
Citation: Wu, X.; Song, Y.; Hou, X.;

Ma, Z.; Chen, C. Deep Learning

Model with Sequential Features for

Malware Classification. Appl. Sci.

2022, 12, 9994. https://doi.org/

10.3390/app12199994

Academic Editor: Peter R.J. Trim

Received: 14 September 2022

Accepted: 27 September 2022

Published: 5 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Deep Learning Model with Sequential Features for
Malware Classification
Xuan Wu, Yafei Song * , Xiaoyi Hou, Zexuan Ma and Chen Chen

College of Air and Missile Defense, Air Force Engineering University, Xi’an 710051, China
* Correspondence: yafei_song@163.com

Abstract: Currently, malware shows an explosive growth trend. Demand for classifying malware is
also increasing. The problem is the low accuracy of both malware detection and classification. From
the static features of malicious families, a new deep learning method of TCN-BiGRU was proposed in
this study, which combined temporal convolutional network (TCN) and bidirectional gated recurrent
unit (BiGRU). First, we extracted the features of malware assembly code sequences and byte code
sequences. Second, we shortened the opcode sequences by TCN to explore the features in the data
and then used the BiGRU network to capture the opcode sequences in both directions to achieve deep
extraction of the features of the opcode sequences. Finally, the fully connected and softmax layers
were used to output predictions of the deep features. Multiple comparisons and ablation experiments
demonstrated that the accuracy of malware detection and classification were effectively improved by
our method. Our overall performance was 99.72% for samples comprising nine different classes, and
our overall performance was 96.54% for samples comprising two different classes.

Keywords: deep learning; malware classification; sequential feature; temporal convolutional network;
bidirectional gated recurrent unit

1. Introduction

With the continued development of information technology, security incidents are
exponentially growing while the network is becoming increasingly sophisticated and
convenient. Since the first virus, Morris worm, was discovered in the 1980s, there has been
a growing international concern about cyberspace security. Currently, malware is evolving
at an increasingly rapid pace, and the creators of viruses have introduced polymorphism to
counteract virus detectability by constantly modifying and obfuscating malware, resulting
in malware of the same type that, although having the same malicious behavior, appears
to be different software. The multiplicity and amorphism of malware have made the
prevention and control of cyberspace security extremely difficult. The current problem is,
therefore, to quickly detect and classify malware so as to protect the network accordingly.

The problem of malware family detection is essentially a classification problem, i.e.,
the malicious samples to be detected are classified into different families for screening.
Malware detection analysis is divided into dynamic and static analyses. The dynamic
analysis approach runs in a secure and controlled environment and analyzes the behavior
of malicious samples. Using a secure and controlled environment for analysis makes it
easy for malicious samples to detect differences in the environment, but it is too costly for
dynamic analysis to be exclusively used in the real environment. Static analysis, on the
other hand, is a way to understand the logical structure of the code without executing it
and make judgments accordingly. Compared with dynamic analysis, the static analysis
method consumes much less time and resources; thus, this study adopted the static analysis
method. This method generally extracts features through reverse engineering technology
to build a model. The extractable features include string [1], opcode [2], executable file
structure [3], and function call graph [4]. Opcodes are machine language instructions

Appl. Sci. 2022, 12, 9994. https://doi.org/10.3390/app12199994 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199994
https://doi.org/10.3390/app12199994
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0962-0671
https://doi.org/10.3390/app12199994
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199994?type=check_update&version=2

Appl. Sci. 2022, 12, 9994 2 of 19

describing program execution operations, which are relatively more practical and reliable.
The n-gram method is used to extract opcodes. The advantage of this method is that it
uses great likelihood estimation and is easy to understand. After extracting the features, a
model is constructed to classify the malicious families. Santos [5] et al. proposed a method
to detect the maliciousness of unknown programs by calculating the frequency values of
opcodes appearing in the code as features. Kang et al. [6] proposed extracting the sequence
of opcodes from the disassembled files to represent the temporality of malware execution
and then used the n-gram algorithm to characterize opcode sequences. Since Nataraj et al.
first proposed converting malware executable files into two-dimensional grayscale maps
using image texture features with a certain level of similarity in each family for training,
image features have been widely used in the field of malware. In recent years, deep
learning algorithms have developed rapidly in areas such as natural language processing,
which has powerful learning capabilities and more advantages in mining data structures in
high-dimensional data. Applying deep learning to the field of malware is a hot topic of
current research. Deep learning algorithms such as the recurrent neural network (RNN) [7]
and gated recurrent unit (GRU) can be used to implement malware detection. Kwon
et al. [8] proposed an RNN approach using an API call function to classify malware. These
authors used dynamic analysis to extract representative API call functions of nine malware
families as a training set and used LSTM for classification with an average accuracy of
71%. Messay-Kebede et al. [9] proposed a detection model using both traditional machine
learning methods and autoencoder-based methods. A few classes were identified by the
traditional machine learning model, and others were classified with autoencoders. Gibert
et al. [10] extracted byte and opcode sequences, which were fed into a classifier composed
of two convolutional neural networks (CNNs). Although the structure was relatively
simple, the accuracy failed to exceed that of complex classifiers. Yan et al. [11] proposed
the Malnet detection model, which used CNN to learn the features of grayscale maps and
LSTM to learn the opcode and then merged the classifications using a simple weighting
approach. Barath et al. [12] used a CNN-LSTM approach for feature extraction and two
types of machine learning for classification using support vector machines and logistic
regression. Researchers Ahmadi M and Zhang Y et al. [13,14] extracted 15 and 6 features
from malware, respectively, with more comprehensive information extraction, but feature
extraction and selection were time-consuming and contained features that had little effect
on classification.

Because a single feature has limitations, and in order to improve the ability of fea-
ture mining, the accuracy of malware classification, and reduce the interference of mal-
ware variants, packaging and obfuscation technologies, the present study proposed a
multi-classification method of malware families incorporating TCN-BiGRU. The main
contributions are as follows.

1. A malware detection and classification method (TCN-BiGRU) that fuses the temporal
convolutional network and the bidirectional gated recurrent unit was proposed to
improve the overall performance of the malware detection and classification model.

2. Opcode and bytecode sequences were fused to obtain their occurrence frequen-
cies, reduce interference from shelling and obfuscation techniques, and improve
the accuracy rate.

3. The feature extraction capability of temporal convolutional networks (TCN) for tem-
poral data was introduced to fully learn the dependency relationship among data.

4. The output of the maximum pooling layer and the output of the average pooling layer
were fused for relatively comprehensive extraction of data features.

5. The nonlinear fitting ability of a bidirectional gated recurrent unit (BiGRU) was used,
and further feature extraction was conducted to learn the dependency of the before
and after information in the opcode sequence, extracting the opcode features based
on the time series to improve the model classification detection effect.

This paper proceeds as follows. Section 1 introduces the relevant background and
related work. Section 3 presents the model. Section 4 presents the experimental results and

Appl. Sci. 2022, 12, 9994 3 of 19

analysis. Finally, Section 5 summarizes the experimental conclusions and discusses future
research prospects.

2. Related Technology
2.1. N-Gram Method

N-gram is an important method for processing utterances in natural language process-
ing; it uses the Markov assumption to relate the probability of occurrence of the nth word to
the first n−1 words only. Based on this assumption, the probability value of the occurrence
of a sentence in a text is calculated by multiplying the probability of the occurrence of each
word or phrase, which is expressed in Equation (1) as follows.

P(T) = P(ω1)× P(ω2)× · · · × P(ωn)
= P(ω1)× P(ω2|ω1)× · · · × P(ωn|ω1ω2 · · ·ωn−1)

(1)

The n-gram in the field of malware detection refers to the n opcode or byte sequences
that occur in a piece of code [15] to obtain a tighter contextual connection.

The algorithm is implemented by fixing a sliding window of size n and moving
forward one opcode at a time. The value of n in the n-gram is generally an integer from
1 to 5. The computational volume of the model increases with the value of n; thus, more
information is obtained, and classification accuracy is higher. At the same time, model size
exponentially increases. In practical applications, the selection of n values also affects the
accuracy of the model and the size of the loss value.

2.2. Temporal Convolutional Network (TCN)

A temporal convolutional network (TCN) is a network structure proposed by Bai,
Shaojie, et al. [16] for processing time series data based on convolutional neural networks
(CNNs). TCN incorporates causal convolution to make causal relationships between upper
and lower layers and uses dilated convolution and skip connect to avoid the gradient
disappearance problem of RNNs. The use of a temporal convolutional network model not
only maintains a large receptive field for the data but also reduces computational effort to
better control model memory length and improve time series classification accuracy [17].

Compared with ordinary 1D convolutional networks, TCN brings three main
improvements.

(a) Causal convolution: The output value for any moment t is related to the input
only before moment t and the previous layer [18]. While traditional CNN networks
can see future information, causal convolution can only see past information; it is
causally consequent, so causal convolution has very strict temporal constraints and is
a one-way structure. When the number of convolutional kernels is 4, a single causal
convolutional structure is shown in the left panel of Figure 1, and the overall structure
is shown in the right panel of Figure 1. A convolution kernel of 4 means that four
points are selected from the previous layer for sampling input to the next layer.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 21

Figure 1. Causal convolution.

(b) Dilated convolution: With the gradual increase in the number of dilated convolution

layers, the dilation coefficient exponentially increases, and the increase in the range

of the receptive field of each layer reduces the number of convolution layers to reduce

computational effort and simplify the network structure. To address the problems of

traditional neural networks that require the linear stacking of multiple layers of con-

volution to extend the model of time series, TCN achieves a reduction in the number

of convolutional layers by increasing the range of the receptive field of each layer by

using dilated convolution [19], with a convolutional kernel of 4 and a dilation coeffi-

cient of 1, as shown in Figure 2. When the dilation coefficient of the input layer is 1,

the samples in this model are sampled from the previous layer at an interval of 1 and

input to the next layer.

Figure 2. Dilated convolution.

The difference between dilated convolution and normal convolution is that dilated

convolution allows the presence of interval sampling of the input during convolution, and

the sampling rate depends on the dilation coefficient. Equation (2) of the receptive field is

(1) d 1RF K= − + (2)

where K is the convolution kernel size, and d is the dilation coefficient.

There are two ways for the TCN to increase the receptive field: one is to increase the

size of the dilation coefficient, and the other is to choose a larger value of the convolution

kernel. In the dilated convolution operation, the dilation coefficient exponentially grows

with the depth of the network, so it is possible to use fewer layers to obtain a larger recep-

tive field.

(c) Residual block: This is another important network structure in the TCN network. The

residual block, shown in Figure 3, contains two layers of dilated causal convolution

and nonlinear mapping. It has a constant mapping method of connection across lay-

ers, which enables the network to transfer information through a connection across

layers. Through skip connect, it can not only speed up the response and convergence

of the deep-level network but also solve the problem of too slow learning due to

overly complex network hierarchical overlay structure. Dropout and batch normali-

zation are also added to prevent model overfitting and speed up training [20].

Figure 1. Causal convolution.

(b) Dilated convolution: With the gradual increase in the number of dilated convolution
layers, the dilation coefficient exponentially increases, and the increase in the range of
the receptive field of each layer reduces the number of convolution layers to reduce

Appl. Sci. 2022, 12, 9994 4 of 19

computational effort and simplify the network structure. To address the problems
of traditional neural networks that require the linear stacking of multiple layers of
convolution to extend the model of time series, TCN achieves a reduction in the
number of convolutional layers by increasing the range of the receptive field of each
layer by using dilated convolution [19], with a convolutional kernel of 4 and a dilation
coefficient of 1, as shown in Figure 2. When the dilation coefficient of the input layer
is 1, the samples in this model are sampled from the previous layer at an interval of 1
and input to the next layer.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 21

Figure 1. Causal convolution.

(b) Dilated convolution: With the gradual increase in the number of dilated convolution

layers, the dilation coefficient exponentially increases, and the increase in the range

of the receptive field of each layer reduces the number of convolution layers to reduce

computational effort and simplify the network structure. To address the problems of

traditional neural networks that require the linear stacking of multiple layers of con-

volution to extend the model of time series, TCN achieves a reduction in the number

of convolutional layers by increasing the range of the receptive field of each layer by

using dilated convolution [19], with a convolutional kernel of 4 and a dilation coeffi-

cient of 1, as shown in Figure 2. When the dilation coefficient of the input layer is 1,

the samples in this model are sampled from the previous layer at an interval of 1 and

input to the next layer.

Figure 2. Dilated convolution.

The difference between dilated convolution and normal convolution is that dilated

convolution allows the presence of interval sampling of the input during convolution, and

the sampling rate depends on the dilation coefficient. Equation (2) of the receptive field is

(1) d 1RF K= − + (2)

where K is the convolution kernel size, and d is the dilation coefficient.

There are two ways for the TCN to increase the receptive field: one is to increase the

size of the dilation coefficient, and the other is to choose a larger value of the convolution

kernel. In the dilated convolution operation, the dilation coefficient exponentially grows

with the depth of the network, so it is possible to use fewer layers to obtain a larger recep-

tive field.

(c) Residual block: This is another important network structure in the TCN network. The

residual block, shown in Figure 3, contains two layers of dilated causal convolution

and nonlinear mapping. It has a constant mapping method of connection across lay-

ers, which enables the network to transfer information through a connection across

layers. Through skip connect, it can not only speed up the response and convergence

of the deep-level network but also solve the problem of too slow learning due to

overly complex network hierarchical overlay structure. Dropout and batch normali-

zation are also added to prevent model overfitting and speed up training [20].

Figure 2. Dilated convolution.

The difference between dilated convolution and normal convolution is that dilated
convolution allows the presence of interval sampling of the input during convolution, and
the sampling rate depends on the dilation coefficient. Equation (2) of the receptive field is

RF = (K− 1)× d + 1 (2)

where K is the convolution kernel size, and d is the dilation coefficient.
There are two ways for the TCN to increase the receptive field: one is to increase the

size of the dilation coefficient, and the other is to choose a larger value of the convolution
kernel. In the dilated convolution operation, the dilation coefficient exponentially grows
with the depth of the network, so it is possible to use fewer layers to obtain a larger
receptive field.

(c) Residual block: This is another important network structure in the TCN network. The
residual block, shown in Figure 3, contains two layers of dilated causal convolution
and nonlinear mapping. It has a constant mapping method of connection across layers,
which enables the network to transfer information through a connection across layers.
Through skip connect, it can not only speed up the response and convergence of the
deep-level network but also solve the problem of too slow learning due to overly
complex network hierarchical overlay structure. Dropout and batch normalization
are also added to prevent model overfitting and speed up training [20].

The skip connect transforms the input x-value through a series of modules to output
f(x); the equation for skip connect is

f(x) = h(x) − x(1) (3)

2.3. Bidirectional Gated Recurrent Unit (BiGRU)

As a variant of RNN, gated recurrent unit (GRU) also has a recursive structure similar
to that of RNN and has the function of “memory” in processing time series data. At
the same time, GRU can effectively alleviate the gradient disappearance and gradient
explosion problems that may occur during RNN training, thus effectively solving the
long-term memory problem. Long short-term memory (LSTM) networks are also a variant
of RNN [21] and are comparable to GRU in terms of performance, but GRU is structurally
simpler and can reduce computational effort and improve training efficiency [22]. The
internal structure of GRU is shown in Figure 4. GRU has two inputs, the output state at the
previous time and the input sequence value at the current time; the output is the state at

Appl. Sci. 2022, 12, 9994 5 of 19

the current time. GRU mainly updates the model state through a reset gate and an update
gate. The reset gate controls the degree of forgetting historical state information so that the
network can discard unimportant information; the update gate controls the weight of the
past state information into the present state to help the network remember the information
for a long time [23]. The internal equations of GRU are as follows:

rt = σ(Wrxt + Urht−1)
zt = σ(Wzxt + Uzht−1)

h̃t = tanh(Wh̃xt + Uh̃(rt � ht−1))

ht = (1− zt)� ht−1 + zt � h̃t

(4)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 21

Figure 3. Residual block.

The skip connect transforms the input x-value through a series of modules to output

f(x); the equation for skip connect is

() () ()f 1x h x x= −
 (3)

2.3. Bidirectional Gated Recurrent Unit (BiGRU)

As a variant of RNN, gated recurrent unit (GRU) also has a recursive structure similar

to that of RNN and has the function of “memory” in processing time series data. At the

same time, GRU can effectively alleviate the gradient disappearance and gradient explo-

sion problems that may occur during RNN training, thus effectively solving the long-term

memory problem. Long short-term memory (LSTM) networks are also a variant of RNN

[21] and are comparable to GRU in terms of performance, but GRU is structurally simpler

and can reduce computational effort and improve training efficiency [22]. The internal

structure of GRU is shown in Figure 4. GRU has two inputs, the output state at the previ-

ous time and the input sequence value at the current time; the output is the state at the

current time. GRU mainly updates the model state through a reset gate and an update

gate. The reset gate controls the degree of forgetting historical state information so that

the network can discard unimportant information; the update gate controls the weight of

the past state information into the present state to help the network remember the infor-

mation for a long time [23]. The internal equations of GRU are as follows:

()
z ()

h tanh(())

h (1)

=
=

 =

= − +

t

t

t t

t

r

r t r t -1

z t z t -1

t t -1h h

t t -1 t t

W x + U h
W x + U h

W x + U r h

z h z h

 (4)

Figure 3. Residual block.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 21

×

× +

1-

×

tanhσ σ

 ht-1

 xt

 rt zt ht

 ~

 ht

RESET UPDATE

Figure 4. Gated recurrent unit.

The sigmoid activation function is shown in Equation (4) and Figure 4. It serves to

convert the intermediate states to the range of 0 to 1; ht−1 and ht are the output states at

moments t−1 and t, respectively; xt is the input sequence value at moment t (it is the can-

didate output state); 𝐖𝐫, 𝐖𝐳, 𝐖�̃�, 𝐔𝐫 and 𝐔𝐳 are the corresponding weight coefficient

matrices of each component; tanh is the hyperbolic tangent function (it is the Hadamard

product of the matrix).

GRU can process the data only from forward to backward and ignores the effect of

the latter moment on the data of the previous moment. To combine forward and backward

data for integrated learning, BiGRU is used for further learning of the features of the mal-

ware. In the BiGRU, which consists of a forward gated recurrent unit and a backward

gated recurrent unit, the network model learns the sequence from forward to backward

and vice versa. The hidden layer contains two output units with the same input and is

connected to the same output. The features can be better learned to increase the time series

involved in training, thus providing higher accuracy for longer time series data.

3. Malware Classification Method Based on Sequence Features and Deep Learning

This section introduces the proposed TCN-BiGRU network. This network can extract

past data features by one-dimensional, causal convolution with a simple structure, low

memory consumption, fast operation speed, and easy superposition. The bidirectional

GRU can capture a series of long-term dependencies in both directions, and the bidirec-

tional GRU model can effectively utilize future moment information, which can compen-

sate for the disadvantage of the one-way structure of the causal sequence in the TCN

structure and the lack of comprehensive information extraction. The advantages of the

two models were fully utilized and combined into a new hybrid model TCN-BiGRU,

which enabled the model to conduct more comprehensive feature extraction to further

improve the accuracy of malware classification and identification.

First, sample feature extraction was conducted. The originally extracted one-hot en-

coding and standards were normalized, after which the convolution operation was con-

ducted using TCN to shorten the long-time sequence and extract the deep features of the

network. At the same time, the maximum pooling and average pooling operations were

conducted, and the extracted features were fused as the pooling output; after normaliza-

tion and reconstruction, they were passed into the BiGRU network for the deep extraction

of temporal features to complete malware detection classification. Finally, the most suita-

ble hyperparameters were selected for the model to improve detection performance. The

malware classification process included three stages: pre-processing, feature extraction

and training, and classification. The model structure is shown in Figure 5.

Figure 4. Gated recurrent unit.

The sigmoid activation function is shown in Equation (4) and Figure 4. It serves to
convert the intermediate states to the range of 0 to 1; ht−1 and ht are the output states
at moments t−1 and t, respectively; xt is the input sequence value at moment t (it is the
candidate output state); Wr, Wz, Wh̃, Ur and Uz are the corresponding weight coefficient
matrices of each component; tanh is the hyperbolic tangent function (it is the Hadamard
product of the matrix).

GRU can process the data only from forward to backward and ignores the effect of the
latter moment on the data of the previous moment. To combine forward and backward data

Appl. Sci. 2022, 12, 9994 6 of 19

for integrated learning, BiGRU is used for further learning of the features of the malware.
In the BiGRU, which consists of a forward gated recurrent unit and a backward gated
recurrent unit, the network model learns the sequence from forward to backward and vice
versa. The hidden layer contains two output units with the same input and is connected to
the same output. The features can be better learned to increase the time series involved in
training, thus providing higher accuracy for longer time series data.

3. Malware Classification Method Based on Sequence Features and Deep Learning

This section introduces the proposed TCN-BiGRU network. This network can extract
past data features by one-dimensional, causal convolution with a simple structure, low
memory consumption, fast operation speed, and easy superposition. The bidirectional GRU
can capture a series of long-term dependencies in both directions, and the bidirectional
GRU model can effectively utilize future moment information, which can compensate for
the disadvantage of the one-way structure of the causal sequence in the TCN structure
and the lack of comprehensive information extraction. The advantages of the two models
were fully utilized and combined into a new hybrid model TCN-BiGRU, which enabled the
model to conduct more comprehensive feature extraction to further improve the accuracy
of malware classification and identification.

First, sample feature extraction was conducted. The originally extracted one-hot
encoding and standards were normalized, after which the convolution operation was
conducted using TCN to shorten the long-time sequence and extract the deep features of
the network. At the same time, the maximum pooling and average pooling operations were
conducted, and the extracted features were fused as the pooling output; after normalization
and reconstruction, they were passed into the BiGRU network for the deep extraction of
temporal features to complete malware detection classification. Finally, the most suitable
hyperparameters were selected for the model to improve detection performance. The
malware classification process included three stages: pre-processing, feature extraction and
training, and classification. The model structure is shown in Figure 5.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 21

Figure 5. Malware detection model structure.

3.1. Features Extraction

(1) Malware opcode features

Programs are sequential instructions, and the underlying operation of a computer con-

sists of the execution of instructions. Instructions generally comprise two parts: opcodes and

operands. One of the static features commonly used in malware detection is the opcode fea-

ture. Batch disassembly is performed using the IDA pro tool on an executable PE file to obtain

the .asm file with opcode sequence. The .asm file is generally divided into three segments:

.text, .data, and .bss. The opcodes in the .text segment are shown in Figure 6.

Figure 6. Original opcode sequence.

Figure 5. Malware detection model structure.

Appl. Sci. 2022, 12, 9994 7 of 19

3.1. Features Extraction

(1) Malware opcode features

Programs are sequential instructions, and the underlying operation of a computer
consists of the execution of instructions. Instructions generally comprise two parts: opcodes
and operands. One of the static features commonly used in malware detection is the opcode
feature. Batch disassembly is performed using the IDA pro tool on an executable PE file
to obtain the .asm file with opcode sequence. The .asm file is generally divided into three
segments: .text, .data, and .bss. The opcodes in the .text segment are shown in Figure 6.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 21

Figure 5. Malware detection model structure.

3.1. Features Extraction

(1) Malware opcode features

Programs are sequential instructions, and the underlying operation of a computer con-

sists of the execution of instructions. Instructions generally comprise two parts: opcodes and

operands. One of the static features commonly used in malware detection is the opcode fea-

ture. Batch disassembly is performed using the IDA pro tool on an executable PE file to obtain

the .asm file with opcode sequence. The .asm file is generally divided into three segments:

.text, .data, and .bss. The opcodes in the .text segment are shown in Figure 6.

Figure 6. Original opcode sequence. Figure 6. Original opcode sequence.

An opcode can usually be divided into four categories: data movement, arithmetic or
logic, control flow types, and others, from which the more important opcodes are filtered
to extract the opcode sequence text. The opcode codes category is shown in Table 1.

Table 1. Operation codes.

Category Operation Codes

Data move mov, movzx, push, pop, lea, xchg
Arithmetic/logic add, sub, inc, dec, imul, or, xor, shl, shr, ror, rol
Control flow jmp, jz, cmp, jnb, call, retf, retn
Other nop

Figure 6 shows a sample of 0A32eTdBKayjCWhZqDOQ. The opcodes in each .asm file
are sequentially extracted by regularization. The extracted opcode sequence text is shown
in Figure 7.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 20

An opcode can usually be divided into four categories: data movement, arithmetic
or logic, control flow types, and others, from which the more important opcodes are
filtered to extract the opcode sequence text. The opcode codes category is shown in
Table 1.

Table 1. Operation codes.

Category Operation Codes
Data move mov, movzx, push, pop, lea, xchg
Arithmetic/logic add, sub, inc, dec, imul, or, xor, shl, shr, ror, rol
Control flow jmp, jz, cmp, jnb, call, retf, retn
Other nop

Figure 6 shows a sample of 0A32eTdBKayjCWhZqDOQ. The opcodes in each .asm
file are sequentially extracted by regularization. The extracted opcode sequence text is
shown in Figure 7.

Figure 7. Opcode sequence after pre-processing.

The opcode sequences differ. Some are extremely long, so to extract more complete
information, the method based on n-gram in natural language processing is used to
extract the opcode features. By treating each opcode as a word, the n-gram method takes
subsequences of the opcode sequence according to the magnitude of the n value with a
sliding window, and then the frequency of the corresponding subsequence is calculated.
Then, a word frequency threshold is set, and the subsequence with a particular number
of occurrences above the threshold is retained. The retained subsequence is a feature of
the malware.
(2) Malware bytecode features

The malware itself is a file consisting of a series of bytes. One idea is to convert the
binary file of malware into a grayscale image using the similarity between the values of
the bytes and the range of pixel values taken in the grayscale image. The classification of
malware families is achieved based on the texture similarity of grayscale images of the
same family of malware and the different textures due to the different structures of
different families of malware. To detect similar variants of malware, binary files can be
better differentiated such that the impact of obfuscation is reduced.

Malware is converted into a sequence consisting of a binary, and the
hexadecimal .byte file is read in binary, then divided by 16 bits in order, and converted
into decimal values within [0, 256). The first line number of each byte file is ignored, and
only the hexadecimal values after the line number are extracted. Only the values and
letters in the byte file are kept, and the rest of the symbols are replaced with zeros, thus
converting the malware file into a one-dimensional vector of decimal numbers.

The steps for extracting bytecode sequence features from malware are shown in
Algorithm 1.

Figure 7. Opcode sequence after pre-processing.

The opcode sequences differ. Some are extremely long, so to extract more complete
information, the method based on n-gram in natural language processing is used to ex-
tract the opcode features. By treating each opcode as a word, the n-gram method takes

Appl. Sci. 2022, 12, 9994 8 of 19

subsequences of the opcode sequence according to the magnitude of the n value with a
sliding window, and then the frequency of the corresponding subsequence is calculated.
Then, a word frequency threshold is set, and the subsequence with a particular number
of occurrences above the threshold is retained. The retained subsequence is a feature of
the malware.

(2) Malware bytecode features

The malware itself is a file consisting of a series of bytes. One idea is to convert the
binary file of malware into a grayscale image using the similarity between the values of
the bytes and the range of pixel values taken in the grayscale image. The classification
of malware families is achieved based on the texture similarity of grayscale images of
the same family of malware and the different textures due to the different structures of
different families of malware. To detect similar variants of malware, binary files can be
better differentiated such that the impact of obfuscation is reduced.

Malware is converted into a sequence consisting of a binary, and the hexadecimal .byte
file is read in binary, then divided by 16 bits in order, and converted into decimal values
within [0, 256). The first line number of each byte file is ignored, and only the hexadecimal
values after the line number are extracted. Only the values and letters in the byte file are
kept, and the rest of the symbols are replaced with zeros, thus converting the malware file
into a one-dimensional vector of decimal numbers.

The steps for extracting bytecode sequence features from malware are shown in
Algorithm 1.

Algorithm 1: The hex file is converted to a sequence of decimal values within [0, 256).

Input: hexadecimal file;
Output: a one-dimensional vector-matrix representation of file byte sequence.
1. function getMatrixfrom(file)
2. f = open(file,“rb”); /*read the file in binary */
3. hexst = binascii.hexlify(f); /*convert binary file to a hexadecimal string */
4. Byte = np.array([int(hexst [i : i + 2] , 16) for i in range(0, len(hexst), 2)]);
/*convert the string to an unsigned decimal number by byte division into a byte*/
5. return byte;
6. end function

Similarly, the length of the sequence of each sample varies. To extract more complete
information, intercept a particular length, then use each decimal number within that length
as a feature, then calculate the frequency of each decimal value.

3.2. Feature Pre-Processing

After the malware features (opcode and bytecode features) were extracted, we checked
whether this data had missing values, treated the missing values as 0 uniformly, and
then performed standard normalization on the malware feature data. Data normalization
reduced the variance of the features to a smaller interval, reduced the impact of the
difference in the size of different feature values, and improved the convergence rate of the
model. Current normalization methods are commonly used to normalize the values to
(0,1) and (−1, 1). The normalization method used in this study was maximum-minimum
normalization, which scales the values to the interval (0,1), as shown in Equation (5).

x′ =
x−Mmin

Mmax −Mmin
(5)

where x′ is the scaled value, Mmin is the smallest value in the feature dimension, and Mmax
is the largest value in the feature dimension.

Appl. Sci. 2022, 12, 9994 9 of 19

In the process of malicious code feature extraction, there are many zero values. This
method can retain the zeros in the features and can handle the data values with small
variances in the features.

3.3. Combine TCN and BiGRU for Feature Extraction

The advantages of the TCN model are extraction of past data by one-dimensional
causal convolution to guarantee temporality, time savings via the skip connect block,
extraction of temporal features by dilated convolution, and the fusion of the average
pooling layer with the maximum pooling layer. The advantage of using the GRU model is
its nonlinear fitting ability to efficiently extract the data features and its faster convergence
speed than the LSTM model [24]. The two-way GRU model better captures the sequence
features of the opcode by collecting information forward and backward, thus improving
the accuracy of model classification. These two models are integrated into the TCN-BiGRU
model to obtain better accuracy as well as lower loss values. The structure of the integrated
model is shown in Figure 8.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 21

Hidden

Output

d=2

d=1

Input

T1 T2
... Tn-1 Tn

Sequential convolution

...
2
T n

T1
T 1n−

T

GRU3GRU2GRU1 GRU128
...

GRU3GRU2GRU1 GRU64
...

Gated Recurrent Unit

Input

M-dimensional feature

Output

Maxpooling AveragePooling

Figure 8. TCN-BiGRU model.

In Figure 8, the TCN-BiGRU model structure includes:

a. Input layer: processed malicious code opcode feature data and shape (total number

of samples, time step, and feature dimension).

b. Time series convolutional network layer: the feature vectors jT were extracted via

TCN, and the residual units were set up in two layers. A residual unit consisted of

two convolutional units and one nonlinear mapping, and the convolutional kernel

weights were normalized. The residual unit in Figure 8 was used only as the input

layer to the hidden layer; the same was true for the hidden layer to the output layer.

The convolution kernel size value was 4, and the dilation coefficient was (1, 2). Drop-

out was added to prevent overfitting in training.

c. The different features extracted from the average pooling layer, as well as the maxi-

mum pooling layer, were fused as pooling outputs. We merged the average with the

maximum pooling layer.

d. The combined pooling layer consisted of a maximum pooling and an average pooling

layer, each of which was calculated as shown in Equation (6). Maximum pooling and

average pooling were obtained by traversing the pooling window with the input

from the previous layer of the network. The pooled maximum and average values

were then summed and passed to the next layer of the model structure.

max

max

max

()

 =

=

=

avg

fuse avg

h pool h

h avgpool h

h h h

（ ）

 (6)

where h is the input from the upper layer network into the fused pooling layer; maxh is

the maximum pooling output; avgh is the average pooling output; and fuseh is the out-

put obtained by combining maximum pooling and average pooling in parallel.

e. Bidirectional gated recurrent unit layer: The figure shows the structure of the GRU

unit when it had two layers. The output vector of the TCN model was first used as

the input of the GRU to extract the long-term correlation in the time series. Then the

data were output with the results obtained from two layers of BiGRU.

f. Output layer: Output the result of the last moment of the BiGRU to the classification

layer.

Figure 8. TCN-BiGRU model.

In Figure 8, the TCN-BiGRU model structure includes:

a. Input layer: processed malicious code opcode feature data and shape (total number
of samples, time step, and feature dimension).

b. Time series convolutional network layer: the feature vectors Tj were extracted via
TCN, and the residual units were set up in two layers. A residual unit consisted of
two convolutional units and one nonlinear mapping, and the convolutional kernel
weights were normalized. The residual unit in Figure 8 was used only as the input
layer to the hidden layer; the same was true for the hidden layer to the output
layer. The convolution kernel size value was 4, and the dilation coefficient was (1, 2).
Dropout was added to prevent overfitting in training.

c. The different features extracted from the average pooling layer, as well as the maxi-
mum pooling layer, were fused as pooling outputs. We merged the average with the
maximum pooling layer.

d. The combined pooling layer consisted of a maximum pooling and an average pooling
layer, each of which was calculated as shown in Equation (6). Maximum pooling
and average pooling were obtained by traversing the pooling window with the input

Appl. Sci. 2022, 12, 9994 10 of 19

from the previous layer of the network. The pooled maximum and average values
were then summed and passed to the next layer of the model structure.

hmax = maxpool(h)
havg = avgpool(h)
h f use = hmax ⊕ havg

(6)

where h is the input from the upper layer network into the fused pooling layer; hmax is
the maximum pooling output; havg is the average pooling output; and h f use is the output
obtained by combining maximum pooling and average pooling in parallel.

e. Bidirectional gated recurrent unit layer: The figure shows the structure of the GRU
unit when it had two layers. The output vector of the TCN model was first used as
the input of the GRU to extract the long-term correlation in the time series. Then the
data were output with the results obtained from two layers of BiGRU.

f. Output layer: Output the result of the last moment of the BiGRU to the classification layer.

3.4. Classification Output Layer

The classification output layer contained fully connected and softmax layers. The fully
connected layer was used to obtain the display expression of the classification, and the
softmax function was used to calculate the classification result of malicious code y. The
structure of the classification output layer is shown in Figure 9.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21

3.4. Classification Output Layer

The classification output layer contained fully connected and softmax layers. The

fully connected layer was used to obtain the display expression of the classification, and

the softmax function was used to calculate the classification result of malicious code y.

The structure of the classification output layer is shown in Figure 9.

÷

÷

÷e

1ze

2ze

3ze

1z

2z

3z

1

3

1

1

izz

i

y e e
=

=

2

3

2

1

izz

i

y e e
=

=

3

3

3

1

iz z

i

y e e
=

=

bias

2
x

3x

e

e

e

＋
1

i

k
z

i

e

=

÷
1

k i

k
z z

k

i

y e e
=

= k
z

1
x

k
x

j j
z w x=

kze

Figure 9. The classification output layer.

The fully connected layer multiplied the weight matrix by the input vector and added

a bias to map n (−∞, +∞) real numbers to K (−∞, +∞) real numbers (fractions); Softmax

mapped K real numbers. The real numbers of (−∞, +∞) were mapped to K (0,1) real num-

bers (probabilities) while ensuring that their sum was 1.

i iy softmax() softmax()z x= = +w b (7)

where y denotes the probability of classification into malicious family type I; w denotes

the weight matrix of the fully connected layer; and b is the bias vector of class i; at time t,

replace x with tnh .

The softmax layer superimposed the input features linearly with the weights. The

number of neurons in the softmax layer was set by the number of malicious code types.

4. Experiments and Analysis of Results

4.1. Experimental Setup

To test the performance of the malicious code classification method fusing TCN and

BiGRU, the following experiments were implemented:

Experiment 1: Feature selection experiment

Experiment 2: TCN-BiGRU model performance analysis experiment

Experiment 3: Comparison experiments of different pooling methods

Experiment 4: Model ablation comparison experiment

Experiment 5: Comparison experiments of different classification algorithms.

4.2. Experimental Environment and Data Set

The experimental environment was a computer configured with Win10, Intel Core

(TM)-9880H CPU @ 2.30 GHz, 64 GB RAM, Quadro RTX 4000 GPU; the programming

environment was PyCharm2021.2.2, using the Python 3.7 language in a CUDA 11.0 accel-

erated environment. The neural network model used TensorFlow 2.4.1 and Keras 2.4.3

versions of the deep learning framework.

The experimental datasets were from the open-source dataset provided by Microsoft

[15], and the PE samples were from the Datacon Open Data Project provided by Qianxin

Softmax

Figure 9. The classification output layer.

The fully connected layer multiplied the weight matrix by the input vector and added
a bias to map n (−∞, +∞) real numbers to K (−∞, +∞) real numbers (fractions); Softmax
mapped K real numbers. The real numbers of (−∞, +∞) were mapped to K (0,1) real
numbers (probabilities) while ensuring that their sum was 1.

yi = softmax(z) = softmax(wTx + bi) (7)

where y denotes the probability of classification into malicious family type I; w denotes
the weight matrix of the fully connected layer; and b is the bias vector of class i; at time t,
replace x with htn.

The softmax layer superimposed the input features linearly with the weights. The
number of neurons in the softmax layer was set by the number of malicious code types.

Appl. Sci. 2022, 12, 9994 11 of 19

4. Experiments and Analysis of Results
4.1. Experimental Setup

To test the performance of the malicious code classification method fusing TCN and
BiGRU, the following experiments were implemented:

Experiment 1: Feature selection experiment
Experiment 2: TCN-BiGRU model performance analysis experiment
Experiment 3: Comparison experiments of different pooling methods
Experiment 4: Model ablation comparison experiment
Experiment 5: Comparison experiments of different classification algorithms.

4.2. Experimental Environment and Data Set

The experimental environment was a computer configured with Win10, Intel Core
(TM)-9880H CPU @ 2.30 GHz, 64 GB RAM, Quadro RTX 4000 GPU; the programming envi-
ronment was PyCharm2021.2.2, using the Python 3.7 language in a CUDA 11.0 accelerated
environment. The neural network model used TensorFlow 2.4.1 and Keras 2.4.3 versions of
the deep learning framework.

The experimental datasets were from the open-source dataset provided by Microsoft [15],
and the PE samples were from the Datacon Open Data Project provided by Qianxin
(China) [25]. The malicious code families in the dataset provided by Microsoft were
divided into 9 categories, with 10,868 malware samples. Each sample file had two formats:
.asm and .bytes; the PE samples provided by Qianxin had two categories, containing a
large amount of mining-type malicious code and non-mining samples. These are the latest
real samples captured from the existing network; thus, these samples are likely to contain a
large number of shelling samples and resource obfuscation samples. To prevent samples’
mistaken execution from infecting the environment, the MZ and PE headers, as well as
the import and export table parts, were removed. To ensure that the dataset samples
have a certain level of diversity, similar samples were filtered. Therefore, in actual use,
the MZ and PE headers were artificially added to extract the opcode features, and the
samples were disassembled into .asm files using IDA tools. The family name, type number,
number of samples, and expression number of the malware dataset used are shown in
Figures 10 and 11.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 21

(China) [25]. The malicious code families in the dataset provided by Microsoft were di-

vided into 9 categories, with 10,868 malware samples. Each sample file had two formats:

.asm and .bytes; the PE samples provided by Qianxin had two categories, containing a

large amount of mining-type malicious code and non-mining samples. These are the latest

real samples captured from the existing network; thus, these samples are likely to contain

a large number of shelling samples and resource obfuscation samples. To prevent sam-

ples’ mistaken execution from infecting the environment, the MZ and PE headers, as well

as the import and export table parts, were removed. To ensure that the dataset samples

have a certain level of diversity, similar samples were filtered. Therefore, in actual use,

the MZ and PE headers were artificially added to extract the opcode features, and the

samples were disassembled into .asm files using IDA tools. The family name, type num-

ber, number of samples, and expression number of the malware dataset used are shown

in Figures 10 and 11.

Figure 10. Kaggle malware sample.

Figure 11. Datacon sample.

To fully evaluate our method, experiments were conducted on two different datasets

according to different methods to fully validate the model. The first method used 9 mali-

cious families in Kaggle malicious samples labeled 1–9, and the dataset was noted as 9-

Figure 10. Kaggle malware sample.

Appl. Sci. 2022, 12, 9994 12 of 19

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 21

(China) [25]. The malicious code families in the dataset provided by Microsoft were di-

vided into 9 categories, with 10,868 malware samples. Each sample file had two formats:

.asm and .bytes; the PE samples provided by Qianxin had two categories, containing a

large amount of mining-type malicious code and non-mining samples. These are the latest

real samples captured from the existing network; thus, these samples are likely to contain

a large number of shelling samples and resource obfuscation samples. To prevent sam-

ples’ mistaken execution from infecting the environment, the MZ and PE headers, as well

as the import and export table parts, were removed. To ensure that the dataset samples

have a certain level of diversity, similar samples were filtered. Therefore, in actual use,

the MZ and PE headers were artificially added to extract the opcode features, and the

samples were disassembled into .asm files using IDA tools. The family name, type num-

ber, number of samples, and expression number of the malware dataset used are shown

in Figures 10 and 11.

Figure 10. Kaggle malware sample.

Figure 11. Datacon sample.

To fully evaluate our method, experiments were conducted on two different datasets

according to different methods to fully validate the model. The first method used 9 mali-

cious families in Kaggle malicious samples labeled 1–9, and the dataset was noted as 9-

Figure 11. Datacon sample.

To fully evaluate our method, experiments were conducted on two different datasets ac-
cording to different methods to fully validate the model. The first method used 9 malicious
families in Kaggle malicious samples labeled 1–9, and the dataset was noted as 9-class-data.
The second method used 0, 1 sub-table labeling on Datacon samples as sample labels, and
the dataset was noted as 2-Class-Datacon; a five-fold cross-validation method was used
to randomly divide the data into 10 parts, selecting 9 of these parts as the training set and
1 part as the test set.

4.3. Experimental Evaluation Criteria

The experiment selected common evaluation criteria in the field of malware classifica-
tion detection: accuracy (Acc), precision (PR), recall (RR), and f1-score (F1) to evaluate the
classification of the network. These criteria were calculated as follows:

Acc = TP+TN
TP+TN+FP+FN

PR = TP
TP+FN

RR = TP
TP+FP

F1 = 2×PR×RR
PR+RR

(8)

where q is the number of samples; d is the number of categories; the value type is the
processed one-hot code (string consisting of 0 or 1), and ŷid is the output value of the
softmax function (∑d=9

d=1 ŷid = 1). TP is the true class (meaning that malware was correctly
classified as malware), FN is the false negative class (meaning that malware was incorrectly
classified as normal software), FP is the false positive class (meaning that normal software
was incorrectly classified as malware), and TN is the true negative class (meaning that
normal software was correctly classified as normal software).

Model performance was presented using a visual representation of the confusion
matrix, as shown in Table 2.

Table 2. Confusion Matrix.

Location
Real Label

For Malware For Not Malware

Malware TP FP
Not malware FN TN

Appl. Sci. 2022, 12, 9994 13 of 19

4.4. Feature Selection Experiments

After obtaining the opcode sequence, the n-gram method was used for feature extrac-
tion of the instruction file from the .asm file. The frequency f of the instruction n-gram in
the .asm file was calculated as the feature and then used as input.

Normalization pre-processes the values of the frequency of the feature extracted
from the n-gram of the malicious code, and the one-hot encoding method pre-processes
the values of the malicious family categories. For example, the Ramnit family can be
represented as 000000001.

In the experiment, the feature extraction was first performed by selecting N = 3, and
then the instruction frequency threshold was selected as 300. Then, the test was conducted
by increasing the value at 200 intervals, and the highest value selected was 1100. The
experimental results showed that when instruction frequency increased, classification
accuracy showed a trend of first rising and then decreasing, and the classification effect
was best when the frequency was selected as 700, as shown in the lower panel of Figure 12.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 21

Figure 12. Experiment on the selection of N value and frequency.

In the experiments on change in the N value, the comparison experiment of N value

was conducted using the frequency with the best effect in the instruction frequency ex-

periment, i.e., a frequency of 700. As the N value increased, classification accuracy showed

a trend similar to that of frequency, which also showed a trend of increasing and then

decreasing. Through analysis of the experimental results, the classification effect was best

at N = 3, and the experimental results are shown in the upper panel of Figure 13. Therefore,

in subsequent experiments with the classification model, N = 3 was selected as the feature

for input, and a frequency of 700 was selected as the input to the model.

Figure 13. Sequence length selection experiment.

For the byte code feature, the byte sequence with a length of fewer than 1500 bytes

frequency was selected, then the experiment was conducted by increasing the frequency

at an interval of 1000, and sequences with no more than 4500 in length were selected for

the experiment. The experiment found that accuracy gradually decreased, so sequences

within a length of 1000 were selected for training. The experiment then found that accu-

Figure 12. Experiment on the selection of N value and frequency.

In the experiments on change in the N value, the comparison experiment of N value
was conducted using the frequency with the best effect in the instruction frequency exper-
iment, i.e., a frequency of 700. As the N value increased, classification accuracy showed
a trend similar to that of frequency, which also showed a trend of increasing and then
decreasing. Through analysis of the experimental results, the classification effect was best
at N = 3, and the experimental results are shown in the upper panel of Figure 13. Therefore,
in subsequent experiments with the classification model, N = 3 was selected as the feature
for input, and a frequency of 700 was selected as the input to the model.

For the byte code feature, the byte sequence with a length of fewer than 1500 bytes
frequency was selected, then the experiment was conducted by increasing the frequency
at an interval of 1000, and sequences with no more than 4500 in length were selected for
the experiment. The experiment found that accuracy gradually decreased, so sequences
within a length of 1000 were selected for training. The experiment then found that accuracy
decreased compared to sequences within a length of 1500; thus, in subsequent features, we
selected byte code with lengths below a 1500 bytes frequency for the fusion experiment.

Appl. Sci. 2022, 12, 9994 14 of 19

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 21

Figure 12. Experiment on the selection of N value and frequency.

In the experiments on change in the N value, the comparison experiment of N value

was conducted using the frequency with the best effect in the instruction frequency ex-

periment, i.e., a frequency of 700. As the N value increased, classification accuracy showed

a trend similar to that of frequency, which also showed a trend of increasing and then

decreasing. Through analysis of the experimental results, the classification effect was best

at N = 3, and the experimental results are shown in the upper panel of Figure 13. Therefore,

in subsequent experiments with the classification model, N = 3 was selected as the feature

for input, and a frequency of 700 was selected as the input to the model.

Figure 13. Sequence length selection experiment.

For the byte code feature, the byte sequence with a length of fewer than 1500 bytes

frequency was selected, then the experiment was conducted by increasing the frequency

at an interval of 1000, and sequences with no more than 4500 in length were selected for

the experiment. The experiment found that accuracy gradually decreased, so sequences

within a length of 1000 were selected for training. The experiment then found that accu-

Figure 13. Sequence length selection experiment.

4.5. TCN-BiGRU Model Performance Analysis Experiments

In the TCN-BiGRU model, the choice of some hyperparameters in the model could
impact the experimental results. A single feature (n-gram method) was used in tuning the
model to optimize model parameters. Two hyperparameters, the number of filters and the
number of convolutional kernels, were selected among the optimization class parameters,
and the number of BiGRU layers and the number of neurons per layer were selected as
variables from the model class parameters. The number of model iterations was set at 50,
the dilation coefficient in TCN was exponentially increased by 2, the dilation coefficient
was set to (1, 2), the optimization algorithm was chosen as Adamax, and the learning rate
was set at 0.002. To avoid the overfitting problem, a dropout layer was added, and the
value was taken as 0.2. To make the experimental data more accurate and valid, a five-fold
cross-validation method was used. The prediction data obtained from the experiments
regarding the classification of malicious code families when setting a different number
of filters, the number of convolutional kernels, and the number of neurons are shown in
Tables 3–5, respectively.

Table 3. Parameter setting of model.

Model Parameter Real Label

Batch size setting 64
Optimizer Adamax
Optimizer learning rate 0.002
Epoch setting 50
Number of TCN filters 7
Number of TCN convolution kernels 4
TCN dilation coefficient (1, 2) cc
Number of BiGRU units 32\32
Dropout rate 0.2

Using the grid search algorithm, parameter search experiments were conducted for
the filters (5, 7, 10, 15, 20) and the number of convolutional kernels (2, 3, 4, 5, 6) to finally
determine the optimal parameter settings for the model, as shown in Table 4.

According to the values of each parameter obtained from the above experiments, the
fusion of two features with N = 3, frequency = 700 and the first 1500 byte sequences was
performed again using the TCN-BiGRU classification model.

Appl. Sci. 2022, 12, 9994 15 of 19

Table 4. Parameter setting of model.

Malicious Code Family Precision Recall F1-Score

1 0.99 1.00 1.00
2 1.00 1.00 1.00
3 0.99 1.00 1.00
4 1.00 1.00 1.00
5 1.00 1.00 1.00
6 0.99 1.00 0.99
7 0.94 1.00 0.97
8 0.99 0.99 0.99
9 0.99 0.99 0.99
accuracy - - 0.99
Overall 99.55% 99.54% 99.54%

Table 5. Parameter setting of model.

Malicious Code Family Precision Recall F1-Score

0 0.94 0.93 0.93
1 0.96 0.97 0.96
accuracy - - 0.95
Overall 96.37% 96.63% 96.50%

The confusion matrix for the classification of the 9-class-data dataset is shown in
Figure 14, with “Real label” on the vertical axis indicating true malicious code and “Predic-
tion” on the horizontal axis indicating the prediction made by the model.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 21

Figure 14. Confusion matrix.

Table 5 shows in more detail the precision, recall, and FN-score (N = 1) of the predic-

tions for each category. Note that for the Lollipop class, Vundo class, and Simda class, the

classification is 100%. In the Kelihos_ver1 class, the classification is poor, with an accuracy

of only 94%, while the remainder reached more than 99%. The family class Kelihos_ver1

belongs to the backdoor virus type in the broad category, while there are three families

that are all backdoor viruses. Their poor classification was probably due to confusion with

similar families.

Table 4. Parameter setting of model.

Malicious Code Family Precision Recall F1-Score

1 0.99 1.00 1.00

2 1.00 1.00 1.00

3 0.99 1.00 1.00

4 1.00 1.00 1.00

5 1.00 1.00 1.00

6 0.99 1.00 0.99

7 0.94 1.00 0.97

8 0.99 0.99 0.99

9 0.99 0.99 0.99

accuracy - - 0.99

Overall 99.55% 99.54% 99.54%

Table 6 details the precision, recall, and fN-score (N = 1) for each category of predic-

tions on the 2-Class-Datacon dataset. The table shows that the results were better for the

Not_Miner classification on the 2-Class-Datacon dataset, with an accuracy greater than

96% and recall at 97%. The overall accuracy of the 2-Class-Datacon dataset was slightly

worse, probably due to the presence of many shelled samples and resource confusion as

this dataset was collected from the current network. As for whether model generalization

ability was good on the 2-Class-Datacon dataset, model ablation was set, and different

comparison tests were performed for verification.

162 256 272 30 11 991 32 131 12 99
Ra
mn
it

Lo
ll
ip
op

Ke
li
ho
s_
ve
r3

Vu
nd
o

Si
md
a

Tr
ac
ur

Ke
li
ho
s_
ve
r1

Ob
fu
sc
at
or
.A
CY

Ga
ta
k

Ga
ta
k

Ob
fu
sc
at
or
.A
CYKe

li
ho
s_
ve
r1

Tr
ac
ur

Si
md
a

Vu
nd
oKe

li
ho
s_
ve
r3

Lo
ll
ip
op

Ra
mn
it

0.000

174.0

348.0

522.0

696.0

870.0

Re
al

 l
ab

el

Prediction

Figure 14. Confusion matrix.

Table 5 shows in more detail the precision, recall, and FN-score (N = 1) of the predic-
tions for each category. Note that for the Lollipop class, Vundo class, and Simda class, the
classification is 100%. In the Kelihos_ver1 class, the classification is poor, with an accuracy
of only 94%, while the remainder reached more than 99%. The family class Kelihos_ver1
belongs to the backdoor virus type in the broad category, while there are three families
that are all backdoor viruses. Their poor classification was probably due to confusion with
similar families.

Table 6 details the precision, recall, and fN-score (N = 1) for each category of predic-
tions on the 2-Class-Datacon dataset. The table shows that the results were better for the
Not_Miner classification on the 2-Class-Datacon dataset, with an accuracy greater than

Appl. Sci. 2022, 12, 9994 16 of 19

96% and recall at 97%. The overall accuracy of the 2-Class-Datacon dataset was slightly
worse, probably due to the presence of many shelled samples and resource confusion as
this dataset was collected from the current network. As for whether model generalization
ability was good on the 2-Class-Datacon dataset, model ablation was set, and different
comparison tests were performed for verification.

Table 6. Ablation experiment of model.

Model Dataset Accuracy Precision Recall F1-Score

TCN
9-class-data 99.36% 99.37% 99.36% 99.36%
2-class-Datacon 94.62% 95.98% 95.81% 95.89%

GRU
9-class-data 99.36% 99.29% 99.35% 99.32%
2-class-Datacon 95.7% 95.8% 95.72% 95.76%

TCN-GRU
9-class-data 99.54% 99.46% 99.54% 99.50%
2-class-Datacon 95.52% 95.62% 95.63% 95.62%

TCN-BiGRU
9-class-data 99.72% 99.55% 99.54% 99.54%
2-class-Datacon 96.54% 96.37% 96.63% 96.50%

4.6. Model Ablation Experiments

To verify the detection effect of the model proposed, model ablation experiments were
performed. Under the same experimental conditions, TCN, GRU, TCN-GRU, and our
model were compared on two different datasets to detect the corresponding results of each
model for various indexes of the dataset. The detection results are shown in Table 6.

Observe from Table 7 that the proposed model significantly improved the classification
effect of malicious samples, with accuracy up to 99.72% and 96.54% on the two datasets,
respectively. The 9-Class-Datacon dataset has an accuracy improvement of 0.36%, 0.36%,
and 0.18% using TCN, GRU, and TCN-GRU, respectively. The accuracy of the 2-Class-
Datacon dataset was improved by 1.92%, 0.84%, and 1.02% using TCN, GRU, and TCN-
GRU, respectively. Observing the results of the accuracy, completeness, and F1 values of
the two datasets on the three models TCN, GRU, and TCN-GRU, it was found that the
proposed TCN-BiGRU model outperformed TCN, GRU, and TCN-GRU in all indexes,
thus verifying that the combination of both TCN and BiGRU in the model improved the
detection effect for malicious code.

Table 7. Accuracy for different pooling methods.

Dataset No Pooling Average Pooling Maximum Pooling Pooling Fusion

9-class-data 99.45% 99.54% 99.45% 99.72%
2-class-Datacon 94.92% 95.10% 95.28% 96.54%

4.7. Comparison Experiments of Different Pooling Methods

To solve the problem of insufficient feature extraction abilities of the model, this
study proposed a pooling fusion method that simultaneously averaged and maximized
the pooling of data and performed parallel pooling. This section presents a comparison
experiment on the effect of different pooling methods on the performance of malicious code
classification. The model adopted four schemes: no pooling, average pooling, maximum
pooling, and pooling fusion. The classification accuracy for both datasets is shown in
Table 8.

From Table 8, observe that the method using pooling fusion has higher detection
accuracy compared with schemes that perform average pooling or maximum pooling
alone. By using pooling fusion to combine these two features and complement each other,
we better reflected the nature of the network attack data and obtain higher identification
accuracy. This experiment demonstrated that our pooling fusion method can significantly
improve the ability of the model to extract features.

Appl. Sci. 2022, 12, 9994 17 of 19

4.8. Comparison Experiments for Classification Algorithms

Regarding model performance, comparative experiments were conducted with ref-
erence to existing literature. Comparison experiments were done on the 9-Class-data
dataset with reference to the relevant literature [9,10,26–28]. Experimental results are
shown in Table 8. Among the five comparative studies, two focused on machine learning,
one was related to gene sequence classification, and the remaining two concerned deep
learning models. Burnaev et al. [26] used opcode features and grayscale map features,
which were extracted and later detected by svm for classification. Narayanan et al. [27]
processed grayscale graphs converted from malware, downscaling the features by PCA,
and then classifying them using the machine learning model known as K nearest neigh-
bor. Drew et al. [28] used a genetic detection method similar to Strand to classify text.
Gibert et al. [10] extracted byte and opcode sequences, and then used a classifier composed
of two CNNs for classification. Yan et al. [11] extracted features via a CNN model for
grayscale maps and LSTM model for opcode features, then fused the results for classifi-
cation. These methods produced good results, but there remained a gap between them
and the method of this study. Under the accuracy evaluation criterion, our proposed
TCN-BiGRU model integrating opcode and byte features achieved 99.72% accuracy; the
accuracy values of the five comparison studies were all below 99.72%. Therefore, our
proposed model incorporating both features and fusing TCN and BiGRU performed best.

Table 8. 9-class-data dataset_model comparison.

Model No Pooling Average Pooling

One-class SVM [26] Opcode + Grayscale map 92%
PCA and kNN [27] Grayscale map 96.6%
Strand Gene Sequence [28] Asm sequence 98.59%
Orthrus [10] Byte + Opcode 99.24%
MalNet [11] Opcode + Grayscale map 99.36%
Model in this paper Opcode + Byte 99.72%

For the 2-Class-Datacon dataset, we referred to the literature [29–31] to perform
comparison experiments with the results shown in Table 9. Among these three comparison
studies, one was on integration learning, one was on deep learning, and one was on
machine learning. Guo et al. [29] extracted grayscale maps of malicious samples, extracts
feature with different parameters for GIST descriptors, and then adopted the KNN and
random forest algorithms to integrate classification by voting algorithm. Saadat et al. [30]
also processed malicious sample images; it first pre-trained a good convolutional neural
network model and then used the Xgboost algorithm for classification. Liu et al. [31]
extracted the assembly instructions of malware samples. The assembly instructions were
then pre-processed and downscaled using the LDA algorithm and were finally trained
with the random forest algorithm for classification. These methods produced good results,
but there remain gaps between them and the method proposed in this paper. Under the
ACC evaluation criterion, our TCN-BiGRU model integrating opcode and byte features
reached 96.54% accuracy; the ACC values of the three comparison papers were all under
96.54%. After the above comparative experiments on two datasets, it was proved that our
proposed model integrating both features and fusing TCN and BiGRU performed best and
had strong generalization capability.

Table 9. 2-Class-Datacon model comparison.

Model No Pooling Average Pooling

KNN + RandomForest [29] Grayscale map 93.03%
CNN + Xgboost [30] Grayscale map 93.44%
LDA + RandomForest [31] Opcode 95.58%
Model in this paper Opcode + Byte 96.54%

Appl. Sci. 2022, 12, 9994 18 of 19

5. Conclusions

Threats to cyberspace security are increasing, and classification of the massive number
of viruses has become an increasingly critical issue. This study proposed a static classifi-
cation model of malicious code fused with TCN and BiGRU to extract and integrate the
opcode features and byte features of malicious code. The model focusd on the potential
features of the data and obtained the long-term dependencies existing in the sequences
through a BiGRU network in both directions. It showed several advantages, such as high
classification detection rate, anti-shelling, and obfuscation on both datasets. It also showed
good generalizability and adaptability to high data volume requirements. However, the
method used for feature extraction was relatively simple and did not bring out the full per-
formance of the features. In follow-up work, we will use a natural language classification
model to further process the samples.

Author Contributions: X.W.: conceptualization, methodology, writing—original draft; Y.S.: formal
analysis, writing—review and editing; Z.M.: conceptualization; X.H.: formal analysis;
C.C.: methodology. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Science Foundation of China (61806219, 61703426
and 61876189), the National Science Foundation of Shaanxi Provence (2021JM-226), the Young Talent
fund of the University and Association for Science and Technology in Shaanxi, China (20190108,
20220106), and the Innovation Capability Support Plan of Shaanxi, China (2020KJXX-065).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in this paper can be obtained by contacting the authors
of this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, J.; Zhang, S.; Liu, B.; Cui, B. Malware detection using machine learning based on the combination of dynamic and

static features. In Proceedings of the 27th International Conference on Computer Communication and Networks (ICCCN),
Hangzhou, China, 11 October 2018.

2. Guo, H.; Wu, J.T.; Huang, S.G.; Pan, Z.L.; Shi, F.; Yan, Z.H. Research on malware detection based on vector features of assembly
instructions. Inf. Secur. Res. 2020, 6, 113–121.

3. Raff, E.; Sylvester, J.; Nicholas, C. Learning the pe header, malware detection with minimal domain knowledge. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security; Association for Computing Machinery: New York, NY, USA, 2017;
pp. 121–132.

4. Zhao, S.; Ma, X.; Zou, W.; Bai, B. DeepCG: Classifying metamorphic malware through deep learning of call graphs. In Proceedings
of the International Conference on Security and Privacy in Communication Systems; Springer: Berlin, Germany, 2019; pp. 171–190.

5. Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode sequences as representation of executables for data-mining-based
unknown malware detection. Inf. Sci. 2013, 227, 64–82. [CrossRef]

6. Kang, B.; Yerima, S.Y.; McLaughlin, K.; Sezer, S. N-opcode Analysis for Android Malware Classification and Categorization. In Pro-
ceedings of the 2016 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), London, UK,
9 July 2016.

7. Pascanu, R.; Stokes, J.W.; Sanossian, H.; Marinescu, M.; Thomas, A. Malware classification with recurrent networks. In Proceedings
of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia,
19–24 April 2015; pp. 1916–1920.

8. Kwon, I.; Im, E.G. Extracting the Representative API Call Patterns of Malware Families Using Recurrent Neural Network. In
Proceedings of the International Conference on Research in Adaptive and Convergent Systems; Association for Computing Machinery:
New York, NY, USA, 2017; pp. 202–207.

9. Messay-Kebede, T.; Narayanan, B.N.; Djaneye-Boundjou, O. Combination of Traditional and Deep Learning based Architectures
to Overcome Class Imbalance and its Application to Malware Classification. In Proceedings of the NAECON 2018-IEEE National
Aerospace and Electronics Conference, Dayton, OH, USA, 23–26 July 2018; pp. 73–77.

10. Gibert, D.; Mateu, C.; Planes, J. Orthrus: A Bimodal Learning Architecture for Malware Classification. In Proceedings of the 2020
International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

11. Yan, J.; Qi, Y.; Rao, Q. Detecting malware with an ensemble method based on deep neural network. Secur. Commun. Netw. 2018,
2018, 7247095. [CrossRef]

http://doi.org/10.1016/j.ins.2011.08.020
http://doi.org/10.1155/2018/7247095

Appl. Sci. 2022, 12, 9994 19 of 19

12. Narayanan, B.N.; Davuluru, V.S.P. Ensemble Malware Classification System Using Deep Neural Networks. Electronics 2021, 9, 721.
[CrossRef]

13. Ahmadi, M.; Ulyanov, D.; Semenov, S.; Trofimov, M.; Giacinto, G. Novel Feature Extraction, Selection and Fusion for Effective
Malware Family Classification. In Proceedings of the 6th ACM Conference on Data and Application Security and Privacy; Association
for Computing Machinery: New York, NY, USA, 2016; pp. 183–194.

14. Zhang, Y.; Huang, Q.; Ma, X.; Yang, Z.; Jiang, J. Using Multi-features and Ensemble Learning Method for Imbalanced Malware
Classification. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 965–973.

15. Bai, J.R.; Wang, J.F. Improving malware detection using multiview ensemble learning. Secur. Commun. Netw. 2016, 9, 4227–4241.
[CrossRef]

16. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.
arXiv 2018, arXiv:1803.01271.

17. Fan, Y.Y.; Li, C.J.; Yi, Q.; Li, B.Q. Classification of Field Moving Targets Based on Improved TCN Network. Comput. Eng. 2021,
47, 106–112.

18. Yating, G.; Wu, W.; Qiongbin, L.; Fenghuang, C.; Qinqin, C. Fault Diagn-osis for Power Converters Based on Optimized Temporal
Convolutional Network. IEEE Trans. Instrum. Meas. 2020, 70, 1–10. [CrossRef]

19. Huang, Q.; Hain, T. Improving Audio Anomalies Recognition Using Temporal Convolutional Attention Network. In Proceedings
of the ICASSP 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada,
6–11 June 2021; pp. 6473–6477.

20. Zhu, R.; Liao, W.; Wang, Y. Short-term prediction for wind power based on temporal convolutional network. Energy Rep. 2020,
6, 424–429. [CrossRef]

21. Xu, Z.; Zeng, W.; Chu, X.; Cao, P. Multi-Aircraft Trajectory Collaborative Prediction Based on Social Long Short-Term Memory
Network. Aerospace 2021, 8, 115. [CrossRef]

22. Liu, Y.; Ma, J.; Tao, Y.; Shi, L.; Wei, L.; Li, L. Hybrid Neural Network Text Classification Combining TCN and GRU. In Proceedings
of the 2020 IEEE 23rd International Conference on Computational Science and Engineering (CSE), Guangzhou, China, 29
December–1 January 2020; pp. 30–35.

23. Sun, Y.C.; Tian, R.L.; Wang, X.F. Emitter signal recognition based on improved CLDNN. Syst. Eng. Electron. 2021, 43, 42–47.
24. Wang, Y.; Liao, W.L.; Chang, Y.Q. Gated Recurrent Unit Network-Based Short-Term Photovo-ltaic Forecasting. Energies 2018,

11, 2163. [CrossRef]
25. Qi An Xin Technology Research Institute. DataCon: Multidomain Large-Scale Competition Open Data for Security Research.

Available online: https://datacon.qianxin.com/opendata (accessed on 11 November 2021). (In Chinese).
26. Burnaev, E.; Smolyakov, D. One-class SVM with privileged information and its application to malware detection. In Proceedings

of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December 2016;
pp. 273–280.

27. Narayanan, B.N.; Djaneye-Boundjou, O.; Kebede, T.M. Performance analysis of machine learning and pattern recognition
algorithms for malware classification. In Proceedings of the 2016 IEEE National Aerospace and Electronics Conference (NAECON)
and Ohio Innovation Summit (OIS), Dayton, OH, USA, 25–29 July 2016; pp. 338–342.

28. Drew, J.; Hahsler, M.; Moore, T. Polymorphic malware detection using sequence classifcation methods and ensembles: BioSTAR
2016 Recommended Submission. EURASIP J. Inf. Secur. 2017, 2017, 2. [CrossRef]

29. Guo, H.; Huang, S.; Zhang, M. Classification of malware variant based on ensemble learning. In International Conference on
Machine Learning for Cyber Security; Springer: Cham, Switzerland, 2020; pp. 125–139.

30. Saadat, S.; Joseph Raymond, V. Malware classification using CNN-Xgboost model. In Artificial Intelligence Techniques for Advanced
Computing Applications; Springer: Singapore, 2021; pp. 191–202.

31. Liu, Y.; Wang, Z.; Hou, Y. A method for feature extraction of malicious code based on probabilistic topic models. J. Compute. Res.
Dev. 2019, 56, 2339–2348.

http://doi.org/10.3390/electronics9050721
http://doi.org/10.1002/sec.1600
http://doi.org/10.1109/TIM.2020.3021110
http://doi.org/10.1016/j.egyr.2020.11.219
http://doi.org/10.3390/aerospace8040115
http://doi.org/10.3390/en11082163
https://datacon.qianxin.com/opendata
http://doi.org/10.1186/s13635-017-0055-6

	Introduction
	Related Technology
	N-Gram Method
	Temporal Convolutional Network (TCN)
	Bidirectional Gated Recurrent Unit (BiGRU)

	Malware Classification Method Based on Sequence Features and Deep Learning
	Features Extraction
	Feature Pre-Processing
	Combine TCN and BiGRU for Feature Extraction
	Classification Output Layer

	Experiments and Analysis of Results
	Experimental Setup
	Experimental Environment and Data Set
	Experimental Evaluation Criteria
	Feature Selection Experiments
	TCN-BiGRU Model Performance Analysis Experiments
	Model Ablation Experiments
	Comparison Experiments of Different Pooling Methods
	Comparison Experiments for Classification Algorithms

	Conclusions
	References

