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Abstract: The de-identification of clinical reports is essential to protect the confidentiality of patients.
The natural-language-processing-based named entity recognition (NER) model is a widely used
technique of automatic clinical de-identification. The performance of such a machine learning model
relies largely on the proper selection of features. The objective of this study was to investigate the
utility of various features in a conditional-random-field (CRF)-based NER model. Natural language
processing (NLP) toolkits were used to annotate the protected health information (PHI) from a total
of 10,239 radiology reports that were divided into seven types. Multiple features were extracted by
the toolkit and the NER models were built using these features and their combinations. A total of
10 features were extracted and the performance of the models was evaluated based on their precision,
recall, and F1-score. The best-performing features were n-gram, prefix-suffix, word embedding, and
word shape. These features outperformed others across all types of reports. The dataset we used was
large in volume and divided into multiple types of reports. Such a diverse dataset made sure that the
results were not subject to a small number of structured texts from where a machine learning model
can easily learn the features. The manual de-identification of large-scale clinical reports is impractical.
This study helps to identify the best-performing features for building an NER model for automatic
de-identification from a wide array of features mentioned in the literature.

Keywords: protected health information; natural language processing (NLP); named entity recognition
(NER); de-identification; conditional random field (CRF)

1. Introduction

The electronic health record (EHR) is a collection of patients’ health information in
a digital format. Text-based medical records are an important resource for the EHR and
an enriched knowledge source for medical research. One of the major limitations of the
large-scale use of the EHR is the privacy of information in medical corpora. The Health
Insurance Portability and Accountability Act (HIPAA) in the United States defines 18 types
of protected health information (PHI) that need to be removed from medical records
before circulating these for secondary usage. The PHI items encompasses name, phone
number, geographic location, medical record number, social security number, etc. [1,2]. It
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is impractical to de-identify large-scale data manually, since this can be expensive, time-
consuming, and prone to error. Therefore, a reliable automated de-identification system is
highly desired.

Healthcare and biomedical research has been significantly impacted by the utilization
of natural language processing (NLP). Named entity recognition (NER) is a basic function-
ality of clinical NLP. It is defined as the identification of desired entities from texts. The
main task of NER is to identify and classify specific words and meaningful phrases [3].
NER from clinical texts has been an area of increasing interest in recent years in the medical
domain and drive clinical decision support (CDS) to enable healthcare providers to make
personalized patient care decisions. Medical reports consist of both coded and unstruc-
tured texts. Although coded data can easily be de-identified, it is extremely challenging to
de-identify unstructured texts.

The NER techniques can be divided into four categories: lexicon-based, heuristic-
based, machine learning, and hybrid techniques [4–6]. The majority of the primitive NER
systems applied lexicon- and heuristic-based techniques. These systems deployed rules
derived from syntactic-lexical patterns as well as information lists to classify and identify
named entities (NE) [7–10]. Since these approaches exploit language-related knowledge,
these are considered to be highly efficient [11]. However, there are a few limitations of
these techniques, as they are domain-specific, expensive, and involve human expertise
in that domain. Due to these limitations, researchers have shifted their interests towards
machine-learning-based techniques.

There have been numerous efforts to improve the performance of clinical NER systems
by undertaking various strategies to exploit the existing infrastructure of machine learning
algorithms. Machine learning techniques can be either unsupervised, semi-supervised, or
supervised. Some studies used an ensemble of multiple machine learning methods [12,13].
Hybrid machine learning models with high confidence rules have also been applied [14].
Multiple studies have used unsupervised models using clustering algorithms [15,16]. The
existing literature shows that supervised machine learning algorithms have been incorpo-
rated in most of the best-performing NER systems.

Multiple algorithms are used to build supervised NER models, such as conditional
random fields (CRF), maximum entropy (ME), and structured support vector machines
(SVMs) [17–19]. These algorithms build NER models by exploiting the predefined multidi-
mensional feature sets from text datasets. The performance of a supervised model depends
largely on the selection of proper features. In this study, we investigated the performance
of a CRF-based NER model by using multiple features and their combinations.

The objective of this study was to identify the best-performing features for a de-
identification NER model. We did not aim to build a high-performance model. In fact,
our aim was to find the features which work the best to build such a model. The major
contribution of this study is that it helps to identify the best possible features from the wide
range of features mentioned in the existing literature. This article first discusses the data,
preparation of the gold standard repository, and the experimental setup in the Materials
and Methods section. The performances of the NER models are presented and evaluated in
the Results section to identify the best-performing features. Finally, the key finding of the
experiments were discussed and summarized in the Discussion and Conclusions sections.

2. Materials and Methods
2.1. Dataset

In this study, 7 types of radiology reports were acquired from the EHR of the University
of Missouri Healthcare. The total number of reports was 10,239. Table 1 shows the number
of reports in each type. All the patients were diagnosed with IIIB or greater stages of cancer
and the diagnoses were made between 2010 and 2018. In this study, we identified five
types of PHI items from these unstructured clinical texts. The PHIs were NAME, DATE,
HOSPITAL, LOCATION, and ID (patient visit number).
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Table 1. Description of dataset.

Report Type Abbreviation Number of Reports

Interventional Radiology IR 273
Mammography MA 167

Magnetic Resonance Imaging MRI 1010
Nuclear Medicine Technique NM 655

Ultrasound US 644
Computed Tomography CT 2741

X-ray XR 4749

2.2. NLP Toolkit

To annotate the PHIs in the radiology reports, we used an NLP software called MITRE
Identification Scrubber Toolkit (MIST) [20]. All of the reports passed through a two-step
annotation process for tagging the HIPAA-defined PHI items. At the first step, each report
was manually annotated by a data annotator. It was reviewed by a second annotator at
the second step and necessary correction was made if an error was found. A completely
annotated gold standard repository was created through this two-step annotation process.
Multiple supervised NER models were built by using this gold standard dataset.

The NER model was built using a different NLP toolkit called Clinical Language
Annotation, Modelling and Processing (CLAMP) [21]. The feature extraction module of
CLAMP enabled us to develop a conditional random field (CRF)-based model using various
sets of features. These features could be used both individually and in a combination.

2.3. Performance Metrics

In this study, performances of the models were evaluated using three performance
metrics, such as precision (P), recall (R), and F1-score (F1). Precision is a measure that
indicates how many of the positive predictions are actually correct. Recall indicates how
many positive cases were predicted out of all the positive cases. F1-score is a measure that
combines both precision and recall. Precision is an important measure when there is a high
cost associated with false positive. On the other hand, recall is important when the cost of
false negative is high. F1-score is a measure that is used when a balance between precision
and recall is expected. It is usually described as the harmonic mean of these two metrics.
The metrics are calculated as below:

Precision =
True Positive

True Positive + False Positive

Recall =
True Positive

True Positive + False Negative

F1–Score = 2×Precision × Recall
Precision + Recall

There were two stages of the experiment: Identification of the best feature set and
determination of the minimum size of the training set to produce the best performance.
Figure 1 depicts the workflow of the entire experiment.
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Figure 1. Workflow of the experiment: (a) Identification of the best feature set, (b) determination of
the minimum size of the training set to obtain the best performance.

2.4. Identification of the Best Feature Set

At this stage of the experiment, our goal was to determine which features make the
NER model perform the best in annotating the PHI mentioned above. The workflow of this
stage of the experiment is illustrated in Figure 1a. A total of 10 features were extracted and
a model was built for each type of report using each of these 10 features. The performance
of each model was evaluated by applying a 5-fold cross-validation technique. Performance
was evaluated by calculating precision, recall, and F1-score. Based on the performance of
models trained by individual features, the best features were selected for the second stage
of the experiment. Once we found out the best-performing features, we built two more
NER models for each type of reports. One model was built with the best four features (M4)
and the other one was built with all of the 10 features (M10). Moreover, similar to these
two models, we built two more models using all of the radiology reports. The objective
of the latter two models was to find out whether the performance of the features varies
significantly when trained with multiple types of reports.

The performance of a supervised NER model may vary significantly with the feature
selection. Although existing literature provides numerous features used in supervised
NER, the utility of the features is domain-specific. Hence, not all the features prove to be
effective depending on the nature of the data. Here, we present all the features which were
explored in this study.

Brown Clustering (BC) is a hierarchical clustering language model [22]. It cluster
words to maximize the mutual information of bigrams. In this model, a word class can be
selected at various levels of the hierarchy. As a result, poor clusters with small number
of words can be compensated. N-gram is a feature that utilizes the co-occurrence of
neighboring items of a named entity. [23] For example, in a 2-g model, the frequency of
each left-right pair of neighbors of a tagged entity is calculated. Similarly, the prefix and
suffix of a named entity are represented by the prefix-suffix feature.

Random Indexing (RI) is a type of dimensionality reduction technique that is widely
used in natural language processing. It is a random projection method that approximates
similarities in sets of co-occurrence weights by incrementally generating distributional
representation [24]. An index is associated with each document or context which forms
a multidimensional sparse random vector. Another multi-dimensional vector of integers
named distributional vector is associated with each word. Distributional vectors are
initiated at zero. It is updated by adding a index vector whenever the associated word is
found in the context. Finally, the semantic relationship between words are evaluated based
on the similarity among respective distributional vectors.

Section (S) feature represents the section where a named entity is encountered. Sen-
tence pattern (SP) utilizes built-in rules by CLAMP and recognizes the pattern of a sentence.
Word Embedding (WE) is similar to brown clustering and random indexing since it is a



Appl. Sci. 2022, 12, 9976 5 of 10

representation of word distribution that is produced on unlabeled data. In discrete word
embedding (DWE), a distributed representation enables the extraction of character level of
features at word level. Moreover, it does not require any syntactic knowledge. [25]. Word
Shape (WS) identifies whether a word starts with a number, English letter, etc., or not.
Word regular expression (WRE) feature is the regular expression patterns of words that
may represent a specific type of named entity.

2.5. Determination of the Minimum Size of the Training Set

At the second stage of the experiment, our objective was to observe how the perfor-
mance of a model varies with the number of training data and in turn, to determine the
minimum size of training set to achieve the best performance of the model. At first, all the
reports (n(R) = N) of each type were divided into two groups: training pool (A) and test
set (B). The test set was selected randomly and it consisted of 25% of all the reports of that
type. The rest of the reports were included in the training pool. Using the best feature sets
derived from the first stage of the experiment, multiple models were built by using variable
number of training set from the training pool. Figure 1b shows all these steps for training
set size j where:

• N = total number of reports of a type
• n(A) ≈ 0.75N = number of reports in the training pool
• n(B) ≈ 0.25N = number of reports in the test set
• n(Ak) = j = 25, 50, 100, 200, . . . . . . , n(A) = number of reports in each training dataset
• k = 1, 2, 3, . . . . . . , n(A)/j = number of iterations for each training dataset, Ak.

For each type of report, we first selected varying size of training set where the size
was denoted by j and j = 25, 50, 100, 200, . . . . . . , n(A). For each value of j, a total of n(A)/j
training sets (Ak) were created where the size of each training set, n(Ak), was j and the
sets were mutually exclusive. For each training set, Ak, a model was created using the
best feature set and the performances of all such models were evaluated using the same
test set (B) which was already set aside. The mean F1-score of all the models, for each
training set size j, was selected as the metric to evaluate the performance for that training
set size. Finally, variation of the models’ performances with the varying size of training set
were investigated.

3. Results

Figure 2 shows the results of the Analysis-1 (identifying the best feature set) in the form
of heatmaps. There are seven types of reports and three different performance metrics. For
each type of report, there are three heatmaps, each corresponding to a performance metric.
Therefore, there are a total of 21 heatmaps. While describing the results, we will denote each
heatmap with a corresponding report-metric pair (such as IR-Precision, MRI-Recall, etc.).
The columns of the heatmap represent the PHI items and the rows represent the features. In
the figure, LOCATION, DATE, HOSPITAL, PHONE, and NAME, were denoted by LC, DT,
HS, PH, and NM. All of the heatmaps were generated based on the Red-Yellow-Green color
scale. In each heatmap, the red color represents the highest value, and the green represents
the lowest. It can easily be observed from the figure that the section and sentence pattern
features failed to identify any of the PHI items as for all the reports their precision, recall,
and F1-score were N/A, 0.00, and 0.00, respectively. Therefore, we will exclude these two
features from the further description of the results.

The IR heatmaps show no such feature that could outperform all other features across
all of the performance metrics in identifying the PHI items. For example, the IR-Precision
heatmap illustrates that the highest value of 0.73 was achieved by n-gram and prefix-suffix
features in identifying LOCATION. For DATE, the highest precision was achieved by
word shape with a value of 0.96. For HOSPITAL, the highest value of 0.71 was achieved
by n-gram, prefix-suffix, and word shape features. Word embedding and prefix-suffix
yielded the highest values for NAME (0.85) and ID (0.88), respectively. Therefore, in terms
of precision, the best features were n-gram, prefix-suffix, word embedding, and word



Appl. Sci. 2022, 12, 9976 6 of 10

shape. The IR-Recall heatmap reveals that for LOCATION, n-gram had the highest value
of 0.69. For DATE, the highest value of 0.85 was achieved by discrete word embedding,
n-gram, prefix-suffix, word embedding, and word shape features. Similar observation
reveals that for HOSPITAL, NAME, and ID, the best-performing features were n-gram,
word embedding, and word shape. Though discrete word embedding shared the highest
value with other features for DATE, it performed poorly for NAME and had a value of 0.00
for ID. Therefore, we excluded it from the set of best features. IR-Recall heatmap showed
that the best-performing features were n-gram, prefix-suffix, word embedding, and word
shape. Moreover, a similar study of the IR-F1 Score heatmap gave the same four features as
the best-performing ones.

Figure 2. Precision, Recall, and F1-score achieved by all the features for all the PHI items in all of the
reports in the form of a heatmap.
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We repeated similar observations on each report-metric heatmap. The set of the best-
performing features among all of the reports was consistent with the findings from IR
heatmaps. While identifying the best features for a type of reports, we excluded any such
feature that yielded the best value for one PHI item but performed poorly for multiple
items, which was the case with discrete word embedding in the IR-Recall heatmap. We
encountered similar cases in other heatmaps as well. For example, brown clustering had
the highest value of precision for DATE in MA reports. Since it failed badly in identifying
NAME and ID with a very poor value of all the metrics, it was discarded from the best
feature set.

The performance of these models and their comparison are presented in Table 2. It
can be seen from Table 2 that there is no significant difference between the performance
of the best 4 features in combination and all 10 features in combination. For example, in
IR reports, M10 had a precision value of 0.71 for LOCATION and M4 had a value of 0.72.
Although M4 had a negligibly larger value in this case, there were multiple cases where
M10 had larger values as can be seen with the recall value of DATE in IR reports. M10 had
a recall value of 0.87 whereas M4 had a value of 0.86. Moreover, in XR reports, both the
models had exactly the same values of metrics for each PHI item.

Table 2. Precision (P), Recall (R), and F1-score (F1) values for all the reports achieved by the models
with the best 4 features (M4) and all 10 features (M10).

Report Type
LOCATION DATE HOSPITAL NAME ID

M10 M4 M10 M4 M10 M4 M10 M4 M10 M4

IR
P 0.71 0.72 0.88 0.88 0.71 0.71 0.84 0.84 0.73 0.73
R 0.68 0.69 0.87 0.86 0.70 0.71 0.78 0.78 0.60 0.61
F1 0.70 0.70 0.87 0.87 0.71 0.71 0.80 0.80 0.66 0.66

MA
P 0.67 0.69 0.87 0.87 0.66 0.68 0.86 0.87 0.91 0.94
R 0.60 0.64 0.82 0.82 0.63 0.66 0.81 0.81 0.91 0.91
F1 0.63 0.67 0.84 0.85 0.64 0.67 0.83 0.84 0.91 0.92

MRI
P 0.82 0.83 0.88 0.89 0.83 0.83 0.91 0.91 0.86 0.86
R 0.82 0.83 0.85 0.85 0.82 0.82 0.87 0.87 0.84 0.84
F1 0.82 0.83 0,87 0.87 0.82 0.82 0.89 0.89 0.85 0.85

NM
P 0.82 0.81 0.90 0.90 0.83 0.82 0.91 0.92 0.88 0.89
R 0.80 0.80 0.85 0.85 0.83 0.82 0.81 081 0.88 0.87
F1 0.81 0.80 0.88 0.88 0.83 0.82 0.86 0.86 0.88 0.88

US
P 0.78 0.78 0.90 0.91 0.79 0.80 0.97 0.97 0.86 0.86
R 0.77 0.77 0.87 0.87 0.78 0.78 0.95 0.95 0.86 0.85
F1 0.77 0.78 0.89 0.89 0.78 0.79 0.96 0.96 0.86 0.86

CT
P 0.94 0.94 0.82 0.83 0.94 0.94 0.94 0.94 0.80 0.80
R 0.93 0.93 0.75 0.75 0.94 0.94 0.93 0.93 0.71 0.71
F1 0.94 0.94 0.79 0.79 0.94 0.94 0.94 0.94 0.75 0.75

XR
P 0.94 0.94 0.90 0.90 0.93 0.93 0.95 0.95 0.88 0.88
R 0.93 0.93 0.88 0.88 0.93 0.93 0.95 0.95 0.80 0.80
F1 0.93 0.93 0.89 0.89 0.93 0.93 0.95 0.95 0.84 0.84

ALL
P 0.90 0.90 0.88 0.88 0.90 0.90 0.93 0.93 0.86 0.87
R 0.89 0.90 0.86 0.87 0.89 0.90 0.91 0.92 0.85 0.86
F1 0.89 0.89 0.87 0.87 0.88 0.90 0.92 0.91 0.85 0.86

Figure 3 shows how the performance of the models varied with the number of training
data. Here, only F1-score was considered to evaluate the performance of a model. As
expected, in most of the cases, the performance reached a saturation level after a number
of training data points. Ideally, it was expected that the performance would initially be
at a lower level, increase as the number of training data increased, and eventually reach
a saturation level. However, there were cases where the performance deteriorated as the
training data increased. For example, in MA, the F1-score for LOCATION and HOSPITAL
increased from 20 to 50 data but started to decrease after 50 data points.
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Figure 3. Variation of F1-score with the size of the training data, n(Ak).

4. Discussion

In this study, we investigated the utility of multiple features on a significantly large
volume of clinical corpora. The dataset was enriched not only in terms of the total number
of clinical reports but also in terms of variation. There were 7 types of radiology reports,
and each type of report had a different structure of narrative from the other. Such a diverse
dataset was vital for this study. If any feature performs well in one type of reports but fails
in other types, it cannot be recognized as one of the best-performing features in a NER
system. The best-performing features identified by our analysis performed consistently
better than other features across all types of reports. Moreover, the large volume of the
dataset made sure that the findings of our analysis are not subject to a small number of
structured texts from where the feature learning was straightforward from the machine
learning algorithm’s point of view. This was the largest dataset among the existing clinical
de-identification-related studies to the best of our knowledge.

The objective of this study was not to build a NER model with high values for perfor-
mance metrics. Rather, the objective was to find the best features that can be used to build
a high-performance model. The features play a significant role in a model’s performance,
but those are not the only factors that dictate a model’s performance. The performance
depends on the machine learning algorithm itself and its parameter estimation techniques.
Since we used CLAMP to build the models, we restricted ourselves within the default
setup of the tool and analyzed the models’ performances using different features. The
M4 model had precision, recall, and F1-score of 0.78, 0.77, and 0.78, respectively (Table 2)
for LOCATION in ultrasound reports which are not satisfactory values of performance
metrics. However, such values do not prevent us from meeting the objective since we did
not aim at a high-performance model. The best four features yielded the highest values
of performance metrics than other features for each PHI no matter how high or low those
values were, and thus the objective of identifying the best features was met.

We excluded the CT and XR reports from the second stage of analysis, where we
observed how the performance of a model varies with the number of training data. The
number of reports in each of these two types was too high to conduct a multifold training
process with a variable number of training data. Out of the five types of reports included
in this stage of analysis, both IR and MA had a small number of reports. On the other hand,
NM, MRI, and US had a significantly larger number of reports, as can be seen from Table 1.
Figure 3 shows that most of the PHIs reached a saturation level in NM, MRI, and US. This
can be attributed to the large number of reports.

5. Conclusions

In this study, we investigated the efficiency of different features in a clinical de-
identification NER model. A gold-standard dataset was created by manually annotating
the PHI items in seven types of radiology reports. We built multiple CRF-based models
by using 10 feature extraction modules in the CLAMP toolkit both individually and as
combinations. By evaluating the performance of the features, we concluded that the best-
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performing features were n-gram, prefix-suffix, word embedding, and word shape. These
four features performed the best regardless of the type of reports involved. Moreover, these
features outperformed the others even when all types of reports were used to build a single
model. The dataset used in this study was rich in quantity and variation which made
sure that the conclusion is not drawn by observing the performance on a small number of
structured clinical texts. Since clinical reports form the foundation of numerous clinical
research studies, demand for a reliable de-identification model is increasing day by day.
This study contributes in identifying the best possible features for a machine-learning-based
de-identification model out of a wide array of features at one’s disposal.
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