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Abstract: Agriculture has becomes an immense area of research and is ascertained as a key element
in the area of computer vision. In the agriculture field, image processing acts as a primary part.
Cucumber is an important vegetable and its production in Pakistan is higher as compared to the
other vegetables because of its use in salads. However, the diseases of cucumber such as Angular leaf
spot, Anthracnose, blight, Downy mildew, and powdery mildew widely decrease the quality and
quantity. Lately, numerous methods have been proposed for the identification and classification of
diseases. Early detection and then treatment of the diseases in plants is important to prevent the crop
from a disastrous decrease in yields. Many classification techniques have been proposed but still,
they are facing some challenges such as noise, redundant features, and extraction of relevant features.
In this work, an automated framework is proposed using deep learning and best feature selection
for cucumber leaf diseases classification. In the proposed framework, initially, an augmentation
technique is applied to the original images by creating more training data from existing samples
and handling the problem of the imbalanced dataset. Then two different phases are utilized. In the
first phase, fine-tuned four pre-trained models and select the best of them based on the accuracy.
Features are extracted from the selected fine-tuned model and refined through the Entropy-ELM
technique. In the second phase, fused the features of all four fine-tuned models and apply the
Entropy-ELM technique, and finally fused with phase 1 selected feature. Finally, the fused features
are recognized using machine learning classifiers for the final classification. The experimental process
is conducted on five different datasets. On these datasets, the best-achieved accuracy is 98.4%. The
proposed framework is evaluated on each step and also compared with some recent techniques. The
comparison with some recent techniques showed that the proposed method obtained an improved
performance.

Keywords: crops diseases; data augmentation; deep learning; entropy; features fusion; machine
learning

1. Introduction

Agriculture is one of the most important research topics globally nowadays [1]. Agri-
culture is a significant source of income and the economy of a country is based on the
quality and yields of crops [2]. Cucumber is an important vegetable and during the year
2020, the global cucumber planting area was around 2.25 million hectares and the global
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yield was 90.35 million tons [3]. The production of crops is highly threatened by diseases
and failure to identify and prevent cucumber diseases causes a reduction of cucumber
vegetable yield and quality. The failure in early diagnosis causes significant economic
losses to growers. Therefore, the rapid diagnosis of crops diseases helps to increase the
quality and yield and also increases the national economy [4].

Mostly, identification is accomplished using typical methods like seeing through
naked eyes or through a microscope [5]. The results of the manual visual estimation are
generally unreliable while the microscopic assessments are generally time-consuming and
costly. Most of the agriculturists of underdeveloped countries are illiterate [6]. They are
compelled to return those charges along with other expenses like pesticides and fertilizer.
The cucumber diseases like anthracnose, powdery mildew, downy mildew, and cucumber
mosaic can destroy a large number of crops and the result will be a huge loss and vegetable
deficiency [7]. Significant work has been done to accomplish a method that can boost
the fastness and accuracy of the process. The methods necessarily contained some sort
of computerization [8]. A large number of techniques presented until now are based on
digital image processing and machine learning to identify the crops' diseases and achieve
the desired output [9].

Image processing has many applications in the domain of computer vision such
as medical imaging [10], agriculture [11], and named a few more. Agriculture is a hot
application of image processing for the identification and classification of crops and plant
diseases [12]. Although detection of cucumber abnormalities and then classifying them
using image processing techniques is a critical task due to some sequence of steps [13]. A
computerized method consists of some important steps such as preprocessing of original
leaf images, detection of the infected region, feature extraction using handcrafted methods,
and finally reduction and classification. Recognition of diseased portions in images is the
key factor as it can influence the design and performance of the classification algorithms [14].
However, the error in the detection of the infected region extracted the irrelevant features
that reduces the recognition accuracy.

Deep learning (DL) [15] is a hot research topic nowadays [16] and is employed ev-
erywhere for the detection and recognition tasks for several applications [17] such as
biometric [18], image classification [19], surveillance [20], medical [21], and agriculture [22].
The researcher of computer vision introduced many techniques using machine learning
and deep learning for plants diseases recognition [23]. Hussain et al. [24] introduced a
deep learning technique for the identification of multiple cucumber leaf diseases. They
extract deep learning features through two fine-tuned deep models including VGG19 and
Inception V3. Both fine-tuned models were trained on the selected dataset using the transfer
learning approach. The main advantage of training through TL is to save memory and time.
The extracted features were fused by implementing the parallel maximum fusion technique
to get the maximum information of each trained image. In the end, a whale optimization
algorithm (WOA) was applied to select the robust features and perform classification. The
purpose of feature selection is to get the best features because, in the fusion process, a few
redundant features were also added. They achieved a maximum of 96.5% accuracy on the
selected leaf dataset. In [13], researchers built an automated detection classification model
for cucumber leaf diseases. In the first phase, pre-processing was performed to enhance
the local contrast of images and to make the infected region more visible. This step makes
the infected region clearer that later helped in the accurate segmentation using a novel
Sharif saliency-based (SHSB) technique. Then researchers fused the proposed saliency
method with active contour segmentation to improve the segmentation accuracy that later
extracts the relevant features. In the feature extraction phase, they utilized VGG-19 and
VGG-M pre-trained models. The extracted features were refined through three parameters
including local entropy, local interquartile range, and local standard deviation. In the final
classification, the best accuracy of 98.08% was achieved on multi-class SVM. The strength
of this work was less computational time that can be useful for a real-time computerized
system. Wang et al. [3] introduced a deep learning-based technique for the recognition of
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cucumber leaf diseases under complex backgrounds. They fused DeepLabV3+ and U-Net
models instead of a single network. In the first step, DeepLabV3+ was used to segment
the leaves from the images. Then the diseased area was segmented using U-Net. The
fused models give better accuracy than the accuracy reported by the individual models.
Researchers in [25], introduced a model for the identification of crop diseases in real-world
images. The proposed trilinear convolutional neural network utilized bilinear pooling.
In the laboratory environment, the proposed technique achieved 99.99% accuracy and in
the real-world environment, the obtained accuracy is 84.11%. Kianat et al. [7] proposed
a hybrid system for the recognition of cucumber diseases. In the pre-processing step, the
data augmentation was applied using different angles to increase the image count in the
dataset. In this step, contrast stretching was also performed to visually improve the im-
ages. The features were extracted from binary robust invariant scalable keypoints (BRISK),
histogram of gradient (HOG), and features from the accelerated segmented test (FAST).
Initially, the irrelevant features were eliminated by utilizing the probability distribution-
based entropy (PDbE) technique. Then features were fused using the serial-based method
and implemented Manhattan distance-controlled entropy (MDcE) method was to select
the robust features. The proposed model achieved maximum accuracy of 93.5%. These
techniques faced a major challenge of irrelevant feature extraction that were tried to be
resolved through feature selection techniques [26].

Visual inspection of crops was carried out by farmers and agriculture experts. This
evaluation process is exhausting, time-consuming, and highly subjective. The development
of computer vision systems to identify, recognize, and classify disease-affected crops
will keep humans out of the equation, allowing for unbiased, accurate disease-infection
decisions [1]. An automatic classification system consists of various steps as mentioned
above. Preprocessing is an important step, the aim is to remove noise and improve the
quality of original images that later helps in important feature extraction. The extracted
features from the refined images are used for the training of deep learning models that are
further employed for feature extraction and classification. The key problems which are
considered in this work are (i) training a deep learning model on an imbalanced dataset
gives the high priority in the prediction to higher numbers of sample class; (ii) disease spots
and background objects differ in appearance; (iii) changes in the shape, color, texture, and
origin of the disease; (iv) irrelevant and redundant features extraction, and (v) choosing the
superlative features for the classification.

In this article, our major focus is to design an automated computerized method for
cucumber leaf diseases recognition using deep learning and Entropy-ELM-based best
feature selection. The recent methods focused on the infected region identification and
then employed for feature extraction; however, the error in the identification step misleads
the irrelevant feature extraction that later reduces the classification accuracy. Our major
contributions are:

(i) Four mathematical functions such as horizontal flip, vertical flip, rotate 45, and
rotation 60 are implemented for the sake of data augmentation. Later, four deep
learning models are fine-tuned and trained on the augmented dataset.

(ii) Deep learning features are extracted from the average pooling layer instead of the
fully connected layer. The extracted deep features are passed to the Softmax classifier
and compared the accuracy. Based on the accuracy value, the Densenet201 fine-tuned
model is selected for the rest of the process. Moreover, all fine-tuned model features
are fused using a new parallel approach.

(iii) An Entropy-ELM based best feature selection technique is proposed. The proposed
technique is applied on both the Densenet201 feature vector and fused vector, that
later serially fused for the final classification.

(iv) To determine which step of the proposed framework is better performed, a comparison
is made between all hidden steps.

The rest of the manuscript is organized as follows: a proposed methodology that
includes augmentation of the dataset, deep learning-based feature extraction, and Entropy-
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ELM-based best feature selection, is presented in Section 2. Results are discussed in
Section 3 with the help of tables and graphs. Finally, the conclusion of the manuscript is
given in Section 4.

2. Proposed Methodology

In this work, an automated framework is proposed for cucumber leaf diseases recog-
nition using deep learning and Entropy-ELM-based best feature selection. The proposed
framework is illustrated in Figure 1. In this figure, it is shown that the initial augmentation
step is applied to the original images by creating more training data. Then two different
phases are utilized. In the first phase, four pre-trained deep models are fine-tuned and
selected the best of them based on the accuracy. Features are extracted from the selected
fine-tuned model and refined through the Entropy-ELM technique. In the second phase,
fused the features of all four fine-tuned models and apply the Entropy-ELM technique, and
finally fused with phase 1 selected feature. Finally, the fused features are classified using
machine learning classifiers for the final output.
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Figure 1. Proposed framework for cucumber leaf diseases recognition using deep learning and
Entropy-ELM.

2.1. Dataset Collection and Augmentation

The experiments were performed on the publically available dataset named the Cu-
cumber leaf diseases scan dataset [27]. This dataset consists of six different diseases such
as anthracnose, powdery mildew, downy mildew, angular spot, mosaic, and blight. A
sample of images are illustrated in Figure 2. Each class has 100 to 150 images originally that
are not enough to train a deep learning model. Therefore, we design a simple algorithm
(Algorithm 1) for data augmentation that includes four operations such as horizontal flip,
vertical flip, rotate 45, and rotate 60. This algorithm is applied to each cucumber disease
class and increases the number of images to 2000 in each class. In the later steps, this
augmented dataset is utilized for the training of deep models.
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Figure 2. Sample images of Cucumber leaf diseases.

Algorithm 1: (Data Augmentation)

Step 1: Input Original Database
Step 2: Consider First Disease Class
Step 3: Count Images of Step 2 (Selected Disease Class)
Step 4: For i = 1 to Total Images of each Class

- Horizontal Flip and Image Write
- Vertical Flip and Image Write
- Rotate 45 and Image Write
- Rotate 60 and Image Write

Step 5: Repeat Step 2, 3, and 4 for the Rest of the Disease Classes
End

2.2. Deep Learning Architecture

Four deep learning pre-trained models are employed in this work for feature extraction.
The selected models are—VGG16, ResNet50, ResNet101, and DenseNet201. As mentioned
in Figure 1, all selected models are initially fine-tuned and then trained through transfer
learning using an augmented dataset. A brief description of each deep model is given
below.

VGG16 [28] is a pre-trained model that was created by the Visual Geometry Group.
This group is a combination of students and teachers focused on Computer Vision at Oxford
University. This model is reflected to be one of the best computer vision models in the
world. A unique feature of VGG16 is that rather than having numerous hyper-parameters it
concentrates on having used identical PL and MPL of 2 × 2 filters of stride 2 and CL of 3 ×
3 filters with a stride 1. VGG16 continues the same organization containing Convolutional
and Maxpool Layers continuously during the course of the entire structural design. In the
end, VGG has 2 Fully Connected Layers afterward a Softmax to output. Due to the fact that
the VGG16 has 16 layers with weights, it has the name VGG16. This model was originally
trained on an ImageNet dataset having 1000 object classes. The prediction of this model
was done by the Softmax layer, defined as:

Θ = w0x0 + w1x1 + . . . + wkxk = ∑k
i=0wixi = wTx (1)
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ResNet [29] also known as a Deep Residual Network, have proved to perform with
great accuracy and efficiency with a Deep Framework and to create an extra straight
pathway for the transmission of data through the network. Within such Deep Systems,
the deprivation issue arises because of the rise of Network Layers and the precision
begins to dilute which results in its reduction quickly. Backpropagation does not come
across the Vanishing Gradient problem when working with RESNET. There are some
"Shortcut Connections" that a Residual Network has which are to be equivalent to a regular
Convolutional Layer which aids the network to comprehend the Global Features. Then an
input x has to be added to the output layer by adding the Shortcut connection, afterward
some weight layers below. After the application of these Shortcut Connections, they
permitted the network by avoiding the layers which were not beneficial while training.
Hence, the output came in an ideal modification of the number of layers to perform rapid
training. Mathematical, the output of H (x) can be expressed as

H(x) = F (x)− x (2)

A type of Residual Mapping is used to train the weight layers which is expressed as,

F(x) = H (x)− x (3)

The above-mentioned function F(x) signifies stacked nonlinear weight layers. Several
properties of ResNet50 include the fact that it has 64 kernels including 7× 7 Convolutional
layers. It also includes 16 residual blocks. There are 23 million trainable parameters.

ResNet101 model utilizes Residual links that the angles can stream straightforwardly
over to hinder the slopes to get 0 after the utilization of Chain Rule. There are 104 con-
volutional layers altogether in ResNet101. Alongside, it comprises 33 squares of layers
altogether and 29 of these squares utilize past squares yield straightforwardly which is
characterized as leftover associations above. Hence the above-mentioned residuals were
using such main Operand of Summation (OOS) administrator towards the termination of
every square to obtain the contribution of the accompanying squares. Leftover 4 squares get
the past square’s yield and apply it to a CL with a channel size of 1× 1 and a step of 1 after
a clump standardization layer, which performs standardization activity and the resultant
yield is shipped off the summation administrator at the yield of that block. Mathematically,
this model working is defined as follows:

u(x, t + 1) = u(x, t) + w(x, t) ∗ u(x, t) (4)

_
T x =

1
2

σ2 ∂2

∂x2 + b
∂

∂x
+ c⇔

_
T p = −1

2
σ2 p2 + ibp + c (5)

_
T pũ(p, t) =

d
dt

ũ(p, t) (6)

ũ(p, t) = e
_
T ptũ(p, 0) (7)

ũ(p, t) ≈ (1 +
_
T pt)ũ(p, 0) (8)

Densenet-201 [30] is a convolutional neural network that is 201 layers deep. In this
model, each layer gets feature maps from all preceding layers, the network can be thinner
and more compact, resulting in fewer channels. The extra number of channels for each
layer is the growth rate k. As a result, it has better computational and memory efficiency.
The transition layers between two contiguous dense blocks are 11 Conv followed by 22
average pooling. Within the dense block, feature map sizes are uniform, allowing them
to be readily concatenated. A global average pooling is done after the last dense block,
and then a softmax classifier is added. The error signal can be transmitted more directly
to earlier levels. As previous layers can get direct supervision from the final classification
layer, this is a form of implicit deep supervision.
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2.3. Transfer Learning Based Feature Extraction

Transfer learning (TL) is a process of reusing a pre-trained model for a new task [31],
as illustrated in Figure 3. The ImageNet dataset was used as a source dataset of the pre-
trained model. The pre-trained model is fine-tuned and transfer knowledge through the
TL concept. In the last, the new fine-tuned model is trained on the augmented cucumber
dataset that is utilized for further feature extraction. The features are extracted from the
deep layers like FC7 for VGG, Average Pool for ResNet50, ResNet101, and Densenet201.
Several hyperparameters are employed during the training process such as 0.0001 learning
rate, max epochs are 200, the mini-batch size is 16, and the activation function is sigmoid.
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2.4. Entropy-ELM Based Features Selection and Parallel Fusion

Feature selection is an important and hot research topic nowadays [32]. The main pur-
pose of feature selection is to increase the system accuracy and minimize the computational
time by focusing on the selection of the most important features [33]. In this work, a new
technique is proposed named Entropy-ELM for the best feature selection. This proposed
technique worked in the following steps: (i) compute the entropy of input vector; (ii) based
on the entropy value, a threshold function is employed that return two vectors—fulfill the
threshold value (selected) and not-selected; (iii) ELM [34] employed as a fitness function
and selected threshold passed features are utilized as an input. Mathematically, the entropy
formulation is defined as follows:

H1 = −∑G
k=1Pk Id(Pk) (9)
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Hdi f f ,1 = −
1∫

0

h1(w)1d[h1(w)]dw. (10)

H1 = Hdi f f ,1+Id(G) = Hdi f f ,1 + H1,max (11)

x

whole image

[∆w(w, y)]kdxdy ∝
∫ 1

−1
(∆w)khd(∆w)d∆w = Mk (12)

T =

{
Sel(k) f or Features(i) ≥ H1
NotSelec (l) f or Features(i) < H1

(13)

The detail of this selection process is given in Algorithm 2.

Algorithm 2: (Entropy-ELM)

Step 1: Input Feature Vector N × K // K is the length of features
Step 2: For i = 1 to N
Step 3: Computer Entropy through Equations (9)–(12)
Step 4: Define Threshold Function as Equation (13)
Step 5: Check Fitness through ELM
Step 6: Evaluate the Accuracy
Step 7: Repeat Step 2–6, until accuracy on the top side

End
Selected Feature Vector

Finally, the parallel fusion approach is opted to get the fused feature vector. This
approach is based on the following three steps. In the first step, get the maximum length
feature vector. As we have two feature vectors X and X1, where the length of vectors
is N × K and N × K1, respectively. In the second step, compute the entropy value and
perform padding for the lower size feature vector. In the third step, correlation is computed
among K and K1 features for the final fusion. The fused vector is finally utilized for the
classification through supervised learning classifiers.

Fusion = ψ(K, K1) (14)

where K and K1 ∈ X and X1

3. Experimental Results

The proposed framework is evaluated on the selected cucumber dataset having a ratio
of 70:15:15 which means that 70% of the images are utilized to train the model, whereas the
15% for testing and 15% for validation. We combined the testing and validation images
and performed testing (30%). All the experimental results are computed with K-Fold cross-
validation, whereas the value of K is 10. Several classifiers are implemented as discussed in
Table 1. The performance of each classifier is computed through several measures such as
recall rate, precision rate, F1-Score, accuracy, and time. The entire framework simulations
are conducted on Simulink MATLAB2021a using a Personal Desktop.
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Table 1. Brief description of selected classifiers.

Classifiers Details

LSVM Kernel scale: Automatic, Box constraint level: 1
Multiclass method: One-vs-One

QSVM Kernel scale: Automatic, Box constraint level: 1
Multiclass method: One-vs-One

CSVM Kernel scale: Automatic, Box constraint level: 1
Multiclass method: One-vs-One

MGSVM Kernel scale: 45, Box constraint level: 1
Multiclass method: One-vs-One

FKNN No of neighbor: 10, Distance matric: Euclidean
Distance weight: Equal

Subspace_KNN Learner type: Nearest neighbors, No of learners: 30
Subspace dimensions: 1024

Weighted_KNN No of neighbor: 10, Distance matric: Euclidean
Distance weight: Squared inverse

Cosine_KNN No of neighbor: 10, Distance matric: cosine
Distance weight: Equal

Cubic_KNN No of neighbor: 10, Distance matric: Minkowsi (cubic)
Distance weight: Equal

Medium_KNN No of neighbor: 10, Distance matric: Euclidean
Distance weight: Equal

3.1. Results

The detailed experimental process of the proposed framework is conducted in this
section. The results are computed using the following steps: (i) classification using origi-
nally collected dataset on fine-tuned pre-trained models; (ii) classification using augmented
dataset on fine-tuned deep models and select the best deep model for the further processing;
(iii) best deep model features are refined using a new technique name Entropy-ELM; (iv)
fusion of fine-tuned deep model features (augmented dataset), and (v) fused both step
features using a parallel approach

3.2. Results on Original Cucumber Dataset

The results of the proposed method on the original cucumber dataset are given in
Table 2. In this table, accuracy is computed for each fine-tuned deep model using the
original dataset. Fine-tuned VGG16 (F-VGG16) obtained the maximum accuracy of 56.9%
on the MG SVM classifier. The fine-tuned ResNet50 and ResNet101 obtained the best
accuracy of 58.7 and 55.1% on Cubic SVM and Quadratic SVM, respectively. The fine-tuned
Densenet201 deep model obtained an accuracy of 61.9% on Quadratic SVM. Based on these
results, it is noticed that the originally collected dataset have several issues like imbalancing
and short training data. Using these data, the fine-tuned Densenet201 gives better results
for all classifiers.
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Table 2. Classification results on originally selected cucumber dataset without data augmentation
step for several fine-tuned deep learning models.

Classifier F-VGG16 F-ResNet50 F-ResNet101 F-DenseNet201

Cubic SVM 55.6 58.7 54.2 61.8

Quadratic SVM 55.1 54.2 55.1 61.9

MG SVM 56.9 48 50.7 60.4

Fine KNN 50.7 48.9 49.8 52

Linear SVM 51.6 53.3 51.1 58.4

ESD 24.9 47.1 46.7 56.4

ES KNN 50.7 55.1 53.8 51

WKNN 51.6 47.6 40.9 49.5

Cosine KNN 47.6 50.2 43.6 49

Medium KNN 45.3 45.3 36.6 49.5

3.3. Results on Augmented Cucumber Dataset

Experimental results of fine-tuned VGG16 pre-trained model after augmentation are
given in Table 3. The best-obtained accuracy is 93.8% on Cubic SVM, whereas the recall rate
and precision rates are 93.84 and 93.92%, respectively. The second best-obtained accuracy
is 93.6%, which was accomplished on Quadratic SVM, whereas the recall rate and precision
rates are 93.66 and 93.72%, correspondingly. The execution time of Linear SVM is better
than the rest of the classifiers.

Table 3. Classification results of fine-tuned VGG16 deep model after data augmentation.

Classifier Recall Rate (%) Precision Rate (%) Accuracy (%) FNR (%) F1 Score (%) Time (Sec)

Cubic SVM 93.84 93.92 93.8 6.16 93.88 300

Quadratic SVM 93.66 93.72 93.6 6.34 93.69 242

MG SVM 91.78 92.04 91.8 8.22 91.91 463

Fine KNN 88.54 88.54 88.5 11.46 88.54 562

Linear SVM 90.56 90.88 90.6 9.44 90.72 188

ESD 92.98 93 93 7.02 92.99 1526

ES KNN 88.72 88.74 88.7 11.28 88.73 1550

WKNN 86.22 86.46 86.2 13.78 86.34 1038

Cosine KNN 80.8 81.36 80.8 19.20 81.08 648

Medium KNN 79.44 80.9 79.5 20.56 80.16 589

The classification accuracy of fine-tuned ResNet50 on the augmented dataset is given
in Table 4. This table presents the highest obtained accuracy on Cubic SVM of 94.6%,
whereas the recall and precision rates are 94.36 and 94.46%, correspondingly. The second
top accuracy is 94.4% obtained on Quadratic SVM, whereas the recall and precision rates are
94.26 and 94.36%, respectively. Similar to fine-tuned VGG16, the Quadratic SVM executed
fast than the rest of the classifiers.



Appl. Sci. 2022, 12, 593 11 of 19

Table 4. Classification results of fine-tuned ResNet50 deep model after data augmentation.

Classifier Recall Rate (%) Precision Rate (%) Accuracy (%) FNR (%) F1 Score (%) Time (Sec)

Cubic SVM 94.36 94.46 94.6 5.64 94.41 964

Quadratic SVM 94.26 94.36 94.4 5.44 94.61 387

MG SVM 91.38 91.7 91.5 8.62 91.54 1169

Fine KNN 86.6 86.96 86.6 13.40 86.78 681

Linear SVM 91.12 91.48 91 8.88 91.30 657

ESD 90.22 90.5 90.5 9.78 90.36 655

ES KNN 91.86 91.6 91.7 8.14 91.73 600

WKNN 79.66 81.44 78 20.34 80.54 748

Cosine KNN 82.38 82.72 82.4 17.62 82.55 539

Medium KNN 72.64 76.6 72.6 27.36 74.57 392

Experimental results of fine-tuned ResNet101 pre-trained model are given in Table 5.
The best-obtained accuracy of 97.7% was accomplished on Cubic SVM. The recall and preci-
sion rates are 97.7 and 97.7%, correspondingly. The second best-obtained accuracy is 97.2%
on Quadratic SVM. The recall and precision rates are 97.24 and 97.32%, correspondingly. In
this experiment, the Linear SVM was executed fast than the rest of the selected classifiers.

Table 5. Classification results of fine-tuned ResNet101 deep model after data augmentation.

Classifier Recall Rate (%) Precision Rate (%) Accuracy (%) FNR (%) F1 Score (%) Time (Sec)

Cubic SVM 97.7 97.76 97.7 2.30 97.7 608

Quadratic SVM 97.24 97.32 97.2 2.76 97.2 574

MG SVM 94.64 94.7 94.6 5.36 94.6 1086

Fine KNN 94.42 94.44 94.4 5.58 94.4 1285

Linear SVM 94.32 94.62 94.3 5.68 94.4 513

ESD 95.82 96.68 95.8 4.18 96.2 2394

ES KNN 96.36 96.26 96.3 3.64 96.3 4072

WKNN 92.16 92.48 92.3 7.84 92.3 1501

Cosine KNN 86.46 86.84 86.5 13.54 86.6 1404

Medium KNN 83.44 84.44 83.5 16.56 83.93 1342

The classification results of fine-tuned Densenet201 pre-trained model are given in
Table 6. In this table, the obtained best accuracy is 98.4% on Cubic SVM. Moreover, the
recall and precision rates are 98.44 and 98.5%, correspondingly. Figure 4 illustrated the
confusion matrix of Cubic SVM that was utilized for the verification of recall rate. The
second best-obtained accuracy is 97.4%, which was accomplished on Quadratic SVM. The
computation time of each classifier is also noted and the minimum time is 302 (sec) for
LSVM. At the first step comparison among without augmented and augmented datasets,
it is noted that the accuracy obtained on the augmented dataset is significantly better. In
the second step comparison, it is noted that the fine-tuned DenseNet201 model achieved
better results than VGG16, ResNet50, and ResNet101. Based on this analysis, the fine-tuned
DenseNet201 is selected for the rest of the experiments.
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Table 6. Classification results of fine-tuned Densenet201 deep model after data augmentation.

Classifier Recall Rate (%) Precision Rate (%) Accuracy (%) FNR (%) F1 Score (%) Time (Sec)

Cubic SVM 98.44 98.5 98.4 1.56 98.47 355

Quadratic SVM 97.4 97.46 97.4 2.60 97.43 330

MG SVM 95.32 95.62 95.4 4.68 95.47 623

Fine KNN 93.42 93.42 93.4 6.58 93.42 734

Linear SVM 92.62 93.16 92.7 7.38 92.89 302

ESD 96.62 96.6 96.6 3.38 96.61 1495

ES KNN 94.1 94.08 94.1 5.90 94.09 1923

WKNN 92.26 92.4 92.3 7.74 92.33 927

Cosine KNN 85.44 85.94 85.3 14.56 85.69 807

Medium KNN 85.9 86.9 85.8 14.10 86.40 764
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The fine-tuned deep learning model is selected based on the better accuracy and
applied proposed Entropy-ELM feature selection technique. The results are given in Table 7.
This presents the best accuracy of 98% on Cubic SVM. The other computed measures are
the recall rate which is 98.02, the precision rate at 97.98, and the F1-Score at 98%. The recall
rate of Cubic SVM can be also verified through a confusion matrix, illustrated in Figure 5.
Compared to the results given in Table 6, it is noted that the accuracy is a bit reduced but
on the other side, a huge change occurred in the computation time. The time is also plotted
in Figure 6 (FDenseNet201 and Dense Entropy-ELM).
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Table 7. Classification results using proposed Entropy-ELM selection approach.

Classifier Recall Rate (%) Precision Rate (%) Accuracy (%) FNR (%) F1 Score (%) Time (Sec)

Cubic SVM 98.02 97.98 98.0 1.98 98.00 116

Quadratic SVM 96.54 96.62 96.5 3.46 96.58 135

MG SVM 84.2 81.4 84.0 15.80 82.78 197

Fine KNN 94.82 94.84 94.8 5.18 94.83 217

Linear SVM 82.82 83.14 82.8 17.18 82.98 133

ESD 93.3 93.78 93.0 6.70 93.54 201

ES KNN 93.16 92.2 93.0 6.84 92.68 405

WKNN 94.22 94.28 94.2 5.78 94.25 384

Cosine KNN 88.16 88.92 88.4 11.84 88.54 93

Medium KNN 85.78 86.8 85.8 14.22 86.29 204Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18 
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After the selection of the best dense features, in the next step all fine-tuned deep model
features are fused using the proposed parallel approach. The results of this experiment are
given in Table 8. The best-noted accuracy in this table is 98.2% on Cubic SVM. The recall
and precision rates are 97.92 and 98.12%, respectively. Figure 7 illustrated the confusion
matrix that can be utilized for the verification of the recall rate. The time of each classifier is
also noted and plotted in Figure 6 (Fusion Entropy-ELM). In comparison with the results
of Tables 6 and 7, it is noted that the overall accuracy is improved but the time is more
increased than in the Dense Entropy-ELM step.

Table 8. Classification results using proposed parallel features fusion and Entropy-ELM selection of
all pre-trained deep models using augmented dataset.

Classifier Recall Rate (%) Precision Rate (%) Accuracy (%) FNR (%) F1 Score (%) Time (Sec)

Cubic SVM 97.92 98.12 98.2 2.08 97.02 847

Quadratic SVM 97.74 97.38 97.7 2.26 97.56 277

MG SVM 94.84 95.06 94.8 5.16 94.95 392

Fine KNN 94.88 94.9 94.9 5.12 94.89 422

Linear SVM 94.76 95 94.8 5.24 94.88 475

ESD 96.26 96.28 96.3 3.74 96.27 454

ES KNN 96.66 96.66 96.7 3.34 96.66 400

WKNN 92.78 92.86 92.8 7.22 92.82 534

Cosine KNN 86.78 81.32 86.8 13.22 83.96 635

Medium KNN 84.82 85.6 84.8 15.18 85.21 129
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Finally, the features of Dense Entropy-ELM and Fusion Entropy-ELM are fused using
the proposed parallel approach, and the results are given in Table 9. This table presents
the best-obtained accuracy of 98.50% on Cubic SVM. The noted precision rate is 98.30,
recall rate is 98.36 and F1-Score is 98.48%, respectively. The second best-noted accuracy is
97.5% on Quadratic SVM. The recall rate of Cubic SVM can be verified through a confusion
matrix plotted in Figure 8. This figure shows the correct prediction rate of each class in
the diagonal. Compared to the results of this experiment with all previous experiments,
it is clearly noted that the accuracy is improved and computational time is significantly
reduced.

Table 9. Proposed framework classification results using augmented dataset.

Classifier Recall Rate (%) Precision Rate (%) Accuracy (%) FNR (%) F1 Score (%) Time (Sec)

Cubic SVM 98.36 98.3 98.5 1.74 98.48 111

Quadratic SVM 98.1 97.5 97.5 1.90 97.80 117

MG SVM 95.74 96.06 95.8 4.26 95.90 175

Fine KNN 94.42 94.42 94.4 5.58 94.42 130

Linear SVM 93.06 93.68 93.2 6.94 93.37 103

ESD 96.36 96.42 96.4 3.64 96.39 196

ES KNN 94.82 94.8 94.8 5.18 94.81 277

WKNN 92.2 92.56 92.2 7.80 92.38 201

Cosine KNN 85.48 85.78 85.4 14.52 85.63 142

Medium KNN 85.58 84.36 85.5 14.42 84.97 104
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3.4. Discussion

Figure 1 showed the proposed framework that includes a few important steps. This
figure illustrated the importance of the data augmentation step. The results without data
augmentation having less accuracy than the results obtained after the data augmentation.
Moreover, the selection of important features improves the accuracy that is later fused
through a parallel approach. This step not only improves the classification accuracy but
also reduced the computational time, as plotted in Figure 6. This figure clearly shows that
the final fusion step significantly reduced the computational time than the rest of the steps
on all classifiers.

In the last, the proposed framework accuracy is compared with recent SOTA tech-
niques, as given in Table 10. The methods mentioned in this table are from the year
2017–2022. Moreover, all the methods mentioned in this table used the same leaf dataset.
The recent best accuracy was 98.08% and 96.50% achieved by Khan et al. [13] and Hussain
et al. [24]. The other methods such as Lin et al. [35] achieved an accuracy of 96.08% on the
same dataset. The proposed framework achieved an accuracy of 98.48% that is improved
than the SOTA techniques.

Table 10. Comparison with SOTA for cucumber leaf diseases recognition.

Methods Year Accuracy (%)

Zhang et al. [27] 2017 85.7

Ma et al. [36] 2018 93.4

Lin et al. [35] 2019 96.08

Khan et al. [13] 2020 98.08

Zhang et al. [37] 2021 90.67

Jaweria et al. [7] 2021 93.50

Hussain et al. [24] 2022 96.50

Proposed 98.48
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4. Conclusions

Agriculture is a hot topic of research nowadays. In agriculture, deep learning showed
significant success from the last decade for the recognition of plant diseases. In this article,
a deep learning and Entropy-ELM based framework is proposed for the recognition of
cucumber leaf diseases. In the proposed framework, four pre-trained deep models are
trained and selected one of them based on the accuracy that is later employed for the
selection of best features using the proposed Entropy-Elm technique. In the opposite step,
features of all pre-trained models are fused and apply the feature selection technique.
In the last, features of both steps are fused and perform classification. The proposed
framework is tested on an augmented cucumber leaf dataset and achieved an accuracy
of 98.48%. Comparison with the existing techniques showed the proposed framework
obtained improved results. From the results, it is concluded that the augmentation process
improves the recognition accuracy but also increases the time that was the first limitation
of this framework; therefore a feature selection technique is proposed to maintain the
accuracy and reduce the computational time. Through feature selection and fusion process,
important information is obtained that later improves the classification accuracy. Another
limitation of this work was the reduction of a few features that were ignored during the
selection process. In the future, EfficientNet deep model will be implemented and features
will be refined through the Butterfly metaheuristic algorithm instead of the heuristic search
approach [20]. Moreover, reinforcement learning and Graph CNN shall be applied and
refined through feature selection algorithms for the better results [38–42].
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