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Abstract: Surge arresters primarily restrain lightning and switch surges in the power system to
avoid damaging power equipment. When a surge arrester fails, it leads to huge damage to the
power equipment. Therefore, this study proposed the application of a convolutional neural network
(CNN) combined with a symmetrized dot pattern (SDP) to detect the state of the surge arrester.
First, four typical fault types were constructed for the 18 kV surge arrester, including its normal
state, aging of the internal valve, internal humidity, and salt damage to the insulation. Then, the
partial discharge signal was measured and extracted using a high-speed data acquisition (DAQ) card,
while a snowflake map was established by SDP for the features of each fault type. Finally, CNN
was used to detect the status of the surge arrester. This study also used a histogram of oriented
gradient (HOG) with support vendor machine (SVM), backpropagation neural network (BPNN), and
k-nearest neighbors (KNN) for image feature extraction and identification. The result shows that the
proposed method had the highest accuracy at 97.9%, followed by 95% for HOG + SVM, 94.6% for
HOG + BPNN, and 91.2% for HOG + KNN. Therefore, the proposed method can effectively detect
the fault status of surge arresters.

Keywords: surge arrester; power system; symmetrized dot pattern; convolutional neural network;
partial discharge

1. Introduction

The main function of metal-oxide surge arresters (MOSAs) is to restrict the voltage
across equipment terminals to non-damaging levels when lightning impulse surges are
forced on an electrical system. A surge arrester is a protective device for limiting surge volt-
ages on equipment from over-voltage transients caused by lightning or switching events [1].
Facing the threat of lightning and voltage surges in power equipment switches, the protec-
tion of power systems is an important guideline of surge arresters [2–5]. As an index of
high-tension equipment insulation deterioration, the partial discharge (PD) phenomenon
does not damage equipment immediately, but it will induce insulation breakdown during
long-term operation [6,7]. Wanderley Neto et al. [8] proposed using the thermal images
generated by infrared thermal imaging to test for abnormal heating spots or regions in the
surge arrester and used artificial neural networks (ANN) to analyze surge arrester faults,
including sealing problems, internal dampness, and varistor aging. Suwanasri et al. [9]
proposed using an acoustic camera to test high-frequency sound waves, and employed
artificial intelligence (AI) or AI cloud systems to analyze the PD phenomenon of surge
arresters. Amorim et al. [10] proposed using a high frequency current transformer (HFCT)
to sense the grounding cable conductor current of a surge arrester to obtain its PD signal,
and used the phase resolved partial discharge (PRPD) spectrum to evaluate its state. Das
et al. [11] proposed utilizing the leakage current of surge arresters to identify the severity
of surface contamination based on cross-stockwell transform and a sparse autoencoder.
Metwally et al. [12] proposed an online monitoring method using prony analysis-Hilbert
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transform based on feature extraction of the frequencies, phase angles, and magnitudes of
all frequency components for the surge arrester considering pollution and dry conditions
when measuring the total leakage current. Papliński et al. [13] proposed an approach based
on the analysis of the harmonic elements distribution and leakage current waveform for an
evaluation of the status of gapless surge arresters without the need to examine the arrester
interior. The method used the values of mean, maximal, and harmonic elements of surge
arrester leakage current regardless of the voltage level of the power network where they
were installed. Lira et al. [14] proposed a monitoring method based on the use of self-
organizing maps (SOM) artificial neural networks to identify the harmonic features of the
total leakage current for a metal-oxide surge arrester. The six fault types, including sealing
loss, superficial pollution, varistor degradation, internal humidity, varistors displacement,
and non-uniform voltage distribution, were built in the arresters to evaluate the technical
capability. According to the results, the identification accuracy of this method had a high
ration of almost 98%.

While most studies focus on monitoring surge arresters, little literature has been pro-
posed a surge arrester simulation and detection platform built based on AI. Therefore, this
study constructed surge arrester fault models based on the normal state and three common
fault types, including aging of the internal valve, internal humidity, and salt damage to
the insulation. This study built an intelligent deep learning method detection system for
surge arresters based on discrete wavelet transform (DWT) and symmetrized dot pattern
(SDP) combined with CNN for identifying surge arrester PD faults, and used 240 test
data to evaluate the performance. Data were measured utilizing an NI PXI high-speed
data acquisition (DAQ) instrument. The proposed surge arrester fault feature learning
model was expected to identify fault types so that early maintenance could be taken to
avoid accidents. The method proposed in this paper was compared with conventional
machine learning methods, such as support vector machine (SVM) [15], back propagation
neural network (BPNN) [16], and k-nearest neighbors (KNN) [17]. First, the histogram of
oriented gradient (HOG) was applied to extract features of the image. Second, the features
extracted from the image were input to the conventional machine learning methods for
identification [18,19]. The result showed that the method proposed in this paper could
effectively test for various faults in the surge arrester of PD.

This paper is organized as follows: Section 2 describes the surge arrester fault con-
struction, and the partial discharge signal acquisition is presented in Section 3. Section 4
introduces the proposed fault diagnosis algorithm in detail. Section 5 presents simulation
results, while the conclusions and suggested directions for future work are presented
in Section 6.

2. Surge Arrester Fault Construction

In this study, four common surge arrester fault models (Type 1 is the normal state,
Type 2 is aging of the internal valve, Type 3 is internal humidity, and Type 4 is salt damage
to the insulation) were built for a surge arrester with a rated voltage of 18 kV. The PD
phenomenon of surge arresters induced by different faults was discussed. The surge
arrester fault models built in this study are described below:

2.1. Normal State (Type 1)

The Type 1 surge arrester model built for this paper is shown in Figure 1, which shows
the supply side connecting terminal (line terminal), porcelain bushing (porcelain insulator),
varistors made of ZnO (ZnO element), spring, gap tube, and ground side connecting
terminal (earthing terminal) of the surge arrester. The construction specifications were
complied with before the operation of the surge arrester to avoid endangering the power
system and to ensure work safety.
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Figure 1. Model of normal surge arrester.

2.2. Aging of the Internal Valve (Type 2)

With the good nonlinear VI characteristics of ZnO varistors, the current flowing
through a surge arrester under a normal working voltage is very low. When the power
system is impacted by overvoltage, the resistance drops suddenly, and the energy of the
overvoltage is released to protect the power system. However, under the effect of a long-
term operating voltage, the characteristics of a varistor may change. If the electric field
distribution is nonuniform, the varistor may consume too much power under a normal
working voltage, leading to local varistor aging and causing the surge arrester to generate
the PD phenomenon. The surge arrester valve plate aging fault model built for this paper
is shown in Figure 2.
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Figure 2. Surge arrester valve plate aging fault model.

2.3. Internal Humidity (Type 3)

In the surge arrester manufacturing process, if the manufacturing quality is insufficient,
inducing defective rubber ring sealing inside the surge arrester, aging of the surge arrester
occurs during long-term operation. If the seal assembly is deformed, the surge arrester
may become damp inside. Running at a working voltage may result in a nonuniform
distribution of the internal electric field and cause the surge arrester to generate the PD
phenomenon. The internal dampness fault model of the surge arrester built for this paper
is shown in Figure 3.
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Figure 3. Internal dampness fault model of a surge arrester.

2.4. Salt Damage to the Insulation (Type 4)

If a surge arrester is installed near the sea, saline matter adheres to the ceramic
insulator of the surge arrester gradually over time. As long as the surge arrester insulator is
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cleaned periodically during operation, the salt adhesion amount is insufficient to influence
its operation. However, during long-term operation, after a certain adhesion amount
is reached, the ceramic insulator of the surge arrester affects its function by changing
the electric field distribution and generating the PD phenomenon. Brine was prepared
according to IEEE Standard C62.11-2020 [1] by mixing clear water with NaCl in a ratio of
1 kg/m3 and poured on the ceramic insulator of a surge arrester to build salt damage to
the ceramic insulator (arrester defect construction) in this study. The fault model of salt
damage to the ceramic insulator of the surge arrester is shown in Figure 4.
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Figure 4. Fault model of salt damage to the ceramic insulator of a surge arrester.

3. Partial Discharge Signal Acquisition

For the PD signal acquisition, an autotransformer was used to implement voltage
regulation for a high tension molded potential transformer. The high tension side was
connected to the power supply terminal of a surge arrester and an HFCT was connected
to the ground terminal of a surge arrester, so as to detect the current pulse signal in the
ground wire of the surge arrester. A high-speed data acquisition card was used to receive
the signal from the HFCT, after which the detection system performed an online analysis.

The PD of the surge arrester fault model was tested on a testing platform, so as to
analyze the differences among the PD phenomena generated by different faults. The testing
platform is shown in Figure 5. The bandwidth of the HFCT ranged from 1 MHz to 60 MHz.
The sampling rate of the NI PXI-5105 high-speed data capture card was 20 MS/s. The PD
signal and data of the surge arrester were uploaded to LabVIEW for analysis and storage.
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Figure 5. Surge arrester testing platform.

The detected PD signals are shown in Figures 6–9. Figure 6 shows the PD signal
of a normal surge arrester, Figure 7 shows the PD signal of a surge arrester valve plate
after aging, Figure 8 shows the PD signal of a surge arrester with internal dampness, and
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Figure 9 shows the PD signal of salt damage to the ceramic insulator of a surge arrester.
The surge arrester PD signals were based on three cycles of a 60 Hz power supply with a
sampling time of 50 ms and a data length of one million points.
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Figure 9. PD signal of salt damage to the ceramic insulator of a surge arrester (Type 4).

As Type 1 was the surge arrester in a normal state, its discharge signal was only
background noise. The discharge positions of Type 2 were approximately distributed over
the positive and negative half-cycles of the power supply. The number of discharges was
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smaller than that of the other faults, but the voltage amplitude was larger. The discharge
positions of Type 3 were approximately distributed over the positive and negative half-
cycles of the power supply, and the positive half-cycle had a larger number of discharges.
The discharge positions of Type 4 were distributed over the positive and negative half-
cycles, and the voltage amplitude was lower.

4. Methodology

To test the fault type of the surge arrester, this study used discrete wavelet transform
(DWT) to filter the surge arrester’s PD signal detected by HFCT. A snowflake-like symmetric
image was drawn by SDP and then used as the feature pattern for training and identification
by CNN. The PD flow chart is shown in Figure 10.
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4.1. Discrete Wavelet Transform

DWT was first proposed by French scholars Morlet and Grossmann in their geologic
data analysis in the early 1980s [20]. They found that the conventional Fourier trans-
form could not obtain ideal results; thus, the wavelet concept was imported into the
signal analysis. In comparison to Fourier transform or short time span Fourier transform,
wavelet transform has multi-resolution characteristics. Therefore, transient signals and
non-stationary signals can be detected effectively by using the high flexibility of wavelet
transform in local time-frequency analyses.

The basis function of wavelet transformation is derived from a mother wavelet function
ψ(t) (mother wavelet) with the compression or expansion of the scale parameter a (scale
parameter), and the translation parameter b (shifted parameter) along time. The function of
a is to compress or expand the mother wavelet function, and b represents the time when the
mother wavelet function moves along the time axis. The basis function can be expressed as
(1) [21]:

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
, a, b ∈ R; a 6= 0 (1)

Using (1) continuous wavelet transform (CWT), the scale parameter a, and the trans-
lation parameter b of the CWT, the discrete wavelet transform can be obtained. When (a,
b) are discrete values, a = am

0 , b = na, where m and n are integers, a0 6= 1, DWT can be
expressed as (2):

DWTf (m, n) =
∫

f (t)ψm,n(t) dt (2)

where the discrete mother wavelet function ψm,n(t) is:

ψm,n(t) = a−m/2
0 ψ

(
a−m

0 t− n
)

(3)
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If a0 = 2, it is called a dyadic wavelet, and (3) can be expressed as:

ψm,n(t) =
1√
2m

ψ

(
t− n
2m

)
(4)

As long as m is adjusted appropriately, the detailed or approximate analysis of the
signal will be available. The discrete wavelet can be expressed as:

DWTf (m, n) =
1√
2m ∑

k
f (k)ψ∗

(
k− n

2m

)
(5)

where DWTf (m, n) is the wavelet transform coefficient value of signal f (t); and n is the
operation index. The symbols and acronyms used in this section are presented in Table 1.
Figures 11–14 show the surge arrester’s PD signals after DWT.

Table 1. Symbols and acronyms of Section 4.1.

Acronyms Definition

DWT Discrete wavelet transform
CWT Continuous wavelet transform

Symbols

ψ(t) Mother wavelet

a Scale parameter

b Shifted parameter
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4.2. Symmetrized Dot Pattern

For the PD phenomenon of surge arresters in the time domain waveform, it is difficult
to directly identify different types of faults. Therefore, this study used the SDP method
to map the PD signal of the surge arrester from the time domain waveform to the polar
diagram. A snowflake-like symmetrical image (also known as a snowflake pattern) was
drawn, and the image showed different snowflake petal patterns according to the variation
of the signal waveform amplitude value and frequency value. This image was imported as
a feature pattern into the CNN for image recognition.

The SDP directly transformed the surge arrester’s PD signal from the time domain
waveform into the polar diagram. A schematic diagram is shown in Figure 15 [22,23],
where γ(i) is the polar coordinate radius, αcw(i) is the clockwise rotation angle of the initial
line, and αccw(i) is the counterclockwise rotation angle of the initial line. In the discrete
sampling data sequence of the vibration signals, if the vibration value of time i is xi, the
vibration value at time i + ∆T will be xi+∆T . When this value is substituted in (6) to (8), the
point in the transformed polar coordinate space is P(γ(i), αcw(i), αccw(i)), and the vibration
signals can be generated by changing the initial rotation angle to form the SDP.

γ(i) =
xi − xmin

xmax − xmin
(6)

αcw = ψ− xi+∆T − xmin
xmax − xmin

k (7)

αccw = ψ +
xi+∆T − xmin
xmax − xmin

k (8)

where xmin is the minimum value of vibration value; xmax is the maximum value of the
vibration value; ∆T is the time interval (range value 1–10); ψ is the initial rotation angle;
and k is the magnification of the rotation angle (generally smaller than the value of ψ).
According to the test result, the feature extraction parameter values suitable for surge
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arrester fault prediction were ψ = 60◦, ∆T = 3, k = 30. The symbols and acronyms used in
this section are presented in Table 2.
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Table 2. Symbols and acronyms used in Section 4.2.

Acronyms Definition

PD Partial discharge
SDP Symmetrized dot pattern
CNN Convolutional neural network

Symbols

γ(i) Polar coordinate radius

αcw(i) The clockwise rotation angle of the initial line

αccw(i) The counterclockwise rotation angle of the initial line

xi Vibration value of time i

xmax The maximum value of the vibration value

xmin The minimum value of the vibration value

∆T Time interval (range value 1–10)

ψ Initial rotation angle

k Magnification of the rotation angle

4.3. Convolutional Neural Networks

In recent years, CNN has been extensively used for signal processing and image
classification in areas such as face recognition [24], imaging medicine [25], and fault diag-
nosis [26], and there have been good effects in these applications. This study used CNN to
identify the SDP of surge arrester fault states. The image format was an RGB image with a
size of 64 × 64 pixels. The CNN model architecture designed for surge arrester fault type
recognition is shown in Figure 16. The architecture comprised two convolution layers, two
pooling layers, one fully connected layer, and the ReLu activation function.
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4.3.1. Convolutional Layer

The convolution layer was used for feature extraction. The convolution operation
was performed by different convolution kernels or filters, and the image features were
extracted or enhanced based on the concept of spatial filtering. A 3 × 3 convolution kernel
performed the convolution operation on a 7 × 7 image and each stride was one step. This
process continued until all the pixels of the original input image were completed by the
inner product of the mask to obtain a feature map. The convolution operation process is
shown in Figure 17.
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4.3.2. Pooling Layer

After the image feature was obtained by the convolution layer, in order to effectively
reduce the image feature size and minimize the effect on the feature value, the extracted
feature was put in the pooling layer to reduce the overall network computation complexity
and allow the information after pooling to further concentrate on whether there were
coincident features in the image. The general pooling methods include max pooling and
average pooling. Figure 18 shows the operation mode of the pooling layer.
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4.3.3. Fully Connected Layer

The architecture of the fully connected layer was a neural network composed of a
flatten layer, a hidden layer, and an output layer. It obtained the results of the convolution
and pooling processes, and then modified the error between input and output by back
propagation. Finally, the image was predicted and classified by the results. The structure of
the fully connected layer is shown in Figure 19.
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4.3.4. Activation Layer

The major function of an activation layer is to enhance the nonlinear separability
of a network. Common activation functions include the sigmoid, TanHyperbolic (tanh),
ReLu and leaky ReLU functions [27]. This study used the ReLU function as the activation
function of the CNN, as it performed better than the other functions at increasing the
training speed of the CNN [28] and did not influence the generalization accuracy of the
model. The ReLU function is expressed as (9), where x is the output of the previous neuron.

f (x) =
{

x, x > 0
0, x ≤ 0

(9)
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5. Experimental Result

There were 840 items of surge arrester PD data extracted in this paper, including
210 data items for each of the four surge arrester fault types. After SDP, each type had
210 SDP diagrams, of which 150 images were taken as training samples and 60 were taken
as test samples for CNN recognition.

5.1. Symmetrized Dot Pattern Result

The SDP formula shows that the position of the midpoint of the polar coordinates is
the focus of the algorithm. If the high frequency is the main component in the signal, the
difference between the initial point and the next point in the time domain waveform is high,
and the corresponding point in the polar coordinates represented by SDP will have a larger
radius and smaller deflection angle and vice versa. Figures 20–23 show the SDP diagrams
of the different fault types drawn using SDP. When the PD signal of the surge arrester was
transformed from a time domain into a polar diagram, a more severe PD signal resulted
in a pattern that was less like a snowflake. The PD signals of the different fault types
were very different; therefore, this paper used CNN for training and recognition based on
the forenamed characteristic. Since the original waveforms of valve aging and internal
humidity were quite different from the normal shape, after the waveform was converted
into an SDP graph, the graphs were also quite different, as shown in Figures 21 and 22. The
original waveform of the salt damage of the ceramic barrier was slightly different from the
normal shape. After getting converted, some of the graphics were observed to be similar to
the normal shape, but the differences could also be observed, as shown in Figure 23.
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5.2. Convolutional Neural Network Fault Recognition

The CNN model designed in this paper had two convolution layers, two pooling
layers, one fully connected layer, a 3 × 3 convolution kernel, and the ReLu activation
function. The test environment was MATLAB R2021a, an Intel Core (TM) i5-10400 CPU
with a 2.90 GHz processor, an NVIDIA GeForce RTX 3060 graphic card, and the Windows
professional 64-bit operating system. The CNN model designed in this paper used the SDP
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diagrams of surge arresters as recognition samples. There were 600 SDP diagrams used
for training the CNN model, and each fault had 150 samples. To validate the effectiveness
of the CNN model in identifying the fault types in the surge arresters, 240 SDP diagrams
were used for the test, and each fault had 60 samples. According to the result shown in
Table 3, the method could effectively classify different fault types of surge arresters and
the recognition accuracy rate was 97.9% including normal (93.3%), aging (100%), internal
humidity (100%), and salt damage (98.3%).
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Table 3. Surge arrester fault recognition result.

Fault Type Test Pattern Accurate Pattern Accurate Rate (%) Recognizing Rate (%)

Normal 60 56 93.3

97.9
Aging of the internal valve 60 60 100

Internal humidity 60 60 100

Salt damage to the insulation 60 59 98.3

The detection methods for image recognition in CNN and conventional machine
learning were compared for their performance in identifying the surge arrester fault
types, and the result is shown in Table 4. In terms of the training time, the conventional
HOG + SVM and HOG + KNN methods only spent 5 s and 3 s on model training, re-
spectively. The HOG + BPNN method required 121 s for training, making it the most
time-consuming of all the detection methods. CNN spent 22 s on training. Although
CNN was not the fastest among the four detection methods, its recognition accuracy was
97.9%, which was the highest among the four detection methods, followed by 95% for
HOG + SVM and 94.6% for HOG + BPNN. The HOG + KNN method had the lowest
accuracy at 91.2%.



Appl. Sci. 2022, 12, 650 14 of 15

Table 4. Recognition performance comparison of SDP + CNN and traditional detection methods.

Detection Method Training Time (Second) Test Time (Second) Recognizing Rate (%) Ranking

SDP + CNN 22 0.46 97.9 1

HOG + SVM 5 1.7 95 2

HOG + BPNN 121 0.35 94.6 3

HOG + KNN 3 0.3 91.2 4

6. Conclusions

This paper proposed the SDP + CNN method for surge arrester fault recognition. Four
common fault types for surge arresters were established in this paper. The PD signals
of the surge arrester were transformed by SDP from the time domain waveform into
SDP diagrams for use as fault diagnosis samples and imported into the trained CNN
model for recognition. The proposed method was compared to conventional HOG + SVM,
HOG + BPNN, and HOG + KNN. The HOG + SVM and HOG + KNN methods only spent
1.7 s and 0.3 s on training, respectively, but the test time required 5 s and 3 s, and their
respective recognition accuracies were 95% and 91.2%. The training time of HOG + BPNN
was 121 s, which was the most time-consuming among the four detection methods, but
the test time was only 0.35 s, and the recognition accuracy was 94.6%. The recognition
accuracy of the proposed method in this paper was as high as 97.9% and the test required
0.46 s. By comparing the identification accuracy of the HOG + SVM, HOG + BPNN, and
HOG + KNN, the proposed (SDP + CNN) method was found to exhibit a good accuracy of
up to 97.9%, indicating that it can be applied for effective fault diagnosis of surge arresters.
In the future, the proposed approach could also be applied in other high-voltage electric
power and energy-related fields, such as generators, power capacitors, power cables, etc.
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