement of XY Stage

The results in the previous section have shown that the yaw angle of the stage decreases
as the l/w ratio increases and as the parallelism of the LM Guides improves and as the
platform’s centers of stiffness and mass come closer to the driveline of the linear actuator.
The position repeatability of the stage with respect to the reciprocating motion becomes
better with a reduced yaw angle.

The PCB electrical test machine has an XY stage with offset-driven moving platforms.
In particular, it has disadvantageous spatial constraints against precision driving with the
aspect ratio l/w of 0.41 and an FO of 80%.

To overcome this challenge, the following design improvements are proposed. First,
maximize k1 and k2 while keeping k3 = k4 = 0 with simple support of the blocks on rail
number two. For this, THK’s HSR35L and HSR20L were selected for rail number one and
rail number two, respectively.

Furthermore, to best match the center of mass with the driveline, a balancing weight
was added to the base of the moving platform assembly, as shown in Figure 24. Since
the platform moves along the y-axis with a stroke of 300 mm, the CM fluctuates between
60–71%. The linear drive actuator system was composed of a 20 mm lead ball screw, a 750
W servo motor, and a linear encoder.

Figure 24. Design of 2-axis linear stage with balancing weight.



Appl. Sci. 2022, 12, 657 19 of 23

Table 11 shows the results of the yaw error calculated using Equation (10) for the
improvements.

Table 11. Platform dimensions and predicted yaw error for the improved x-axis stage.

Axis Length
(mm)

Width
(mm) l/w Balancing

Weight (kg)
FO
(%)

Yaw Error
(µm)

x 370 895 0.41 17.8 80 ±0.67

Since the predicted yaw error is below the target repeatability of ±1.0 µm, a detailed
design of the x-axis was performed. The improved design of the XY stage is shown in
Figure 24. Figure 25 shows the details of the simply supported blocks in Figure 24. In
Figure 25, the platform was mounted onto the support plate, and a pin was assembled in
the platform hole. A urethane ring was inserted between the pin and the platform hole to
absorb the parallelism error of the LM Guide to prevent any constraint on the platform. A
pin top block was utilized to constrain the z-direction motion of the platform. The pin length
was processed and assembled approximately 10 µm longer than the platform thickness.

Figure 25. Sectional view of the simply supported blocks in Figure 24.

Experimental Verification of Effectivity of the Design Improvement of XY Stage

The manufactured test bed in Figure 26 includes an improved XY linear stage and a
vision camera. Artifact glass, in Figure 27, was utilized for position calibration and the
repeatability test.

Calibration artifacts were precisely printed to be 0.5 mm in diameter at 5 mm intervals
by light exposure to glass.

The position compensation of the XY stage was performed recognizing this circular
dot using the vision camera.

The XY stage started from the origin down a path passing through 15 points on
the artifact glass, as shown in Figure 27, according to the actual electrical test machine
operations. The cycles were repeated 25 times. The x and y data of each point were gathered
through a camera. Ideally, the coordinates of the 15 points should be aligned with the center
of the camera. The actual points deviated from the center due to errors from the stage.
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Figure 26. Test bed for improved XY linear stage.

Figure 27. The calibration artifact with a pitch circle of 5 mm mounted on the platform of XY stage.
The origin and 15 point track viewed from a stationary camera.

A set of the actual positions of the 15 points with respect to the center of the camera
for the repeated 25 cycles is shown in Figure 28a points without the balancing weight and
Figure 28b with the balancing weight. In Figure 28a, the scatter in the x-axis was large and
out of the±1.0 µm target, and in Figure 28b, the scatter range was within the target. The six
sigma analyses of the point coordinates show changes from 1.62σ to 5.51σ in the x-axis and
from 3.68σ to 3.21σ in the y-axis. The process’s capability has been greatly improved by
more than 5σ in the x-axis with a slight setback in the y-axis, but still allowable beyond the
practical limit of 3σ. Thus, the beneficial effects of CS and CM modifications were clearly
verified.

The scatter patterns in Figure 28 seem to be elongated, with their major axes covering
the second and the fourth quadrants. This is due to one-way travel in the x-axis direction
during the 15 point track illustrated in Figure 27. The yaw and tilt of the platform cause the
elongation through the camera.

It is evident that the application of a balancing weight to the y-axis motion would
produce similar results.
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Figure 28. Markers of 15 points on calibration artifact glass for 25 cycles of repeatability test captured
by camera: (a) without balancing weight and (b) with balancing weight.

5. Conclusions

The PCB electrical test machine has an XY stage with an open-frame moving platform.
It has disadvantageous conditions for precision driving with a ratio l/w of 0.41 and an FO
of 80%. Practical constraints on the moving platform make the choice unavoidable, even
though such a configuration is considered most unfavorable [1,2]. Practically attainable
position repeatability of such a configuration has been known to be in the order of tens of
micrometers or more.

Since the platform yaw motion affects the stage’s position repeatability significantly,
its control is a crucial factor in stage design. Yawing of a moving platform is governed by
various factors, including the driving force offset from the platform’s geometric center, the
positions of the stiffness, mass, and rotation centers. Other contributions are also expected
from the parallelism between the two linear motion guides supporting the platform. The
stiffness between the block and rail of the linear motion guides also contributes significantly.

In this work, it has been confirmed that yawing may be minimized by reducing the
distances between the linear ball screw actuator and the platform’s centers of mass and
stiffness. This may be implemented by adding proper balance weights to the platform and
partially relieving one of the linear motion guides from its constraints. The adverse effects
of a parallelism error between the two linear motion guides may also be alleviated by this
method. An example of design improvement along these lines has been presented with
experimental validation.
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Nomenclature

F Driving force
m Mass of a moving platform
kVertical Vertical stiffness of LM Guide
kHorizontal Horizontal stiffness of LM Guide
kn Horizontal stiffness of nth block
PA Parallelism of LM Guide
FO Normalized coordinate of driving force position
CM Normalized coordinate of platform mass center
CS Normalized coordinate of LM Guide stiffness center
θ Yaw angle of a moving platform
c Damping coefficient
cn Damping coefficient of nth block
µ Friction coefficient
σ Standard deviation
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