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Abstract: In this study, we propose a smart hopper system that automatically unblocks obstructions
caused by rocks dropped into hoppers at mining sites. The proposed system captures RGB (red green
blue) and D (depth) images of the upper surfaces of hopper models using an RGB-D camera and
transmits them to a computer. Then, a virtual hopper system is used to identify rocks via machine
vision-based image processing techniques, and an appropriate motion is simulated in a robot arm.
Based on the simulation, the robot arm moves to the location of the rock in the real world and removes
it from the actual hopper. The recognition accuracy of the proposed model is evaluated in terms of
the quantity and location of rocks. The results confirm that rocks are accurately recognized at all
positions in the hopper by the proposed system.

Keywords: smart hopper; RGB-D camera; robot; image processing; machine vision technology

1. Introduction

The fourth industrial revolution in manufacturing innovation, which started with
Industry 4.0 in Germany and the United States of America, was developed based on the
concept of “an intelligent society in which everything is connected.” Now, this concept is
spreading to all industrial fields. In particular, the core technologies of the fourth industrial
revolution—artificial intelligence, Internet of Things (IoT) [1,2], cloud computing [3], big
data analysis [4,5], smart/wearable devices [6], virtual/augmented/mixed reality [7], 3D
printing [8], drones [9], autonomous driving [10], and robotics—are proliferating other
fields.

ICTs (Information Communication Technology) generated from the fourth industry are
currently being utilized in industries such as manufacturing [11], electricity [12], aviation,
transportation [13], urban planning [14], medical care [15], and agriculture. In particular,
the introduction of ICT is expected to have a significant effect on the mining sector, which is
responsible for supplying high-tech raw materials, e.g., rare metals, to the fourth industry.
This is because the mining sector has already initiated a new change of industrial sites
via the development of innovative technologies such as smart mining. As a result, as in
the case of smart factories in the manufacturing sector, new technologies such as ICT is
expected to be indispensable to the optimal operation of smart mines in the mining sector.

In the mining sector, ICTs are being used in various ways. For example, it was used in
the form of building a spatial database for a mine site, entering attribute information to visu-
alize it, or performing a pre-simulation by changing attribute information [16–19]. Recently,
high-resolution databases of mining sites have been constructed using drones [20–23] and
unmanned ground vehicles [24–29]. Further, small-scale mining sites using a low-power
Bluetooth beacon and a smartphone equipped with short-range communication technology
are being developed [30–32].
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In the mining field, research using various ICTs is being conducted, and commercial
products are also being developed. Jung et al. [33] simulated the truck-loader transport
system of an open-pit mine on AnyLogic software and visualized the results intuitively.
Haile Gold Mine in South Carolina in the USA measured and predicted the density of
the slurry supplied and discharged to the cyclone accurately [34]. A simulation was
conducted in the Ban Houayxai Gold-Silver Mine to estimate the expected output with
respect to changes in the blasting design factor and predict the metal recovery rate and
prospective improvement of the crushing efficiency [35]. Baek et al. [36] learned big data
on the truck movement system at the mine site, optimized it through various machine
learning techniques, and predicted productivity indicators. Previous studies have been
conducted to analyze and visualize data in virtual space, such as building a database, real-
time monitoring, and simulation using ICTs. However, few studies have been conducted
to control the physical space using the analysis results in the virtual space. In this study,
the image processing-based vision system is used to recognize objects of rocks placed in
hopper equipment, one of the mineral processing facilities used in mining sites.

The hopper is a funnel-shaped device that screens dropped rocks and serves as an
entrance into the crusher. At a mining site, the hopper equipment is usually installed on the
upper part of the crusher that crushes the rocks and provides an avenue through which the
rocks input into the gyratory crusher pass before being crushed [37]. Figure 1a illustrates
the process by which the transported rocks are dispensed from the truck into the hopper.
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Figure 1. Illustration of (a) dispensing rocks from a truck and (b) a jamming phenomenon.

In general, the wide entrance of the hopper facilitates the sequential input of rocks
dispensed from the truck into the gyratory crusher. However, when a large number of rocks
or a large rock is suddenly input into the hopper, a clogging phenomenon called “jamming”
could occur (Figure 1b). In hoppers implemented in existing mining sites, manual inter-
vention either by hand or with mechanical help, e.g., a crane, is necessary to remove the
blockage. This requires work to be halted while the blockage is removed. Moreover, a direct
manual approach toward the entrance of a crusher can be dangerous. These issues can be
resolved by utilizing image recognition and robot technology in the hopper to resolve the
clogging phenomena automatically, thereby improving the productivity and stability of
mining work.

This study aims to propose a smart hopper system at a mining site using an RGB-D
(Red Green Blue-Depth) camera, machine vision technology, and a collaborative robot.
The proposed architecture captures real-world RGB and depth images using the RGB-D
camera, detects blockages caused by rocks jammed in the hopper’s feeder using machine
vision image-processing techniques, and transmits the positions of the classified objects
to the collaborative robot, enabling the robot arm to remove the blockages automatically.
The performance of the proposed smart hopper system was evaluated by constructing an



Appl. Sci. 2022, 12, 579 3 of 18

indoor model laboratory and using a miniature model to perform experiments in various
scenarios. The results confirm that all components of the smart hopper system operated
correctly in all the scenarios considered.

2. Materials and Methods
2.1. Design of Smart Hopper System

In this study, a smart hopper system was developed to solve jamming caused by rocks
dispensed into a hopper at a mining site. The proposed system identifies and removes
unfiltered rocks by integrating technologies such as an RGB-D camera, machine vision
technology, and a robotic arm. Figure 2 depicts the overall structure of the proposed
smart hopper system. First, the upper part of the hopper was photographed in real-time
using the RGB-D camera, and the images were transmitted to a program on a notebook
personal computer. Then, the rocks were classified using an image-processing technique in
a virtual hopper system implemented in the virtual world, and the appropriate motion was
simulated in the robotic arm. Based on the simulation, the robotic arm was operated in the
real world to remove the rocks causing the blockage.
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in virtual space (b).

Figure 3 depicts the operational flowchart of the smart hopper system including data
acquisition, processing, virtual simulation, and movement of the robotic arm. First, an RGB
image and a depth image were captured using the color sensor and infrared (IR) sensor
in the RGB-D camera. Then, the RGB images were converted into grayscale and binary
images using machine vision technology and were processed. Only the shapes of rocks
were extracted from the entire image. By comparing this with the depth image processed
in binary form, the heights of the rocks were estimated. A rock was ignored if it had fallen
below the hopper; however, its coordinates were calculated if it was in the hopper. To
move the robot arm to the calculated rock coordinates, they were converted to six-axis joint
coordinates for the robot arm. Based on this information, the robot arm was moved along
the planned path and the targeted rocks were removed from the hopper. Table 1 lists the
detailed specifications of the sensors and controllers used in this study.
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Table 1. Specification of sensors, the controller used in this study.

Equipment Model Specification

Main Controller

Laptop PC
Windows 10 (Microsoft

Corporation, Redmond, WA,
USA)

Intel Core i7-9750H CPU 4.50 GHz (Intel,
Santa Clara, CA, UAS), 16 GB RAM,

NVIDIA GeForce 1650 4GB (NVIDIA,
Santa Clara, CA, USA)

RGB-D Camera
Kinect V1 (Microsoft

Corporation, Redmond, WA,
USA)

Depth sensor type: Structured light
Frame rate: 30 frames per second

RGB Camera resolution: 640 × 480
IR Camera resolution: 320 × 240

RGB image Field of view: 62◦ × 48.6◦

Depth image Field of view: 57◦ × 43◦

Measuring range: 0.4 m~4 m

Robot Arm Niryo One (NIRYO,
Wambrechies, France)

Num. of axis: 6
Max reach: 440 mm

Base joint range: −175◦~ +175◦

Repeatability: ±1 mm

2.2. Recognition of Rocks Using Machine Vision-Based Image Processing Technology

Figure 4 depicts the machine vision-based image-processing algorithm for the RGB
and depth images captured by the RGB-D camera. First, the RGB image was captured
using the color sensor, and the region where the hopper was located was selected to be
the Region of Interest (ROI). Then, image characteristics, such as brightness, gamma, and
contrast, were adjusted based on the environment of the laboratory. Next, a pre-processing
operation was performed to convert RGB images into grayscale images, and then into binary
images. A suitable threshold was selected based on the characteristics of the experimental
environment, e.g., camera angle, resolution, and illumination, to identify the shape of the
rock accurately. Finally, the binarized image was pre-processed using a low-pass filter,
which removed all elements other than rocks from the image. Thus, the coordinates of the
rocks were obtained.
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Similarly, depth images were captured using the IR Sensor and the IR Emitter sensor.
The area where the hopper was located was selected to be the ROI, and the distance value
of the selected area of each depth image was converted into a distance unit in the real
world, which was recorded in a matrix. A threshold value was selected to filter for distance
values corresponding to the upper portions of the hopper. After filtering the image using
the threshold, it was converted into a binary image. The binary RGB and depth images
were combined into one by representing each pixel of the two binary images using 0 or
1 and multiplying them as matrices. This produced a binary image where only points
corresponding to rocks on top of the hopper had a value of 1. Thus, information about the
rocks located in the upper portions of the hopper was retained, while that of rocks below
the hopper was ignored. Finally, the center of each rock above the hopper was calculated.

The vision processing algorithms of National Instrument’s LabVIEW and the Vision
Assistant software were used to process RGB and depth images in this study. Figure 5
depicts the results obtained from the successive steps of the processing sequence in the
case of an RGB image. The RGB image was captured in real-time (Figure 5a), and only the
image of the hopper was extracted via the Image Mask function (Figure 5b). In addition,
the brightness, gamma, and contrast of the image were adjusted based on the experimental
environment using the Brightness function (Figure 5c). Finally, the RGB image was con-
verted into a grayscale image emphasizing the green plane using the Color Plane Extraction
function (Figure 5c,d).
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Figure 5. Example of RGB image processing: (a) RGB image is obtained, (b) ROI is selected, (c) bright-
ness, gamma, and contrast are adjusted, and (d) it is converted into a grayscale image.

Figure 6 depicts the results of the successive steps of converting the grayscale image
in Figure 5 into a binary image and then processing it. A threshold value that included the
color value of the rock and removed surrounding elements was selected and the image was
converted into a binary image (Figure 6a). Using a low-pass filter and other techniques, the
pre-processing algorithm removed the fine noise from the binary image (Figure 6b), and the
morphology algorithm removed all objects in all regions except the rocks (Figure 6c). Finally,
the coordinates of the extracted object were obtained via particle analysis (Figure 6d).
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Figure 7 depicts the results obtained from the successive steps of the processing
sequence in the case of the depth image obtained from the RGB-D camera. First, the depth
image was captured and visualized in real-time. Then, the distance values were converted
to distance units in the real world and recorded in the form of a matrix (Figure 7a). The value
corresponding to each pixel of the depth image was displayed. Points with distances that
corresponded to the upper portion of the hopper were retained, while points with all other
distance values (i.e., greater than that of the top of the hopper) were removed (Figure 7b).
Finally, using the Morphology algorithm, all points apart from those corresponding to the
smart hopper were deleted (Figure 7c).
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Figure 7. Example of depth image processing: (a) depth image is obtained, (b) it is converted into a
binary image, and (c) border objects are removed.

Figure 8 illustrates the simplified lattice form of the processed depth image of a smart
hopper. The binary image of the top of the hopper obtained from the depth image and
the binary image of the rock obtained via RGB image processing were treated as matrices
of the same size and multiplied. As each pixel of a binary image can be represented by 1
or 0, multiplication of two such matrices produces a matrix whose (i, j)th entry is 1 if and
only if the ith and jth entries of the first and second multiplicand matrices, respectively,
are 1. Thus, the multiplication set the values of pixels corresponding to rocks below the
hopper to 0 as they did not coincide with the pixels demarcating the hopper, and it set
those of rocks above the hopper that coincided with the hopper’s area to 1. Thus, rocks
that had descended through the hopper inlet and were photographed and identified by the
proposed system while they were being pulverized by the gyratory crusher were excluded
from the blockage removal process, and the robotic arm did not try to dislodge them.
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Figure 9 presents the results obtained by following the algorithm to exclude rocks lo-
cated below the hopper after determining the positions of rocks on the hopper. Figure 9a,b
depict images of the hopper and the rocks expressed in binary form following the comple-
tion of image processing. Represented as a matrix, the red pixels take the value 1, while
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the black ones take the value 0. In Figure 9c, the depth and RGB images are superimposed
to determine whether the locations of the detected rocks are above or below the hopper.
In the example depicted in the figure, one of the two detected rocks is jammed above the
hopper, while the other has already passed through the hopper inlet. These two rocks
can be differentiated by multiplying the matrix forms of the two binary images; in the
product, only pixels that correspond to the first rock take the value 1, while those of the
second rock and all others take the value 0. Figure 9d depicts the product image, in which
only the pixels of the rock on the hopper remains highlighted in green and all others are
excluded. The coordinates of the center of the rock were defined based on the position
of the detected rock after calibrating the RGB and depth images to eliminate differences
between the coordinate systems of the color sensor and the IR sensor of the Kinect v1
product used in the study [18]. In addition, when rocks were partially supported on the
hopper inlet or clustered near the inlet, the distance value of the center point of the rock was
calculated and compared with the distance value corresponding to the top of the hopper,
thereby determining whether they were above or below the hopper.
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2.3. Coordinate System Transformation and Movement Path Planning Using Inverse Kinematics of
Robot Arm

The Niryo One [38] was used as the robot arm in this study. Separate coordinate
systems were assigned to the six joints that moved the robot arm, and because the joints
operate in series in a predetermined order, they must be operated in a specific method to
move the gripper of the arm to the target point. This requires the definition of relations be-
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tween the joints. Equation (1) presents a transformation matrix representing the correlation
between the ith joint and the i + 1th joint.

i
i+1T =


cθi −sθicαi sθisαi αicθi
sθi cθicαi −cθisαi αisθi
0 sαi cαi di
0 0 0 1

 (1)

Here, ai denotes the link length, αi denotes the link twist angle, di denotes the link off-
set, and θi denotes the joint angle. Further, cθi and sθi denote cos θ and sin θ corresponding
to the ith joint, and cαi and sαi denote cos α and sin α corresponding to the ith joint [39].
Using Equation (1), the correlation equations relating the first joint to the sixth joint of the
robot arm can be deduced, as Equation (2). The D-H parameters of the Niryo One robot
used in the study are presented in Bugday and Karali [40].

0
6T = 0

1T(θ1)
1
2T(θ2)

2
3T(θ3)

3
4T(θ4)

4
5T(θ5)

5
6T(θ6) (2)

As described above, the movement of the robot arm to the desired point by manip-
ulating each joint can be described in terms of kinematics. However, in this study, when
controlling the robot arm, it was necessary to convert the coordinates of the rock detected
by the camera into the coordinate system of the robot arm. These coordinates were obtained
by applying inverse kinematics, which calculates the joint angle of the robot.

2.4. Integration of the Coordinate Systems of the RGB-D Camera and the Robot Arm

The coordinates of the rock identified using the RGB-D camera represented the pixel
positions of the rock in the RGB image, and the robot arm had a coordinate system for
each of its six joints. Thus, it was necessary to establish a correspondence between the
coordinate systems of the RGB-D camera and the robot arm to move the gripper of the arm
to the location of the detected rock. Figure 10a depicts the five correction points on the
hopper selected to match the coordinate system of the RGB-D camera and the robot arm.
The relationship between the x- and y-coordinates of the robot arm and the camera are
depicted graphically in Figure 10b. That is, for the five points in Figure 10a, the coordinates
on the camera and the coordinates of the robot arm were acquired, respectively, and are
shown as graphs in Figure 10b. To obtain the coordinates of the camera, the x and y pixel
positions for coordinate points were obtained from the LabVIEW software. In addition,
to obtain the coordinates of the robot, the states of the six motors of the robot arm were
converted into x and y coordinates at each coordinate point.

The coordinates of the camera and robot arm corresponding to all five positions used
during coordinate correction are listed in Table 2. Of the 5 points required for correction,
points 1, 4, and 5 have identical x-coordinates, and points 1, 2, and 3 have identical y-
coordinates. In Figure 10b, a linear regression line is generated to capture the correlation
between the coordinates of the camera and the robot arm. From the results in Table 2, the
linear regression line was constructed using linear formulae such as Equations (3) and
(4), and represents the formula that can be used to calculate the x- and y-coordinates of
the robot arm with respect to the x- and y-coordinates of the camera. The Z coordinates
were calculated through the depth value of the detected mineral location. Since most
of the minerals are jammed around the crusher inlet and the crusher inlet is almost flat,
we calculated constant z-coordinates, and all of them were calculated with the same
z-coordinate. In future field experiments, if a large-scale hopper and a high-accuracy
RGB-D camera are used, the z-coordinate can be calculated in the same way as the x and
y-coordinates.
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Table 2. Coordinates with respect to the camera and the robot arm corresponding to the five
calibration positions.

Location
RGB-D Camera Coordinate (Pixcel) Robot Arm Coordinate (Point)

XCam YCam XRobot YRobot

Center 289 268 0.259 −0.01
Left 289 241 0.259 −0.057

Right 289 299 0.259 0.045
Down 262 268 0.222 −0.01

Up 315 268 0.291 −0.01

2.5. Laboratory Experiment

In this study, a model experimental setup was designed to reproduce the hopper
architecture in an actual mining site. To this end, a hopper with a gyratory crusher was
manufactured on a reduced scale, and the shape and number of jammed rocks were
classified and the recognition accuracy was evaluated.

Because the supply port of the 54–67-inch gyratory crusher measures about 4.43 m,
a hopper model with a 115 mm supply port was manufactured at a scale ration of ap-
proximately 1/38 (Figure 11). In addition, an RGB-D camera was placed to photograph
the supply port of the hopper, and a robot arm was implemented to remove rocks. Ran-
dom dispensation of rocks into the hopper was simulated by dumping rocks from a
remote-controlled truck. In addition, to ensure consistency of environment during the
implementation of machine vision-based image processing techniques, a constant intensity
of illumination was maintained.
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Figure 11. Conceptual diagram and photograph of the miniature smart hopper system inside the
laboratory.

The purpose of this study was to evaluate the accuracy of object recognition using the
machine vision-based image processing technique in the virtual world and the ability to
push rocks into the lower part of the hopper using a robot arm in the real world. To this
end, based on the locations of the rocks remaining on the hopper, two types of scenarios
were identified (rocks in contact with the hopper, rocks crossing the hopper) and classified
into two types (two rocks on the hopper, three rocks on the hopper) based on the quantity
of rocks remaining on the hopper. In cases in which rocks were observed both above and
below the hopper, the accuracy of removal of rocks that had already passed through the
hopper was also evaluated. In addition, the accuracy with which the gripper of the robot
arm was moved to the target rock was also evaluated, and each experimental process and
data processing method was recorded and analyzed. The upper part of the hopper was
captured in real-time using an RGB-D camera, but object detection and location recognition
are performed whenever a remotely-controlled truck arrives and abandons minerals and
disappears.

3. Results

Figure 12 illustrates the experimental results obtained using the proposed method in
a case involving one rock under the hopper and another above the hopper. The rock on
the hopper was located without any protrusions over the edge of the hopper (Figure 12a).
Both rocks were accurately recognized using the RGB image-processing technique, as is
evident from Figure 12b). The rock located under the hopper was already being crushed in
the gyratory crusher or was about to be crushed; therefore, it had to be excluded from the
movement path planning phase for the robot arm. By superimposing the depth images of
the two rocks and the hopper, only the rock placed on the red background in Figure 12c)
was identified to be the final detection object. It was confirmed that only that rock was
removed (Figure 12d).

Figure 13 depicts another example involving one rock above the hopper and two
below it, where the latter are partially hidden by the column of the crusher or already
in the process of being crushed, thus making their shape appear irregular. In the image,
the rock above the hopper is placed across the opening between the hopper and crusher
column, which visually obstructs the space below the hopper. As the depth image was
updated in real-time whenever rocks were dispensed into the hopper, the background of
the part blocked by the rocks was displayed in red as in the case of the hopper and its
upper surface. This indicates that the rock lies on the same level as the hopper. In this
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case of the experiment, the robot arm successfully removed only the rock lying across the
opening of the hopper and the crusher column and ignored the two rocks under the hopper.
This confirms that the machine vision-based image-processing algorithm developed in this
study successfully detects rocks above the hopper in various positional situations.
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image, (b) detected rock in the binary image (c) classified rock based on depth image, and (d) operation
of the robot arm.
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two rocks under the hopper and one across of the hopper. (a) RGB image, (b) binary image of detected
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Figure 14 depicts a case involving two rocks placed on the hopper. The upper one is
located partially over the bottom of the hopper, while the other is clearly above the hopper.
Both rocks were detected using the proposed RGB image processing technique. In addition,
it was confirmed that both rocks were removed by the robot arm.
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Figure 14. Experimental results obtained using the proposed smart hopper system in the case with
two rocks above the hopper. (a) RGB image, (b) binary image of detected rock, (c) operation of the
robot arm on the first rock, and (d) that on the second rock.

Figure 15 depicts a case with three rocks placed together on a hopper—one on top
of the hopper, one at the meeting point of the crusher column and the hopper, and one
partially intersecting the crusher and the hopper. It can be seen that all three rocks were
detected using RGB image processing. By superimposing the images of the individual
rocks with the depth image, it was confirmed that all of the rocks were placed on the hopper.
Although irregular noise was generated at some points within the hopper in the depth
image, it did not affect the recognition of the positions of the rocks (Figure 15c). Based on
the RGB image, all three rocks were sequentially removed from the hopper (Figure 15d–f).

Table 3 lists the RGB-D coordinates of the detected objects depicted in Figures 12–15
and the transformed coordinates corresponding to the robot arm. One to three objects
were detected in all cases, including those in which rocks were placed across hoppers and
crusher columns. It was confirmed that the objects under the hopper were detected by
the camera and finally excluded based on the depth image processing technique. The
coordinates obtained with respect to the RGB-D camera reflected the pixel positions in the
RGB image, and it was confirmed that they were converted to coordinate systems of the
robot arm using the linear Equations (3) and (4).
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Figure 15. Experimental results obtained using the proposed smart hopper system in the case involv-
ing three rocks above the hopper. (a) RGB image, (b) binary image of detected rocks, (c) classified
rocks by depth image, (d) Operation of the robot arm on the first rock, (e) that on the second rock,
and (f) that on the third rock.

Table 3. Experimental results of the RGB-D camera and the robot arm coordinates of the detected
rocks.

Num. of
Detected Object Status

RGB Image Coordinate Robot Arm Coordinate
XCam YCam XRobot YRobot

1 On the hopper 318.565 243.383 0.296 −0.044

1 Cross the hopper 283.615 289.0557 0.251 0.039

2 On the hopper 266.507 280.361 0.229 0.0243
298.486 235.55 0.27 −0.0563

3 On the hopper
308.289 241.512 0.283 −0.0456
240.952 249.388 0.312 −0.032
308.887 267.816 0.283 0.00076

4. Limitations and Future Work
4.1. Scaling Up Proposed Equipment for Practical Application at Mining Sites

The size of the supply port of the gyratory crusher and the hopper used in real-
world mining sites is approximately 4.43 m in length, while the hopper model used in
the experiment in this study had a 115 m supply port approximately, making it a 1/38
scale model of an actual hopper. The size of the rocks dispensed during the experiment
were also reduced to a similar scale, and the experiment was carried out in a sequence
imitating a practical application. However, to evaluate the performance and usability of
the smart hopper system developed in this study, it needs to be applied to actual work
sites. To this end, a large collaborative robot arm capable of moving unfiltered rocks from
the hopper inlet and a high-resolution RGB-D camera are required to be installed. In
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addition, the image processing algorithm based on an integrated coordinate system with
respect to the camera and the robot should be modified to suit the field conditions. Finally,
environmental factors such as the illumination of the site and the color and size of rocks
should be accounted for. Such applications may improve stability and productivity at
mining sites.

4.2. Optimizing the Path of the Robot Arm to Remove Rocks

A limitation in the applicability of this study to real-world mining sites arises from the
inhomogeneity of sizes of rocks in actual mining scenarios and the possibility of multiple
rocks obstructing the hopper. Thus, the gripper arm cannot be reliably guided to a well-
defined center point of the rock causing the blockage following a carefully pre-designed
path. In addition, if the jammed rocks cannot be pushed out by the robot arm or if the
rocks are larger than the size of the inlet in an actual mining application, the gripper of
the robot arm will require to be equipped with a crushing mechanism, e.g., a drill. In
addition, in this study, the identification of rocks and calculation of their distances were
performed using only one camera placed vertically above the inlet. In actual applications,
an additional camera should be installed, enabling immediate rock recognition. Finally,
when pushing rocks using the robot arm, factors such as size and number of rocks, the
direction of inclination, and the center coordinates of rocks should be analyzed while
planning a movement path for the robot arm.

4.3. Accuracy Degradation Due to Scanning Distance and Dust Air

In this study, a lab-scale model experiment simulating an actual mine site was per-
formed. In the configuration of the experimental site, the distance between the rock and the
camera was closely arranged. However, in an actual mining site, a camera must be placed
at a high position to scan a large-scale hopper. As the height of the camera increases, the
size of each mineral will appear smaller, which will reduce the object recognition accuracy.
Of course, in an actual mining site, as the distance of the camera increases, the size of the
mineral increases, so recognition is not completely impossible. However, a high-resolution
RGB-D camera that reflects the scale of the site and the area of the hopper should be utilized,
and a machine vision system should be developed in detail.

At the actual mining site, a large amount of dust will be generated by mineral crushing.
This will limit the camera’s field of view and reduce the object recognition accuracy. In
this study, the chroma and transparency of RGB images were partially adjusted to confirm
whether objects were recognized when the dust air environment was simulated. Figure 16
shows the results of the object recognition accuracy experiment for RGB images simulating
dust air by adjusting chroma and transparency. Overall, it was confirmed that the rocks
at the top and bottom of the hopper were recognized separately from the background.
However, when there was a rock under the hopper, it was confirmed that the shape was
partially unclear.

The rock recognition results in an environment without dust air are compared with the
recognition results in an environment simulating dust air. As a result of rock recognition
in Figure 16 and Table 4, all rocks were recognized in the same way as in an environment
without dust air, and since the center coordinates of rocks were also calculated almost
the same, the accuracy was evaluated through the area of the part recognized as a rock.
When there are three rocks on the hopper (Figure 16b), it can be confirmed that the area
of the part recognized as a rock is calculated to be narrower by about 2% compared to
the non-dust environment. When there are three rocks on the hopper and one rock below
(Figure 16d), it was confirmed that the rocks on the hopper were recognized as narrow
by about 2% similar to the previous case. On the other hand, the rock under the hopper
was recognized to be about 5% smaller depending on the presence or absence of dust air,
showing a relatively large difference. Since the intensity of the light transmitted to the rock
under the hopper is relatively weak, it was confirmed that it was relatively greatly affected
by the light limitation by dust air.
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to the non-dust environment. When there are three rocks on the hopper and one rock 
below (Figure 16d), it was confirmed that the rocks on the hopper were recognized as 
narrow by about 2% similar to the previous case. On the other hand, the rock under the 
hopper was recognized to be about 5% smaller depending on the presence or absence of 
dust air, showing a relatively large difference. Since the intensity of the light transmitted 

Figure 16. Experimental result of the smart hopper when the dust air environment is simulated by
adjusting the image chroma and transparency. (a) RGB image with 3 rocks on the hopper, (b) binary
image of detected 3 rocks, (c) RGB image with 3 rocks on the hopper and one rock under the hopper,
(d) Binary image of detected 4 rocks.

Table 4. Experimental results of the detected rock area according to the presence or absence of
simulated dust air.

Rock 1 Rock 2 Rock 3 Rock 4

Non-Dust Dust Non-Dust Dust Non-Dust Dust Non-Dust Dust

Area (pixel)
(Figure 16b) 371 364 268 262 287 280

Area (pixel)
(Figure 16d) 202 197 222 216 226 220 244 232

In an actual mining environment, the concentration of dust air is not constant and may
be so large that the shape of the mineral is not visible at all. In addition, it can work together
with the lighting intensity and shadows of the scene to further reduce the object recognition
accuracy. Therefore, to overcome this limitation in actual mining sites, an additional device
to periodically measure the dust air concentration using environmental sensors and then
remove it will be needed. In addition, a sophisticated image processing algorithm that
reflects various conditions in the field should be applied.

5. Conclusions

In this study, a smart hopper system was proposed based on a machine vision-based
image-processing technique, an RGB-D camera, and a collaborative robot. The proposed
system captures RGB and depth images using an RGB-D camera and processes it using a
machine vision-based image recognition technique in a real-world hopper to detect rocks
inside the hopper and calculate their coordinates. In addition, it simulates the movement of
the robot arm based on the detected coordinates, enabling it to be maneuvered to remove
blockages in the real world. The recognition accuracy of the smart hopper system was



Appl. Sci. 2022, 12, 579 17 of 18

evaluated with respect to the location and quantity of rocks. The results confirmed that the
rocks were accurately recognized in all situations.

Equipment such as crushers and hoppers used in existing mining sites may be ob-
structed when a large number of rocks or large rocks are dispensed into the hopper. These
rocks are usually removed manually, which poses a safety risk and reduces productivity
by delaying the workflow. The utilization of the smart hopper system and robot arm
developed in this study is expected to provide an efficient solution to these problems. In
addition, a simulation system has been implemented to recognize and process images
in the virtual world. The robot arm was directly controlled based on the results and the
proposed system was optimized. This paper is also expected to serve as a useful reference
for the implementation of the vision system and robot technology in the mining sector in
the future.
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