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Abstract: Power system operation and planning studies face many challenges with increasing of
renewable energy sources (RESs) penetration. These challenges revolve around the RESs uncertainty
and its applications on probabilistic forecasting, power system operation optimization and power
system planning. This paper proposes a novel and effective criterion for uncertainties modeling of
the RESs as well as system loads. Four sorting stages are applied for the proposed uncertainty cases
reduction. Added to that, it proposes three different uncertainty reduction strategies for obtaining
different accuracy and speed options. The proposed reduction strategies are tested on medium
and large scale distribution systems; IEEE 69-bus and 118-bus systems. The obtained results verify
the effectiveness of the proposed criterion in uncertainties modeling in distribution systems with
acceptable level of accuracy.

Keywords: unbalanced power flow; radial distribution system; distribution system analysis; uncertainty

1. Introduction

Currently, many electrical power system studies are concerned with uncertainty mod-
eling especially those which based on renewable energy sources (RES) such as photovoltaic
(PV) and wind turbines (WT). Due to the uncertainty nature of RES, their output powers
are basically depending on the climatic conditions such as solar irradiance (G), temperature
(T) and wind speed (VW) [1]. Neglecting uncertainties related to the renewable generation
and load demand results in getting solution for the power system problems away from
reality [2]. So that, the need for appropriate and accurate RES uncertainty modelling be-
come a must in many research fields like RES planning [3], micro-grids management [4,5],
RES integration analysis [6,7], and power system reliability analysis [8]. Therefore, there
are various methodologies for uncertainty modeling and analysis in power systems.

The most common uncertainty analysis methods are:

• Probabilistic methods: used when the historical data is available. It can be divided
into numerical and analytical approaches [9].

• Possibilistic methods [10]: used when the historical data is unavailable. it can be
divided into defuzzification method and alpha-cut method.

• Combined possibilistic and probabilistic methods [11]: these methods mix between
the features of the possibilistic and probabilistic methods such as possibilistic-Monte
Carlo approach.

Monte Carlo simulation (MCS) is one of the most popular numerical uncertainty
approaches [12]. In [9], authors were applied MCS to simulate RES uncertainty during their
integration in distribution grids. However, the accuracy of MCS, it is a time consumer. So
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that, Pseudo-sequential Monte Carlo (PSMC) simulation was introduced to reduce the time
consumed. In [13], reliability risk analysis of renewable based distribution systems was
presented using PSMC. In [14], PSMC was integrated in an optimization based technique to
achieve the system reliability beside obtaining economic benefits. Authors in [15], analyzed
the uncertainty of the WT output using probability density function (PDF) to regulate
the system voltage using optimization based method. In [16], uncertainties related to
PV and WT were modeled using Gram–Charlier series for developing a fast power flow
technique. In [17], a hybrid point estimation and MCS method were presented for large
scale WT simulation in a transmission expansion planning issue. In [18], to determine the
generation system adequacy, a possibilistic model was presented for simulating uncertainty
of WTs power generation. there are some uncertainties that can not be modeled possibilis-
tically or probabilistically, a hybrid method can be used combining the merits of the two
techniques [19]. However, the hybrid technique is a time consuming more than any of the
other techniques. In [20], the optimized uncertainty modeling is considered in the case of
lack of data. In probabilistic method, with huge data, the complexity of the problem makes
the simulation time too long and in some application it became unsolvable [21]. Therefore,
there is a need for simplifying or reducing the uncertainty modeling complexity. In [22],
the probability density function was partitioned into a number of states for representing
WT uncertainty. where, increasing the number of states increases the problem complexity
but it also enhances the modeling accuracy. In [23], a scenario based uncertainty modeling
is utilized for uncertainty reduction of both WT and system loads though hosting capacity
maximizing problem. In [24], The uncertainty of two wind profile and system load demand
is simplified and modeled using three dimension scenarios based probabilistic method.
In [25], a reduced set of scenarios were introduced for representing the uncertainties of
WT, PV and load demand in optimal planning of active distribution grids. On the other
hand, worst case scenario was utilized for getting conservative solutions in RES integration
problems [26]. Also, worst case scenario uncertainty based model was incorporated with
robust control problem of RES [27]. The main issue of the pre-mention uncertainty reduc-
tion studies is that it considered as a trade-off problem because the modelling accuracy is
inversely proportional to the time consumed [28]. Therefore with reducing the uncertainty
complexity, the simulation accuracy decreases and the computational error increases.

In this paper, a novel uncertainty cases reduction criterion is proposed for modeling
the uncertainties of two types of RES (PV and WT) besides the distribution system loads
uncertainty. The proposed criterion can be applied further for other uncertainty quantities.
Three different strategies are introduced for offering different degrees of simplicity and
accuracy depending on the considered uncertainty cases.

2. RESs Uncertainty

Two categories of RESs in distribution systems are considered, i.e., wind turbines (WT)
and photovoltaic (PV) modules, which are considered as the sources of uncertainties in
distribution systems.

2.1. WT Modeling

The output power of WT depends on the value of wind speed (Vw). It can be calculated
from the following equation [29]:

Pw(Vw) =


Prated

(Vw−Vci)
(Vr−Vci)

Vci ≤ Vw ≤ Vr

Prated Vr ≤ Vw ≤ Vco

0 otherwise

(1)

where Pw refers to wind turbine output power. Vr is the rated wind speed of the WT. Vci
and Vco are the cut-in and cut-out wind turbine speeds.
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2.2. PV Modeling
2.2.1. Accurate PV Modeling

There several models that are presented in the literature to model the PV cell and
modules as [30–34]. Among these models, the double diode model of the PV cell in Figure 1
presents an accepted accurate compared with single diode model in [35,36]. PV output
power depends on solar irradiance (G) and ambient temperature (T).

Figure 1. Photo Voltaic cell model.

The relation between the cell voltage and current can be obtained from the follow-
ing [37]:

I = Iph − Ish − Id1 − Id2 (2)

where,

Iph =
G

GSTC
× (IphSTC + αIsc ∆T) (3)

Ish =
V + RS I

RP
(4)

Id1 = IS1(e
(q(V+RS I)

a1KT − 1) (5)

Id2 = IS2(e
(q(V+RS I)

a2KT − 1) (6)

where, Iph is the photo-generated current, IS1 and IS2 are the reverse saturation current for
the first and second diodes, respectively. RP and RS are the cell shunt and series resistance.
q and K are referring to the electron charge and the Boltzmann Constant respectively. a
is the diode ideality factor. T refers to ambient temperature. STC refers to the standard
conditions (GSTC = 1 kW/m2, TSTC = 25 ◦C).

For a certain climate conditions, PV module output power can be calculated by forming
the (I–V) characteristic curve and obtaining the point of maximum power from the curve.
Each point in the curve is calculated by solving Equstion (2) at a certain voltage. The
maximum power point is chosen as the operating point.

2.2.2. Approximate PV Modeling

Various studies simplified the PV calculations by ignoring the effect of the ambient
temperature by considering the solar irradiance only. The PV output power (PPV) can be
calculated as the following equation:

PPV(G) =


PrG2

GstdGC
0 ≤ G ≤ GC

PrG
Gstd

GC ≤ G

(7)

where, Pr refers to PV plant rated power. Gc The cut-in value of the solar irradiance
(0.12 kW/m2) [38]. The approximate PV modeling is used in fast and simplified studies as
in Ref. [38], but ignoring the effect of the ambient temperature causes a percent of error in
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PV output calculations. This error may reach to 30% as in Figure 2. This figure is obtained
by using the approximate PV modeling and the accurate PV modeling in calculating the
output power from a certain PV module under a certain environment conditions for one
day (24 h).

Figure 2. PV output power for one day by using the approximate PV modeling and the accurate PV
modeling.

3. Proposed Reduction Criteria for RESs Uncertainty

Considering a large number of uncertainty cases may cause a very long computation
time and sometimes will result in no solution for the problems. Thus, considering hourly
historical data for one year results in 8784 uncertainty cases that are responsible for com-
plexing the problem, especially when there is a need for doing power flow calculations
for each uncertainty case. Therefore, there is a need for reducing the number of uncer-
tainty cases without losing accuracy. In this paper, four stages are proposed to reduce the
uncertainty cases as follows:

- First Stage

1. Establishing the base matrix that consists of 8784 rows and 4 columns; the rows
represent the year hours, and the columns represent the uncertainty parameters
(G, T, VW , LR).

2. All the matrix row values are rearranged according to the G values when it is arranged
in ascending order.

3. Forming the G sub-groups as follows: G sub-groups are the groups which are formed
by dividing the practical irradiance range into three equal sub-groups limited by four
boundaries (G0, G1, G2, GM) as shown in Figure 3, where G0 is the lowest practical
solar irradiance, GM is the highest practical solar irradiance, G1 is the boundary
between the first and second sub-groups, and G2 is the boundary between the second
and third sub-groups. The values of G1 and G2 are calculated as shown in Figure 3.

4. Using the formed sub-groups to divide the base matrix into three sub-matrices (M1,
M2, M3), where each sub-group forms a sub-matrix.

Figure 3. Sub-group formation according to G values.
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- Second Stage

1. Rearrange the rows of the sub-matrices (M1, M2, M3) according to the values of T in
ascending order.

2. Follow the sub-grouping technique used in Stage 1 to form sub-matrices (M11,12,13,
M21,22,23, M31,32,33) from (M1, M2, M3) according to T values as shown in Figure 4.

Figure 4. Sub-group formation according to T values.

- Third Stage

1. Rearrange the rows of the sub-matrices (M11,12,13, M21,22,23, M31,32,33) according to the
values of VW in ascending order.

2. Follow the sub-grouping technique used in Stage 1 to form sub-matrices (M111, M112,
M113, M121, M122, M123, M131, M132, M133, . . . , . . . ) from (M11,12,13, M21,22,23, M31,32,33)
according to VW values as shown in Figure 5.

Figure 5. Sub-group formation according to VW values.

- Fourth Stage

Complete the same steps mentioned in the third stage on (M111, M112, M113, M121,
M122, M123, M131, M132, M133, . . . , . . . ) but according to the values of LR as shown in
Figure 6.

Figure 6. Sub-group formation according to LR values.

After completing the four stages, there will be 81 sub-matrices produced. In each sub-
matrix, the elements of each column have close values (small numerical range). Therefore,
each sub-matrix produces one uncertainty case by determining the average value of each
column value. The whole process of the proposed uncertainty case reduction is summarized
in Figure 7. Also, a simplified numerical example (only two uncertainty parameters and
the number of sub-groups of the uncertainty parameter values range equal to 2) is shown
in Figure 8. The figure shows that data of any hour does not overlap or separate during the
different stages of arrangement
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Figure 7. uncertainty Reduction criterion diagram.

Figure 8. A numerical example for the uncertainty Reduction criterion.

4. Implementation of the Proposed Reduction Strategy for Distribution
Systems Operation

The accuracy of the proposed reduction criterion will be tested by measuring the error
ratio in calculating the total energy loss during the year and the lowest voltage and highest
voltage values throughout the year, and a voltage coefficient measures the extent to which
voltage values are outside the permissible limits. These errors will be calculated when
different distributed RESs units are integrated into the distribution systems as follows:

4.1. Energy Loss Error

The actual energy loss (Elossy) can be calculated from the detailed data of the studied
period ‘one year in this paper’ by doing load flow calculations for the system every hour in
the year and summing the power loss all over the year as follows:

Elossy =
8784

∑
hr=1

∑ i2R (8)
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where i refers to the line current, and R refers to the line resistance. The energy loss
calculated from the proposed reduction method is calculated as follows:

Elossr =
nuc

∑
uc=1

(∑ i2R)× Nhruc (9)

where uc refers to the uncertainty case, Nhruc is the number of hours represented by the
uncertainty case, and nuc is the number of uncertainty cases in the reduction criterion,
which are calculated from

nuc = (Nrange)
NP (10)

where Nrange refers to the number of sub-groups of the uncertainty parameter values range.
NP refers to the number of the uncertainty parameters in the problem. The energy loss
error can be calculated from the following equation:

Elosserror% =
Elossy − Elossr

Elossy
× 100 (11)

4.2. The Lowest and Highest Voltage Value Errors

The lowest voltage value (Vlowest) error throughout the year can be calculated as fol-
lows:

Vlowesterror% =
min(Vy)−min(Vr)

min(Vy)
× 100 (12)

where Vy is the bus voltages matrix generated from load flow calculations for every hour in
the year, and Vr is the bus voltages matrix generated from load flow calculations for every
uncertainty case in the reduction method. Additionally, the highest voltage value (Vhighest)
error throughout the year can be calculated as follows:

Vhighesterror% =
max(Vy)−max(Vr)

max(Vy)
× 100 (13)

4.3. Two-Voltages out Limits Error

The voltage out limits coefficient measures to what extent the voltage values are
outside the permissible limits (±5%). This coefficient is calculated for actual year data
(co f fVouty ) and for the proposed reduction criterion (co f fVoutr ) as follows:

co f f Vouty
=

8784

∑
hr=1

nbus

∑
i=1

OLIhri
(0.05− |1−Vhri

|) (14)

co f f Voutr
=

nuc

∑
j=1

Nhruc ×
nbus

∑
i=1

OLIji(0.05− |1−Vji|) (15)

where

OLIi =

{
1 Vi > 1.05 or Vi < 0.95
0 otherwise

(16)

where Vi is the voltage of bus i in per unit. OLI refers to the voltage out limit indicator. The
voltage out limits error can be calculated from the following equation:

co f f Vouterror
% =

co f f Vouty
− co f f Voutr

co f f Vouty

× 100 (17)
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5. Applications
5.1. Description of Test Systems

The considered test systems are an IEEE 69-bus distribution system [39] and 118-bus
distribution system [40]. The total active and reactive load demands of the two systems are
3.802 + j2.694 MVA and 22.709 + j17.04 MVA, respectively. The total power losses for the two
distribution systems in the initial case are 225 kW and 1297.87 kW, respectively. The system
configurations are shown in Figures 9 and 10. For testing the proposed reduction strategy
in the distribution system with distributed RES, the test systems have been provided with
RESs plants. The integrated plants in the IEEE 69-bus and 118-bus distribution systems are
listed in Table 1, respectively. The PV modules type considered in this paper is the SUNSET
Poly-Crystalline model [PTSP250P-6-60], which contains 60 PV cells. The parameters of
this module were estimated experimentally in [41]. The PV module parameters are listed
in Table 2. Also, the considered WT parameters are listed in Table 3.

Table 1. The integrated plants in IEEE 69-bus and 118-bus distribution systems.

System 69-Bus 118-Bus

Plant type PV WT PV WT

Place 61 46 18 47 4 74 93 24 40 69

Nunits (PV modules or wind
turbines ) 2000 1000 30 100 2000 1000 100 40 80 70

Table 2. PV module parameters.

Parameter Is1 (µA) Is2 (µA) Rs (mΩ) Rp (Ω) IphSTC (A) a1 a2

value 0.5593 23.6471 9.9664 4.3606 8 1.5 2

Table 3. WT module parameters.

Parameter vci (m/s) vco (m/s) vr (m/s) prated (KW)

value 3 25 10 11

Figure 9. Single line diagram of IEEE 69-bus distribution system.
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Figure 10. Single line diagram of 118-bus distribution system.

5.2. Reduction Strategy for Uncertainty

The hourly historical data of wind speed, solar irradiance, and ambient temperature
of Cairo, Egypt, for one year (2016) are considered in this paper. Three different reduction
cases use the proposed criterion to obtain the appropriate accuracy and speed.

5.2.1. Twenty-Seven Uncertainty Cases Reduction Strategy

In this strategy, the approximate PV modeling is considered, so that there are three
uncertainty parameters (G, VW , LR). The basic data of the year will be applied to three
sorting stages, ‘the first, third, and fourth stages of the Proposed reduction criteria’. The
uncertainty parameter value range will be divided into three numerical sub-groups, so
Nrange will be equal to 3. Thus, the number of uncertainty cases of this reduction strategy is
27 according to Equation (10). The uncertainty parameters data through the sorting stages
are shown in Figure 11. By applying PV module and wind turbine equations, the output
power from both sources (one PV module or one WT) in each uncertainty case could be
obtained. The resulting uncertainty cases of this reduction strategy are shown in Figure 12.

5.2.2. Sixty-Four Uncertainty Cases Reduction Strategy

In this strategy, the approximate PV modeling is considered, so there are three uncer-
tainty parameters, and the basic data of the year will be applied to three sorting stages as
in the 27 uncertainty cases reduction strategy. However, for more accuracy, the uncertainty
parameter values range will be divided into four numerical sub-groups, so Nrange will be
equal to 4. Thus, the number uncertainty cases of this reduction strategy is 64. The uncer-
tainty parameters data through the sorting stages are shown in Figure 13. Additionally, the
resulting uncertainty cases of this reduction strategy are shown in Figure 14.
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Figure 11. One-year data through the sorting stages in the 27 uncertainty cases reduction strategy.

Figure 12. Resulting uncertainty cases of the 27 uncertainty cases reduction strategy.

Figure 13. One-year data through the sorting stages in the 64 uncertainty cases reduction strategy.
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Figure 14. Resulting uncertainty cases of the 64 uncertainty cases reduction strategy.

5.2.3. Eighty-One Uncertainty Cases Reduction Strategy

In this strategy, the accurate PV modeling is considered. Thus, there are four uncer-
tainty parameters (G, T, VW , LR), and the basic data of the year will be applied to all stages
of the proposed reduction criterion. However, for reducing the system planning calculation
speed, The uncertainty parameter value range will be divided into three numerical sub-
groups, so Nrange will be equal to 3. Thus, the number of uncertainty cases of this reduction
strategy is 81. The uncertainty parameters data through the sorting stages are shown in
Figure 15. Additionally, the resulting uncertainty cases of this reduction strategy are shown
in Figure 16.

Figure 15. One-year data through the sorting stages in the 81 uncertainty cases reduction strategy.

5.3. Applications to Distribution Systems

The resulting uncertainty case reduction strategies have been applied to the RESs
penetrated test systems for calculating the total energy loss throughout the year, the
lowest voltage and highest voltage values throughout the year, and the voltage out limits
coefficient. Additionally, the detailed data of the year have been applied to the same
problem. Moreover, the errors between each uncertainty case reduction strategy and the
detailed data of the year have been calculated as shown in Tables 4 and 5. From the results,
it is obtained that the lowest voltage values error does not exceed 4% in all reduction
strategies. The highest voltage values error for all reduction strategies is very small and
does not exceed 1%. Additionally, the energy losses over the whole year error does not
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exceed 5%. However, the error in voltage out limits coefficients is considered relatively
large as it reached 17.8% in the 27 cases reduction strategy for 69 bus system. This is
logical since the calculation of this coefficient depends on the summation of the system bus
voltages over the whole year, and therefore if there is a percentage error in the voltage of
each bus, the errors of all buses will be accumulated. Thus, the total error becomes large.
This also explains the increase in this error by increasing the number of system buses as
shown in the 64 and 81 cases reduction strategies. The 27 cases reduction strategy has error
values larger than the 64 and 81 cases reduction strategies, but this strategy is characterized
by the lowest uncertainty cases number. Thus, it is recommended in optimal planning
studies as it is fast in testing an operation case over the whole year. The 64 and 81 cases
reduction strategies compete for the lowest errors, as each one has its advantages. The
81 cases reduction strategy is more accurate in calculating the output of PV plants than the
64 cases reduction strategy. Moreover, the 81 cases reduction strategy is more representative
than the 64 cases reduction strategy in the uncertainty parameter values throughout the
year, as it divided the parameter values range into four sub-groups. Thus, the 81 cases
reduction strategy is the best for the 69-bus system. However, in the 118-bus, the number
of PV and WT units increases, where the summation of WT-rated power is larger than the
summation of PV-rated power. Thus, in the 118-bus system, the 64 cases reduction strategy
is the best. From all the previous results, it is obtained that the proposed cases reduction
strategies in RESs uncertainty modeling in distribution systems are very effective and have
an acceptable level of accuracy.

Figure 16. Resulting uncertainty cases of the 81 uncertainty cases reduction strategy.

Table 4. The proposed reduction strategy results in distribution systems operation.

System Modeling
Method vlowest vhighest Eloss cof fVout

69-bus

All year data 0.8784 1.0446 2.5543 ×108 108.1319

81 cases 0.9063 1.0445 2.4597 ×108 99.7397

27 cases 0.9121 1.0368 2.6527 ×108 88.7837

64 cases 0.8995 1.0468 2.6776 ×108 97.3506

118-bus

All year data 0.8760 1.0286 1.2142 ×109 217.2986

81 cases 0.9058 1.0277 1.1743 ×109 193.3500

27 cases 0.9091 1.0228 1.1663 ×109 180.8850

2-6 64 cases 0.8981 1.0283 1.1776 ×109 192.2738
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Table 5. Resulting errors after testing the proposed reduction strategies in distribution systems
operation.

System Modeling
Method vlowesterror vhighesterror Elosserror cof fVouerror

69-bus

All year data - - - -

81 cases 3.1742 0.0161 3.7059 7.7610

27 cases 3.8372 0.7440 3.8518 17.8932

64 cases 2.3998 0.2108 4.8266 9.9705

118-bus

All year data - - - -

81 cases 3.4042 0.0861 3.2889 11.0210

27 cases 3.7788 0.5623 3.9425 16.7574

64 cases 2.5230 0.0262 3.0167 11.5163

6. Conclusions

In this paper, an efficient new criterion is proposed for modeling system load and
RESs uncertainties in distribution systems. Two types of RESs are considered (PV and
WT). Three different reduction case strategies are applied to the new criterion to obtain the
appropriate accuracy and speed. The proposed reduction strategies lead to a 99% reduction
in the uncertainty cases for one year, which is sufficient for effective modeling with an
acceptable level of accuracy. The proposed reduction strategies are tested on IEEE 96- and
IEEE 118-bus systems. The results verify the effectiveness of the proposed methods in RESs
uncertainty modeling in distribution systems with an acceptable level of accuracy, as the
lowest voltage values error does not exceed 4%, the highest voltage values error does not
exceed 1%, and the energy losses error does not exceed 5%.
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